Next Article in Journal
Engineering Analysis of Plant and Fungal Contributions to Bioretention Performance
Previous Article in Journal
An Integrated Statistical Method to Generate Potential Future Climate Scenarios to Analyse Droughts
Previous Article in Special Issue
Investigating the Dynamic Influence of Hydrological Model Parameters on Runoff Simulation Using Sequential Uncertainty Fitting-2-Based Multilevel-Factorial-Analysis Method
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Water 2018, 10(9), 1225; https://doi.org/10.3390/w10091225

Evaluation and Hydrological Application of CMADS against TRMM 3B42V7, PERSIANN-CDR, NCEP-CFSR, and Gauge-Based Datasets in Xiang River Basin of China

1
China Institute of Water Resources and Hydropower Research, Beijing 100038, China
2
State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 100038, China
3
School of Civil Engineering, Southeast University, Nanjing 211189, China
*
Author to whom correspondence should be addressed.
Received: 14 June 2018 / Revised: 5 September 2018 / Accepted: 8 September 2018 / Published: 11 September 2018
Full-Text   |   PDF [7749 KB, uploaded 11 September 2018]   |  

Abstract

Satellite-based and reanalysis precipitation products provide a practical way to overcome the shortage of gauge precipitation data because of their high spatial and temporal resolution. This study compared two reanalysis precipitation datasets (the China Meteorological Assimilation Driving Datasets for the Soil and Water Assessment Tool (SWAT) model (CMADS), the National Centers for Environment Prediction Climate Forecast System Reanalysis (NCEP-CFSR)) and two satellite-based datasets (the Tropical Rainfall Measuring Mission 3B42 Version 7 (3B42V7) and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR)) with observed precipitation in the Xiang River basin in China at two spatial (grids and the whole basin) and two temporal (daily and monthly) scales. These datasets were then used as inputs to a SWAT model to evaluate their usefulness in hydrological prediction. Bayesian model averaging was used to discriminate dataset performance. The results show that: (1) for daily timesteps, correlations between reanalysis datasets and gauge observations are >0.55, better than satellite-based datasets; The bias values of satellite-based datasets are <10% at most evaluated grid locations and for the whole baseline. PERSIANN-CDR cannot detect the spatial distribution of rainfall events; the probability of detection (POD) of PERSIANN-CDR at most evaluated grids is <0.50; (2) CMADS and 3B42V7 are better than PERSIANN-CDR and NCEP-CFSR in most situations in terms of correlation with gauge observations; satellite-based datasets are better than reanalysis datasets in terms of bias; and (3) CMADS and 3B42V7 simulate streamflow well for both daily (The Nash-Sutcliffe coefficient (NS) > 0.70) and monthly (NS > 0.80) timesteps; NCEP-CFSR is worst because it substantially overestimates streamflow; PERSIANN-CDR is not good because of its low NS (0.40) during the validation period. View Full-Text
Keywords: reanalysis products; satellite-based products; hydrological model; bayesian model averaging; Xiang River basin reanalysis products; satellite-based products; hydrological model; bayesian model averaging; Xiang River basin
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Gao, X.; Zhu, Q.; Yang, Z.; Wang, H. Evaluation and Hydrological Application of CMADS against TRMM 3B42V7, PERSIANN-CDR, NCEP-CFSR, and Gauge-Based Datasets in Xiang River Basin of China. Water 2018, 10, 1225.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top