Effects of a Detailed Vegetation Database on Simulated Meteorological Fields, Biogenic VOC Emissions, and Ambient Pollutant Concentrations over Japan
Abstract
:1. Introduction
2. Methodology
2.1. Air Quality Simulation Framework
2.2. Vegetation Database
2.3. EF Database
2.4. Observation Data for Validation
2.5. Sensitivity Simulation Cases
3. Results
3.1. Model Performance on Meteorology
3.2. Estimates of BVOC Emissions
3.3. Model Performance on Ambient Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Sartelet, K.N.; Couvidat, F.; Seigneur, C.; Roustan, Y. Impact of biogenic emissions on air quality over Europe and North America. Atmos. Environ. 2012, 53, 131–141. [Google Scholar] [CrossRef]
- Wakamatsu, S.; Morikawa, T.; Ito, A. Air pollution trends in Japan between 1970 and 2012 and impact of urban air pollution countermeasures. Asian J. Atmos. Environ. 2013, 7, 177–190. [Google Scholar] [CrossRef]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
- Sakulyanontvittaya, T.; Duhl, T.; Wiedinmyer, C.; Helmig, D.; Matsunaga, S.; Potosnak, M.; Milford, J.; Guenther, A. Monoterpene and sesquiterpene emission estimates for the United States. Environ. Sci. Technol. 2008, 42, 1623–1629. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Woo, J.H.; Park, R.S.; Song, C.H.; Kim, J.H.; Ban, S.J.; Park, J.H. Impacts of different plant functional types on ambient ozone predictions in the Seoul Metropolitan Areas (SMAs), Korea. Atmos. Chem. Phys. 2014, 14, 7461–7484. [Google Scholar] [CrossRef]
- Kota, S.H.; Schade, G.; Estes, M.; Boyer, D.; Ying, Q. Evaluation of MEGAN predicted biogenic isoprene emissions at urban locations in Southeast Texas. Atmos. Environ. 2015, 110, 54–64. [Google Scholar] [CrossRef]
- Sakulyanontvittaya, T.; Cho, S.; Aklilu, Y.A.; Morris, R.; Nopmongcol, U. An assessment of enhanced biogenic emissions influence on ozone formation in central Alberta, Canada. Air Qual. Atmos. Health 2016, 9, 117–127. [Google Scholar] [CrossRef]
- Schurgers, G.; Arneth, A.; Hickler, T. Effect of climate-driven changes in species composition on regional emission capacities of biogenic compounds. J. Geophys. Res. Atmos. 2011, 116, D22. [Google Scholar] [CrossRef]
- Wang, B.; Shugart, H.H.; Lerdau, M.T. An individual-based model of forest volatile organic compound emissions-UVAFME-VOC v1.0. Ecol. Model. 2017, 350, 69–78. [Google Scholar] [CrossRef]
- Chatani, S.; Matsunaga, S.N.; Nakatsuka, S. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol. Atmos. Environ. 2015, 120, 38–50. [Google Scholar] [CrossRef]
- Schicker, I.; Arias, D.A.; Seibert, P. Influences of updated land-use datasets on WRF simulations for two Austrian regions. Meteorol. Atmos. Phys. 2016, 128, 279–301. [Google Scholar] [CrossRef]
- Cheng, F.Y.; Hsu, Y.C.; Lin, P.L.; Lin, T.H. Investigation of the effects of different land use and land cover patterns on mesoscale meteorological simulations in the Taiwan area. J. Appl. Meteorol. Climatol. 2013, 52, 570–587. [Google Scholar] [CrossRef]
- Chatani, S.; Yamaji, K.; Sakurai, T.; Itahashi, S.; Shimadera, H.; Kitayama, K.; Hayami, H. Overview of model inter-comparison in Japan’s Study for Reference Air Quality Modeling (J-STREAM). Atmosphere 2018, 9, 19. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR/TN-475+STR; National Center for Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div: Boulder, CO, USA, 2008. [Google Scholar]
- Byun, D.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Carter, W.P.L. Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324–5335. [Google Scholar] [CrossRef]
- Carlton, A.G.; Bhave, P.V.; Napelenok, S.L.; Edney, E.D.; Sarwar, G.; Pinder, R.W.; Pouliot, G.A.; Houyoux, M. Model representation of secondary organic aerosol in CMAQv4.7. Environ. Sci. Technol. 2010, 44, 8553–8560. [Google Scholar] [CrossRef] [PubMed]
- Griffin, R.J.; Cocker, D.R.; Flagan, R.C.; Seinfeld, J.H. Organic aerosol formation from the oxidation of biogenic hydrocarbons. J. Geophys. Res. Atmos. 1999, 104, 3555–3567. [Google Scholar] [CrossRef]
- Bao, H.; Shrestha, K.L.; Kondo, A.; Kaga, A.; Inoue, Y. Modeling the influence of biogenic volatile organic compound emissions on ozone concentration during summer season in the Kinki region of Japan. Atmos. Environ. 2010, 44, 421–431. [Google Scholar] [CrossRef]
- Okumura, M.; Tani, A.; Kominami, Y.; Takanashi, S.; Kosugi, Y.; Miyama, T.; Tohno, S. Isoprene emission characteristics of Quercus serrata in a deciduous broad-leaved forest. J. Agric. Meteorol. 2008, 64, 49–60. [Google Scholar] [CrossRef]
- Tani, A.; Kawawata, Y. Isoprene emission from the major native Quercus spp. in Japan. Atmos. Environ. 2008, 42, 4540–4550. [Google Scholar] [CrossRef]
- Matsunaga, S.N.; Muller, O.; Chatani, S.; Nakamura, M.; Nakaji, T.; Hiura, T. Seasonal variation of isoprene basal emission in mature Quercus crispula trees under experimental warming of roots and branches. Geochem. J. 2012, 46, 163–167. [Google Scholar] [CrossRef]
- Ida, A.; Okajima, M.; Kishimoto, I.; Wu, W.; Sathiyamurthi, R.; Nakashima, Y.; Kato, S.; Chatani, S.; Yokouchi, Y.; Okumura, M.; et al. OH reactivity measurement and chemical analyses of BVOCs emitted from Sugi (Cryptomeria japonica). J. Jpn. Soc. Atmos. Environ. 2016, 51, 132–143. [Google Scholar]
- Lin, C.Y.; Chang, T.C.; Chen, Y.H.; Chen, Y.J.; Cheng, S.S.; Chang, S.T. Monitoring the dynamic emission of biogenic volatile organic compounds from Cryptomeria japonica by enclosure measurement. Atmos. Environ. 2015, 122, 163–170. [Google Scholar] [CrossRef]
- Matsunaga, S.N.; Mochizuki, T.; Ohno, T.; Endo, Y.; Kusumoto, D.; Tani, A. Monoterpene and sesquiterpene emissions from Sugi (Cryptomeria japonica) based on a branch enclosure measurements. Atmos. Pollut. Res. 2011, 2, 16–23. [Google Scholar] [CrossRef]
- Matsunaga, S.N.; Niwa, S.; Mochizuki, T.; Tani, A.; Kusumoto, D.; Utsumi, Y.; Enoki, T.; Hiura, T. Seasonal variation in basal emission rates and composition of mono- and sesquiterpenes emitted from dominant conifers in Japan. Atmos. Environ. 2013, 69, 124–130. [Google Scholar] [CrossRef]
- Okumura, M.; Ise, T.; Tani, A.; Miyama, T.; Kominami, Y.; Tohno, S. Effect of leaf temperature and light intensity on monoterpene emissions from Japanese Cedar (Cryptomeria japonica). Eco-Engineering 2013, 25, 117–121. [Google Scholar]
- Mochizuki, T.; Endo, Y.; Matsunaga, S.; Chang, J.; Ge, Y.; Huang, C.A.; Tani, A. Factors affecting monoterpene emission from Chamaecyparis obtusa. Geochem. J. 2011, 45, E15–E22. [Google Scholar] [CrossRef]
- Okumura, M.; Tani, A.; Kosugi, Y.; Takanashi, S.; Miyama, T.; Kominami, Y.; Tohno, S. Diurnal and seasonal variations of monoterpene emissions from leaves of Chamaecyparis obtusa. Eco-Engineering 2008, 20, 89–95. [Google Scholar]
- Lim, J.H.; Kim, J.C.; Kim, K.J.; Son, Y.S.; Sunwoo, Y.; Han, J.S. Seasonal variations of monoterpene emissions from Pinus densiflora in East Asia. Chemosphere 2008, 73, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Shibata, M.; Fujii, T.; Kishimoto, I.; Tsurumaru, H.; Sakamoto, Y.; Kajii, Y. Comprehensive evaluation of volatile organic compounds emitted from akamatsu (Pinus densiflora) by chemical analysis and OH reactivity measurements. ELCAS J. 2016, 1, 76–80. [Google Scholar]
- Wei, D.; Fuentes, J.D.; Gerken, T.; Chamecki, M.; Trowbridge, A.M.; Stoy, P.C.; Katul, G.G.; Fisch, G.; Acevedo, O.; Manzi, A.; et al. Environmental and biological controls on seasonal patterns of isoprene above a rain forest in central Amazonia. Agric. For. Meteorol. 2018, 256–257, 391–406. [Google Scholar] [CrossRef]
- Chatani, S.; Morikawa, T.; Nakatsuka, S.; Matsunaga, S.; Minoura, H. Development of a framework for a high-resolution, three-dimensional regional air quality simulation and its application to predicting future air quality over Japan. Atmos. Environ. 2011, 45, 1383–1393. [Google Scholar] [CrossRef]
- Trieu, T.T.N.; Goto, D.; Yashiro, H.; Murata, R.; Sudo, K.; Tomita, H.; Satoh, M.; Nakajima, T. Evaluation of summertime surface ozone in Kanto area of Japan using a semi-regional model and observation. Atmos. Environ. 2017, 153, 163–181. [Google Scholar] [CrossRef]
- Inoue, K.; Yasuda, R.; Yoshikado, H.; Higashino, H. Spatial distribution of summer-time surface ozone sensitivity to NOx and VOC emissions for the Kanto area Part 1: Estimation by numerical simulations with two kinds of (larger and smaller) biogenic emission estimates. J. Jpn. Soc. Atmos. Environ. 2010, 45, 183–194. [Google Scholar]
- Kim, E.; Kim, B.U.; Kim, H.C.; Kim, S. The variability of ozone sensitivity to anthropogenic emissions with biogenic emissions modeled by MEGAN and BEIS3. Atmosphere 2017, 8, 187. [Google Scholar] [CrossRef]
- Kato, S.; Shiobara, Y.; Uchiyama, K.; Miura, K.; Okochi, H.; Kobayashi, H.; Hatakeyama, S. Atmospheric CO, O3, and SO2 measurements at the summit of Mt. Fuji during the summer of 2013. Aerosol Air Qual. Res. 2016, 16, 2368–2377. [Google Scholar] [CrossRef]
- Ghirardo, A.; Xie, J.F.; Zheng, X.H.; Wang, Y.S.; Grote, R.; Block, K.; Wildt, J.; Mentel, T.; Kiendler-Scharr, A.; Hallquist, M.; et al. Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing. Atmos. Chem. Phys. 2016, 16, 2901–2920. [Google Scholar] [CrossRef] [Green Version]
- Brilli, F.; Barta, C.; Fortunati, A.; Lerdau, M.; Loreto, F.; Centritto, M. Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol. 2007, 175, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, J.; Filella, I.; Seco, R.; Llusià, J. Increase in isoprene and monoterpene emissions after re-watering of droughted Quercus ilex seedlings. Biol. Plant. 2009, 53, 351–354. [Google Scholar] [CrossRef]
- Saunier, A.; Ormeno, E.; Wortham, H.; Temime-Roussel, B.; Lecareux, C.; Boissard, C.; Fernandez, C. Chronic drought decreases anabolic and catabolic BVOC emissions of Quercus pubescens in a Mediterranean Forest. Front. Plant Sci. 2017, 8, 71. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Paulot, F.; Carter, W.P.L.; Nolte, C.G.; Luecken, D.J.; Hutzell, W.T.; Wennberg, P.O.; Cohen, R.C.; Pinder, R.W. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality. Atmos. Chem. Phys. 2013, 13, 8439–8455. [Google Scholar] [CrossRef]
- Van Eijck, A.; Opatz, T.; Taraborrelli, D.; Sander, R.; Hoffmann, T. New tracer compounds for secondary organic aerosol formation from beta-caryophyllene oxidation. Atmos. Environ. 2013, 80, 122–130. [Google Scholar] [CrossRef]
- Saunders, S.M.; Jenkin, M.E.; Derwent, R.G.; Pilling, M.J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 161–180. [Google Scholar] [CrossRef]
- Matsui, H.; Koike, M.; Takegawa, N.; Kondo, Y.; Griffin, R.J.; Miyazaki, Y.; Yokouchi, Y.; Ohara, T. Secondary organic aerosol formation in urban air: Temporal variations and possible contributions from unidentified hydrocarbons. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Morino, Y.; Takahashi, K.; Fushimi, A.; Tanabe, K.; Ohara, T.; Hasegawa, S.; Uchida, M.; Takami, A.; Yokouchi, Y.; Kobayashi, S. Contrasting diurnal variations in fossil and nonfossil secondary organic aerosol in urban outflow, Japan. Environ. Sci. Technol. 2010, 44, 8581–8586. [Google Scholar] [CrossRef] [PubMed]
- Morino, Y.; Nagashima, T.; Sugata, S.; Sato, K.; Tanabe, K.; Noguchi, T.; Takami, A.; Tanimoto, H.; Ohara, T. Verification of chemical transport models for PM2.5 chemical composition using simultaneous measurement data over Japan. Aerosol Air Qual. Res. 2015, 15, 2009–2023. [Google Scholar] [CrossRef]
- Alves, C.; Vicente, A.; Pio, C.; Kiss, G.; Hoffer, A.; Decesari, S.; Prevot, A.S.H.; Minguillon, M.C.; Querol, X.; Hillamo, R.; et al. Organic compounds in aerosols from selected European sites—Biogenic versus anthropogenic sources. Atmos. Environ. 2012, 59, 243–255. [Google Scholar] [CrossRef]
- Matsunaga, S.N.; Shimada, K.; Masuda, T.; Hoshi, J.; Sato, S.; Nagashima, H.; Ueno, H. Emission of Biogenic Volatile Organic Compounds from Trees along Streets and in Urban Parks in Tokyo, Japan. Asian J. Atmos. Environ. 2017, 11, 29–32. [Google Scholar] [CrossRef]
- Wang, B.; Shuman, J.; Shugart, H.H.; Lerdau, M.T. Biodiversity matters in feedbacks between climate change and air quality: A study using an individual-based model. Ecol. Appl. 2018. [Google Scholar] [CrossRef] [PubMed]
Case Name | Land Use |
---|---|
BASE | USGS |
NEW-LU | This study |
Case Name | Meteorology | PFT | EF |
---|---|---|---|
BASE | NEW-LU | Default | Default |
NEW-VEG | NEW-LU | This study | Default |
NEW-VEGEF | NEW-LU | This study | This study |
Parameter | Domain | Network | Case | MB | RMSE | R |
---|---|---|---|---|---|---|
Temperature (°C) | d03 | Office | BASE | −0.93 | 2.2 | 0.82 |
NEW-LU | −0.047 | 2.1 | 0.81 | |||
AMeDAS | BASE | −0.96 | 2.2 | 0.86 | ||
NEW-LU | −0.46 | 2.1 | 0.85 | |||
d04 | Office | BASE | −0.54 | 2.9 | 0.84 | |
NEW-LU | 0.40 | 2.5 | 0.88 | |||
AMeDAS | BASE | −0.86 | 2.4 | 0.85 | ||
NEW-LU | −0.39 | 2.3 | 0.86 | |||
Relative humidity (%) | d03 | Office | BASE | 2.8 | 11 | 0.72 |
NEW-LU | −2.6 | 11 | 0.70 | |||
d04 | Office | BASE | 3.4 | 10 | 0.70 | |
NEW-LU | −1.9 | 10 | 0.72 | |||
Wind speed (m/s) | d03 | Office | BASE | 0.50 | 1.6 | 0.52 |
NEW-LU | 0.42 | 1.4 | 0.55 | |||
AMeDAS | BASE | 1.2 | 2.0 | 0.42 | ||
NEW-LU | 1.0 | 1.8 | 0.45 | |||
d04 | Office | BASE | 0.51 | 1.6 | 0.51 | |
NEW-LU | 0.43 | 1.5 | 0.54 | |||
AMeDAS | BASE | 0.85 | 1.7 | 0.46 | ||
NEW-LU | 0.73 | 1.5 | 0.50 |
Domain | Case | MB (ppb) | RMSE (ppb) | R |
---|---|---|---|---|
d03 | BASE | 23 | 28 | 0.77 |
NEW-VEG | 22 | 26 | 0.76 | |
NEW-VEGEF | 20 | 25 | 0.75 | |
d04 | BASE | 20 | 25 | 0.87 |
NEW-VEG | 17 | 23 | 0.86 | |
NEW-VEGEF | 15 | 22 | 0.86 |
Domain | Case | MB (μg/m3) | RMSE (μg/m3) | R |
---|---|---|---|---|
d03 | BASE | −1.1 | 1.8 | 0.41 |
NEW-VEG | −1.1 | 1.8 | 0.41 | |
NEW-VEGEF | −1.2 | 1.9 | 0.38 | |
d04 | BASE | −1.2 | 1.4 | 0.27 |
NEW-VEG | −1.2 | 1.5 | 0.29 | |
NEW-VEGEF | −1.2 | 1.5 | 0.29 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatani, S.; Okumura, M.; Shimadera, H.; Yamaji, K.; Kitayama, K.; Matsunaga, S.N. Effects of a Detailed Vegetation Database on Simulated Meteorological Fields, Biogenic VOC Emissions, and Ambient Pollutant Concentrations over Japan. Atmosphere 2018, 9, 179. https://doi.org/10.3390/atmos9050179
Chatani S, Okumura M, Shimadera H, Yamaji K, Kitayama K, Matsunaga SN. Effects of a Detailed Vegetation Database on Simulated Meteorological Fields, Biogenic VOC Emissions, and Ambient Pollutant Concentrations over Japan. Atmosphere. 2018; 9(5):179. https://doi.org/10.3390/atmos9050179
Chicago/Turabian StyleChatani, Satoru, Motonori Okumura, Hikari Shimadera, Kazuyo Yamaji, Kyo Kitayama, and Sou N. Matsunaga. 2018. "Effects of a Detailed Vegetation Database on Simulated Meteorological Fields, Biogenic VOC Emissions, and Ambient Pollutant Concentrations over Japan" Atmosphere 9, no. 5: 179. https://doi.org/10.3390/atmos9050179
APA StyleChatani, S., Okumura, M., Shimadera, H., Yamaji, K., Kitayama, K., & Matsunaga, S. N. (2018). Effects of a Detailed Vegetation Database on Simulated Meteorological Fields, Biogenic VOC Emissions, and Ambient Pollutant Concentrations over Japan. Atmosphere, 9(5), 179. https://doi.org/10.3390/atmos9050179