Summertime Aerosol Radiative Effects and Their Dependence on Temperature over the Southeastern USA
Abstract
:1. Introduction
2. Methodology
2.1. Spaceborne Observations
2.1.1. AATSR
2.1.2. OMI
2.1.3. MODIS
2.2. Aerosol–Climate Model
2.3. Meteorological Data
2.4. Regression Analysis
3. Results and Discussion
3.1. Temperature Dependence of Summertime AOD over the Southeastern USA
- a = 2.68e−16 ± 2.87e−17 cm2 molec−1,
- b = 0.007 ± 0.006 K−1,
- c = 0.032 ± 0.019 s m−1, and
- d = −0.003 ± 0.006.
3.2. Temperature Dependence of Summertime AOD over the Most Common Land Cover Types
- a = 2.07e−16 ± 5.11e−17 cm2 molec−1,
- b = 0.027 ± 0.013 K−1,
- c = 0.022 ± 0.041 s m−1, and
- d = 0.001 ± 0.012
- a = 2.07e−16 ± 4.94e−17 cm2 molec−1,
- b = −0.005 ± 0.011 K−1,
- c = 0.056 ± 0.033 s m−1, and
- d = −0.000 ± 0.012.
- a = 2.25e−16 ± 5.12e−17 cm2 molec−1,
- b = 0.003 ± 0.010 K−1,
- c = −0.016 ± 0.033 s m−1, and
- d = −0.000 ± 0.013.
3.3. Radiative Impacts
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
β | Up-scatter fraction |
ϕ | Mean daytime value of the secant of the solar zenith angle |
ω | Single scattering albedo |
AATSR | Advanced Along-Track Scanning Radiometer |
ACCMIP | Atmospheric Chemistry and Climate model Intercomparison Project |
ADV | AATSR Dual-View algorithm |
AOD | Aerosol optical depth |
BENZ | Benzene |
BVOC | Biogenic volatile organic compounds |
Cc | Fractional cloud amount |
CCI | Climate change initiative |
CCN | Cloud condensation nuclei |
CMG | Climate Modelling Grid |
CONTROL | Simulation with all model schemes in use |
DJF | December-January-February |
DRE | Direct radiative effect |
DUE | Data User Element |
Ea | Activation enthalpy |
ENVISAT | Environmental satellite |
ERF | Effective radiative forcing |
ESA | European Space Agency |
ECMWF | European Centre for Medium-Range Weather Forecasts |
GAW | Global Atmosphere Watch |
GFED | Global Fire Emissions Database |
GISS | Goddard Institute for Space Studies |
GLYX | Glyoxals |
IEPOX | Isoprene epoxydiols |
IGBP | International Geosphere Biosphere Programme |
IMPROVE | Interagency Monitoring of PROtected Visual Environments |
ISOP | Isoprene |
JJA | June-July-August |
k | Reaction coefficient for VOC oxidation |
k0 | Reference reaction coefficient |
LST | Land surface temperature |
MEGAN | Model of Emissions of Gases and Aerosols from Nature |
MISR | Multi-angle Imaging SpectroRadiometer |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MTP | Monoterpenes |
NASA GES DISC | National Aeronautics and Space Administration Goddard Earth Sciences Data and Information Services Center |
noBIOSOA | Simulation without biogenic SOA precursor emissions |
ODR | Orthogonal Distance Regression |
OMI | Ozone Monitoring Instrument |
POM | Primary organic matter |
R | Gas constant |
r | Correlation coefficient |
Rs | Shortwave surface reflectance |
RMSE | Root-mean-square error |
Srad | Incident solar radiation at the top of the atmosphere |
SALSA | Sectional Aerosol module for Large-Scale Applications |
SOA | Secondary organic aerosol |
SW10 | Southerly wind speed |
T | Temperature |
Tatm | Aerosol-free atmospheric transmission |
TOA | Top-of-the-atmosphere |
TOL | Toluene |
U10 | Wind speed component (east–west direction) at 10 m altitude |
US | United States |
V10 | Wind speed component (north–south direction) at 10 m altitude |
VBS | Volatility basis set |
VOC | Volatile organic compounds |
XYL | Xylene |
References
- Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A., Jr.; Hansen, J.E.; Hormann, D.J. Climate forcing by anthropogenic aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, B.A. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science 1989, 245, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Twomey, S. Aerosols, clouds, and radiation. Atmos. Environ. 1991, 25, 2435–2442. [Google Scholar] [CrossRef]
- Stevens, B.; Feingold, G. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 2009, 461, 607. [Google Scholar] [CrossRef] [PubMed]
- International Panel on Climate Change. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1–1535. [Google Scholar]
- Carslaw, K.S.; Lee, L.A.; Reddington, C.L.; Pringle, K.J.; Rap, A.; Forster, P.M.; Mann, G.W.; Spracklen, D.V.; Woodhouse, M.T.; Regayre, L.A.; et al. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 2013, 503, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, A.H.; Galbally, I.E. Known and Unexplored Organic Constituents in the Earth’s Atmosphere. Environ. Sci. Technol. 2007, 41, 1514–1521. [Google Scholar] [CrossRef] [PubMed]
- Donahue, N.M.; Robinson, A.L.; Stanier, C.O.; Pandis, S.N. Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics. Environ. Sci. Technol. 2006, 40, 2635–2643. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.E.; Rap, A.; Spracklen, D.V.; Forster, P.M.; Carslaw, K.S.; Mann, G.W.; Pringle, K.J.; Kivekäs, N.; Kulmala, M.; Lihavainen, H.; et al. The direct and indirect radiative effects of biogenic secondary organic aerosol. Atmos. Chem. Phys. 2014, 14, 447–470. [Google Scholar] [CrossRef] [Green Version]
- Duncan, B.N.; Yoshida, Y.; Damon, M.R.; Douglass, A.R.; Witte, J.C. Temperature dependence of factors controlling isoprene emissions. Geophys. Res. Lett. 2009, 36, L05813. [Google Scholar] [CrossRef]
- Penuelas, J.; Staudt, M. BVOCs and global change. Trends Plant Sci. 2010, 15, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Stavrakou, T.; Müller, J.-F.; Bauwens, M.; De Smedt, I.; Van Roozendael, M.; De Mazière, M.; Vigouroux, C.; Hendrick, F.; George, M.; Clerbaux, C.; et al. How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI? Atmos. Chem. Phys. 2015, 15, 11861–11884. [Google Scholar] [CrossRef] [Green Version]
- Bauwens, M.; Stavrakou, T.; Müller, J.-F.; De Smedt, I.; Van Roozendael, M.; van der Werf, G.R.; Wiedinmyer, C.; Kaiser, J.W.; Sindelarova, K.; Guenther, A. Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations. Atmos. Chem. Phys. 2016, 16, 10133–10158. [Google Scholar] [CrossRef] [Green Version]
- Leaitch, W.R.; Macdonald, A.M.; Brickell, P.C.; Liggio, J.; Siostedt, S.L.; Vlasenko, A.; Bottenheim, J.W.; Huang, L.; Li, S.; Liu, S.K.; et al. Temperature response of the submicron organic aerosol from temperate forests. Atmos. Environ. 2011, 45, 6696–6704. [Google Scholar] [CrossRef]
- Paasonen, P.; Asmi, A.; Petäjä, T.; Kajos, M.K.; Aijala, M.; Junninen, H.; Holst, T.; Abbatt, J.P.D.; Arneth, A.; Birmili, W.; et al. Warming-induced increase in aerosol number concentration likely to moderate climate change. Nat. Geosci. 2013, 6, 438–442. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z.; Hecobian, A.; Zheng, M.; Frank, N.H.; Edgerton, E.S.; Weber, R.J. Spatial and seasonal variations of fine particle water-soluble organic carbon (WSOC) over the southeastern United States: Implications for secondary organic aerosol formation. Atmos. Chem. Phys. 2012, 12, 6593–6607. [Google Scholar] [CrossRef]
- Slowik, J.G.; Stroud, C.; Bottenheim, J.W.; Brickell, P.C.; Chang, R.Y.-W.; Liggio, J.; Makar, P.A.; Martin, R.V.; Moran, M.D.; Shantz, N.C.; et al. Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests. Atmos. Chem. Phys. 2010, 10, 2825–2845. [Google Scholar] [CrossRef]
- Goldstein, A.H.; Koven, C.D.; Heald, C.L.; Fung, I. Biogenic Carbon and Anthropogenic Pollutants Combine to Form a Cooling Haze over the Southeastern US. Proc. Natl. Acad. Sci. USA 2009, 106, 8835–8840. [Google Scholar] [CrossRef] [PubMed]
- Rattanavaraha, W.; Chu, K.; Budisulistiorini, S.H.; Riva, M.; Lin, Y.-H.; Edgerton, E.S.; Baumann, K.; Shaw, S.L.; Guo, H.; King, L.; et al. Assessing the impact of anthropogenic pollution on isoprene-derived secondary organic aerosol formation in PM2.5 collected from the Birmingham, Alabama, ground site during the 2013 Southern Oxidant and Aerosol Study. Atmos. Chem. Phys. 2016, 16, 4897–4914. [Google Scholar] [CrossRef]
- Budisulistiorini, S.H.; Li, X.; Bairai, S.T.; Renfro, J.; Liu, Y.; Liu, Y.J.; McKinney, K.A.; Martin, S.T.; McNeill, V.F.; Pye, H.O.T.; et al. Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site. Atmos. Chem. Phys. 2015, 15, 8871–8888. [Google Scholar] [CrossRef]
- Kim, P.S.; Jacob, D.J.; Fisher, J.A.; Travis, K.; Yu, K.; Zhu, L.; Yantosca, R.M.; Sulprizio, M.P.; Jimenez, J.L.; Campuzano-Jost, P.; et al. Sources, seasonality, and trends of southeast US aerosol: An integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model. Atmos. Chem. Phys. 2015, 15, 10411–10433. [Google Scholar] [CrossRef]
- Nguyen, T.K.V.; Capps, S.L.; Carlton, A.G. Decreasing Aerosol Water Is Consistent with OC Trends in the Southeast U.S. Environ. Sci. Technol. 2015, 49, 7843–7850. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Guo, H.; Boyd, C.M.; Klein, M.; Bougiatioti, A.; Cerully, K.M.; Hite, J.R.; Isaacman-VanWertz, G.; Kreisberg, N.M.; Knote, C.; et al. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proc. Natl. Acad. Sci. USA 2015, 112, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Attwood, A.R.; Washenfelder, R.A.; Brock, C.A.; Hu, W.; Baumann, K.; Campuzano-Jost, P.; Day, D.A.; Edgerton, E.S.; Murphy, D.M.; Palm, B.B.; et al. Trends in sulfate and organic aerosol mass in the Southeast U.S.: Impact on aerosol optical depth and radiative forcing. Geophys. Res. Lett. 2014, 41, 7701–7709. [Google Scholar] [CrossRef]
- Hidy, G.M.; Blanchard, C.L.; Baumann, K.; Edgerton, E.; Tanenbaum, S.; Shaw, S.; Knipping, E.; Tombach, I.; Jansen, J.; Walters, J. Chemical climatology of the southeastern United States, 1999–2013. Atmos. Chem. Phys. 2014, 14, 11893–11914. [Google Scholar] [CrossRef]
- Alston, E.J.; Sokolik, I.N.; Kalashnikova, O.V. Characterization of atmospheric aerosol in the US Southeast from ground- and space-based measurements over the past decade. Atmos. Meas. Tech. 2012, 5, 1667–1682. [Google Scholar] [CrossRef]
- Lim, H.-J.; Turpin, B.J. Origins of Primary and Secondary Organic Aerosol in Atlanta: Results of Time-Resolved Measurements during the Atlanta Supersite Experiment. Environ. Sci. Technol. 2002, 36, 4489–4496. [Google Scholar] [CrossRef] [PubMed]
- Carrico, C.M.; Bergin, M.H.; Xu, J.; Baumann, K.; Maring, H. Urban aerosol radiative properties: Measurements during the 1999 Atlanta Supersite Experiment. J. Geophys. Res. 2003, 108, 8422. [Google Scholar] [CrossRef]
- Holzer-Popp, T.; de Leeuw, G.; Griesfeller, J.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J.L.; Graigner, R.G.; et al. Aerosol retrieval experiments in the ESA Aerosol_cci project. Atmos. Meas. Tech. 2013, 6, 1919–1957. [Google Scholar] [CrossRef] [Green Version]
- De Leeuw, G.; Holzer-Popp, T.; Bevan, S.; Davies, W.; Descloitres, J.; Grainger, R.G.; Griesfeller, J.; Heckel, A.; Kinne, S.; Klüser, L.; et al. Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis. Remote Sens. Environ. 2015, 162, 295–315. [Google Scholar] [CrossRef]
- Stier, P.; Feichter, J.; Kinne, S.; Kloster, S.; Vignati, E.; Wilson, J.; Ganzeveld, L.; Tegen, I.; Werner, M.; Balkanski, Y.; et al. The aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys. 2005, 5, 1125–1156. [Google Scholar] [CrossRef]
- Zhang, K.; O’Donnell, D.; Kazil, J.; Stier, P.; Kinne, S.; Lohmann, U.; Ferrachat, S.; Croft, B.; Quaas, J.; Wan, H.; et al. The global aerosol-climate model ECHAM-HAM, version 2: Sensitivity to improvements in process representations. Atmos. Chem. Phys. 2012, 12, 8911–8949. [Google Scholar] [CrossRef]
- Bergman, T.; Kerminen, V.-M.; Korhonen, H.; Lehtinen, K.E.J.; Makkonen, R.; Arola, A.; Mielonen, T.; Romakkaniemi, S.; Kulmala, M.; Kokkola, H. Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model. Geosci. Model Dev. 2012, 5, 845–868. [Google Scholar] [CrossRef]
- Laakso, A.; Kokkola, H.; Partanen, A.-I.; Niemeier, U.; Timmreck, C.; Lehtinen, K.E.J.; Hakkarainen, H.; Korhonen, H. Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering. Atmos. Chem. Phys. 2016, 16, 305–323. [Google Scholar] [CrossRef]
- Kokkola, H.; Kühn, T.; Laakso, A.; Bergman, T.; Lehtinen, K.E.J.; Mielonen, T.; Arola, A.; Stadtler, S.; Korhonen, H.; Ferrachat, S.; et al. SALSA2.0: The sectional aerosol module of the aerosol-chemistry-climate model ECHAM6.3.0-HAM2.3-MOZ1.0. Geosci. Model Dev. Discuss. 2018. [Google Scholar] [CrossRef]
- Kolmonen, P.; Sogacheva, L.; Virtanen, T.H.; de Leeuw, G.; Kulmala, M. The ADV/ASV AATSR aerosol retrieval algorithm: Current status and presentation of a full-mission AOD data set. Int. J. Digit. Earth 2016, 9, 545–561. [Google Scholar] [CrossRef]
- Sogacheva, L.; Kolmonen, P.; Virtanen, T.H.; Rodriguez, E.; Saponaro, G.; de Leeuw, G. Post-processing to remove residual clouds from aerosol optical depth retrieved using the Advanced Along Track Scanning Radiometer. Atmos. Meas. Tech. 2017, 10, 491–505. [Google Scholar] [CrossRef]
- Kolmonen, P.; Sogacheva, L. Algorithm Theoretical Basis Document (ATBD) AATSR AATSR Dual View Algorithm (ADV) Version 4.2. ESA Climate Change Initiative Phase 2 Aerosol Project 2017. Available online: http://www.esa-aerosol-cci.org/?q=webfm_send/1339 (accessed on 8 May 2018).
- Prata, F. Land Surface Temperature Measurement from Space: AATSR Algorithm Theoretical Basis Document; CSIRO Atmospheric Research: Aspendale, Australia, 2002. [Google Scholar]
- Ghent, D. Land Surface Temperature Validation and Algorithm Verification; Report to European Space Agency; European Space Agency: Paris, France, 2012. [Google Scholar]
- Levelt, P.F.; Hilsenrath, E.; Leppelmeier, G.W.; van den Oord, G.H.J.; Bhartia, P.K.; Tamminen, J.; de Haan, J.F.; Veefkind, J.P. Science objectives of the Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1199–1208. [Google Scholar] [CrossRef]
- Bucsela, E.J.; Krotkov, N.A.; Celarier, E.A.; Lamsal, L.N.; Swartz, W.H.; Bhartia, P.K.; Boersma, K.F.; Veefkind, J.P.; Gleason, J.F.; Pickering, K.E. A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: Applications to OMI. Atmos. Meas. Tech. 2013, 6, 2607–2626. [Google Scholar] [CrossRef]
- Chance, K.; Kurosu, T.P.; Rothman, L.S.; Boersma, F.; Bucsela, E.; Brinksma, E.; Gleason, J.F. OMI Algorithm Theoretical Basis Document Volume IV OMI Trace Gas Algorithms. Available online: https://docserver.gesdisc.eosdis.nasa.gov/repository/Mission/OMI/3.3_ScienceDataProductDocumentation/3.3.4_ProductGenerationAlgorithm/ATBD-OMI-04.pdf (accessed on 8 May 2018).
- Krotkov, N.A.; Lamsal, L.N.; Celarier, E.A.; Swartz, W.H.; Marchenko, S.V.; Bucsela, E.J.; Chan, K.L.; Wenig, M.; Zara, M. The version 3 OMI NO2 standard product. Atmos. Meas. Tech. 2017, 10, 3133–3149. [Google Scholar] [CrossRef]
- Lamsal, L.N.; Krotkov, N.A.; Celarier, E.A.; Swartz, W.H.; Pickering, K.E.; Bucsela, E.J.; Gleason, J.F.; Martin, R.V.; Philip, S.; Irie, H.; et al. Evaluation of OMI operational standard NO2 column retrievals using in situ and surface-based NO2 observations. Atmos. Chem. Phys. 2014, 14, 11587–11609. [Google Scholar] [CrossRef]
- Almaraz, M.; Bai, E.; Wang, C.; Trousdell, J.; Conley, S.; Faloona, I.; Houlton, B.Z. Agriculture is a major source of NOx pollution in California. Sci. Adv. 2018, 4, eaao3477. [Google Scholar] [CrossRef] [PubMed]
- Krotkov, N.A.; McLinden, C.A.; Li, C.; Lamsal, L.N.; Celarier, E.A.; Marchenko, S.V.; Swartz, W.H.; Bucsela, E.J.; Joiner, J.; Duncan, B.N.; et al. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos. Chem. Phys. 2016, 16, 4605–4629. [Google Scholar] [CrossRef]
- Malm, W.C.; Sisler, J.F.; Huffman, D.; Eldred, R.A.; Cahill, T.A. Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res. 1994, 99, 1347–1370. [Google Scholar] [CrossRef]
- Blakeslee, R.J. Lightning Imaging Sensor (LIS) on TRMM Science Data [LISOTD_LRMTS_V2.3]; NASA Global Hydrology Center DAAC: Huntsville, AL, USA, 1998.
- Salomonson, V.V.; Barnes, W.L.; Maymon, P.W.; Montgomery, H.E.; Ostrow, H. MODIS, advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Remote Sens. 1989, 27, 145–153. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Kokkola, H.; Korhonen, H.; Lehtinen, K.E.J.; Makkonen, R.; Asmi, A.; Järvenoja, S.; Anttila, T.; Partanen, A.-I.; Kulmala, M.; Järvinen, H.; et al. SALSA—A Sectional Aerosol module for Large Scale Applications. Atmos. Chem. Phys. 2008, 8, 2469–2483. [Google Scholar] [CrossRef]
- Riahi, K.; Gruebler, A.; Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Chang. 2007, 74, 887–935. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33. [Google Scholar] [CrossRef]
- Randerson, J.T.; van der Werf, G.R.; Giglio, L.; Collatz, G.J.; Kasibhatla, P.S. Global Fire Emissions Database; Version 2 (GFEDv2.1); Oak Ridge National Laboratory Distributed Active Archive Center: Oak Ridge, TN, USA, 2007.
- Lin, H.; Leaitch, W.R. Development of an in-cloud aerosol activation parameterization for climate modelling. In Proceedings of the WMO Workshop on Measurement of Cloud Properties for Forecasts of Weather, Air Quality and Climate, Geneva, Switzerland; 1997; pp. 328–335. [Google Scholar]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, L.W.; Walters, S.; Mauzerall, D.L.; Emmons, L.K.; Rasch, P.J.; Granier, C.; Tie, X.; Lamarque, J.-F.; Schultz, M.G.; Tyndall, G.S.; et al. A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. J. Geophys. Res. 2003, 108, 4784. [Google Scholar] [CrossRef]
- Bian, F.; Bowman, F.M. Theoretical Method for Lumping Multicomponent Secondary Organic Aerosol Mixtures. Environ. Sci. Technol. 2002, 36, 2491–2497. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.L.; Donahue, N.M.; Shrivastava, M.K.; Weitkamp, E.A.; Sage, A.M.; Grieshop, A.P.; Lane, T.E.; Pierce, J.R.; Pandis, S.N. Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging. Science 2007, 315, 1259–1262. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.Z. Studying ocean acidification with conservative, stable numerical schemes for nonequilibrium air-ocean exchange and ocean equilibrium chemistry. J. Geophys. Res. 2005, 110, D07302. [Google Scholar] [CrossRef]
- Kokkola, H.; Yli-Pirilä, P.; Vesterinen, M.; Korhonen, H.; Keskinen, H.; Romakkaniemi, S.; Hao, L.; Kortelainen, A.; Joutsensaari, J.; Worsnop, D.R.; et al. The role of low volatile organics on secondary organic aerosol formation. Atmos. Chem. Phys. 2014, 14, 1689–1700. [Google Scholar] [CrossRef]
- Kampf, C.J.; Waxman, E.M.; Slowik, J.G.; Dommen, J.; Pfaffenberger, L.; Praplan, A.P.; Prevot, A.S.H.; Baltensperger, U.; Hoffmann, T.; Volkamer, R. Effective Henry’s Law Partitioning and the Salting Constant of Glyoxal in Aerosols Containing Sulfate. Environ. Sci. Technol. 2013, 47, 4236–4244. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.B.; Coggon, M.M.; Bates, K.H.; Zhang, X.; Schwantes, R.H.; Schilling, K.A.; Loza, C.L.; Flagan, R.C.; Wennberg, P.O.; Seinfeld, J.H. Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds. Atmos. Chem. Phys. 2014, 14, 3497–3510. [Google Scholar] [CrossRef] [Green Version]
- Berrisford, P.; Dee, D.P.; Poli, P.; Brugge, R.; Fielding, K.; Fuentes, M.; Kållberg, P.W.; Kobayashi, S.; Uppala, S.; Simmons, A. The ERA-Interim Archive Version 2.0; ERA Report Series; European Centre for Medium Range Weather Forecasts: Reading, UK, 2011. [Google Scholar]
- Boggs, P.T.; Rogers, J.E. Orthogonal Distance Regression. In Statistical Analysis of Measurement Error Models and Applications, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference, Arcata, CA, USA, 10–16 June 1989; American Mathematical Soc.: Providence, RI, USA, 1990; p. 186. [Google Scholar]
- Pitkänen, M.R.A.; Mikkonen, S.; Lehtinen, K.E.J.; Lipponen, A.; Arola, A. Artificial bias typically neglected in comparisons of uncertain atmospheric data. Geophys. Res. Lett. 2016, 43, 10003–10011. [Google Scholar] [CrossRef]
- Boggs, P.T.; Byrd, R.H.; Rogers, J.E.; Schnabel, R.B. User’s Reference Guide for ODRPACK Version 2.01 Software for Weighted Orthogonal Distance Regression; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1992.
- Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; Chapman & Hall/CRC: Boca Raton, FL, USA, 1993; ISBN 0-412-04231-2. [Google Scholar]
- Chahine, M.; Pagano, T.S.; Aumann, H.H.; Atlas, R.; Barnet, C.; Blaisdell, J.; Chen, L.; Divakarla, M.; Fetzer, E.J.; Golberg, M.; et al. AIRS improving weather forecasting and providing new data on greenhouse gases. Bull. Am. Meorol. Soc. 2006, 87, 911–926. [Google Scholar] [CrossRef]
- Chung, D.; Dorigo, W.; Hahn, S.; Melzer, T.; Paulik, C.; Reimer, C.; Vreugdenhil, M.; Wagner, W.; Kidd, R. Algorithm Theoretical Baseline Document (ATBD) D2.1 Version 04.2 Merging Active and Passive Soil Moisture Retrievals. ESA Climate Change Initiative Phase 2 Soil Moisture Project 2018. Available online: http://www.esa-soilmoisture-cci.org/sites/default/files/documents/M6/CCI2_Soil_Moisture_DL2.1_ATBD_v4.2_04_merging.pdf (accessed on 8 May 2018).
- Giglio, L.; Csiszar, I.; Justice, C.O. Global distribution and seasonality of active fires as observed with the Terra and Aqua MODIS sensors. J. Geophys. Res. Biogeosci. 2006, 111, G02016. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Boersma, K.F.; Wang, J.; Kurosu, T.P.; Krotkov, N.; Chance, K.; Levelt, P.F. Global satellite analysis of the relation between aerosols and short-lived trace gases. Atmos. Chem. Phys. 2011, 11, 1255–1267. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, C.L.; Hidy, G.M.; Tanenbaum, S.; Edgerton, E.S.; Hartsell, B.E. The Southeastern Aerosol Research and Characterization (SEARCH) study: Temporal trends in gas and PM concentrations and composition, 1999–2010. J. Air Waste Manag. Assoc. 2013, 63, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Hand, J.L.; Schichtel, B.A.; Malm, W.C.; Pitchford, M.L. Particulate sulfate ion concentration and SO2 emission trends in the United States from the early 1990s through 2010. Atmos. Chem. Phys. 2012, 12, 10353–10365. [Google Scholar] [CrossRef]
- Russell, A.R.; Valin, L.C.; Cohen, R.C. Trends in OMI NO2 observations over the United States: Effects of emission control technology and the economic recession. Atmos. Chem. Phys. 2012, 12, 12197–12209. [Google Scholar] [CrossRef]
- Zhang, H.; Yee, L.D.; Lee, B.H.; Curtis, M.P.; Worton, D.R.; Isaacman-VanWertz, G.; Offenberg, J.H.; Lewandowski, M.; Kleindienst, T.E.; Beaver, M.R.; et al. Monoterpene SOA dominate atmospheric fine aerosol. Proc. Natl. Acad. Sci. USA 2018. [Google Scholar] [CrossRef]
- Hu, W.W.; Campuzano-Jost, P.; Palm, B.B.; Day, D.A.; Ortega, A.M.; Hayes, P.L.; Krechmer, J.E.; Chen, Q.; Kuwata, M.; Liu, Y.J.; et al. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements. Atmos. Chem. Phys. 2015, 15, 11807–11833. [Google Scholar] [CrossRef]
- Surratt, J.D.; Chan, A.W.H.; Eddingsaas, N.C.; Chan, M.; Loza, C.L.; Kwan, A.J.; Hersey, S.P.; Flagan, R.C.; Wennberg, P.O.; Seinfeld, J.H. Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc. Natl. Acad. Sci. USA 2010, 107, 6640–6645. [Google Scholar] [CrossRef] [PubMed]
- Paulot, F.; Crounse, J.D.; Kjaergaard, H.G.; Kürten, A.; St. Clair, J.M.; Seinfeld, J.H.; Wennberg, P.O. Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene. Science 2009, 325, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hecobian, A.; Zheng, M.; Frank, N.H.; Weber, R.J. Biomass burning impact on PM2.5 over the southeastern US during 2007: Integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis. Atmos. Chem. Phys. 2010, 10, 6839–6853. [Google Scholar] [CrossRef]
- Prospero, J.M. Long-term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality. J. Geophys. Res. 1999, 104, 15917–15927. [Google Scholar] [CrossRef]
- Millet, D.; Jacob, D.; Boersma, F.; Fu, T.-M.; Kurosu, T.; Chance, K.; Heald, C.; Guenther, A. Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor. J. Geophys. Res. 2008, 113, D02307. [Google Scholar] [CrossRef]
- Haywood, J.M.; Shine, K.P. The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophys. Res. Lett. 1995, 22, 603–606. [Google Scholar] [CrossRef]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 2016, 9, 1647–1672. [Google Scholar] [CrossRef] [Green Version]
- Lihavainen, H.; Asmi, E.; Aaltonen, V.; Makkonen, U.; Kerminen, V.-M. Direct radiative feedback due to biogenic secondary organic aerosol estimated from boreal forest site observations. Environ. Res. Lett. 2015, 10, 104005. [Google Scholar] [CrossRef]
- Carlton, A.G.; Turpin, B.J. Particle partitioning potential of organic compounds is highest in the Eastern US and driven by anthropogenic water. Atmos. Chem. Phys. 2013, 13, 10203–10214. [Google Scholar] [CrossRef]
Product | Usage | Instrument (Data Depository) | Product Type |
---|---|---|---|
Aerosol optical depth (AOD) | Proxy for aerosol load, 2005–2011 | AATSR (Aerosol_cci/ESA) | Level 3, 1 × 1 deg, daily |
Land surface temperature (LST) | Temperature, 2005–2011 | AATSR (GlobTemperature/ESA) | Level 3, 0.01 × 0.01 deg, daily |
Nitrogen dioxide (NO2) | Proxy for anthropogenic emissions, 2005–2011 | OMI (ACDISC/NASA) | Level 3, 0.25 × 0.25 deg, daily |
IGBP Land cover type | Proxy for vegetation type, 2005–2011 | MODIS (LPDAAC/NASA) | Level 3, 0.05 × 0.05 deg, yearly |
OH | O3 | NO3 | ||||
---|---|---|---|---|---|---|
k0 | k0 | k0 | ||||
XYL | 2.31 × 10−11 | 0 | 0.0 | 0 | 2.6 × 10−16 | 0 |
TOL | 1.81 × 10−12 | 338 | 0.0 | 0 | 0.0 | 0 |
BENZ | 2.33 × 10−12 | −193 | 0.0 | 0 | 0.0 | 0 |
ISOP | 2.7 × 10−11 | 390 | 1.03 × 10−14 | −1995 | 3.15 × 10−12 | −450 |
MTP | 1.2 × 10−11 | 440 | 6.3 × 10−16 | −580 | 1.2 × 10−12 | 490 |
GLYX | 0.0 | 0 | 0.0 | 0 | 6.0 × 10−13 | −1900 |
IEPOX | 3.56 × 10−11 | 0 | 0.0 | 0 | 0.0 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mielonen, T.; Hienola, A.; Kühn, T.; Merikanto, J.; Lipponen, A.; Bergman, T.; Korhonen, H.; Kolmonen, P.; Sogacheva, L.; Ghent, D.; et al. Summertime Aerosol Radiative Effects and Their Dependence on Temperature over the Southeastern USA. Atmosphere 2018, 9, 180. https://doi.org/10.3390/atmos9050180
Mielonen T, Hienola A, Kühn T, Merikanto J, Lipponen A, Bergman T, Korhonen H, Kolmonen P, Sogacheva L, Ghent D, et al. Summertime Aerosol Radiative Effects and Their Dependence on Temperature over the Southeastern USA. Atmosphere. 2018; 9(5):180. https://doi.org/10.3390/atmos9050180
Chicago/Turabian StyleMielonen, Tero, Anca Hienola, Thomas Kühn, Joonas Merikanto, Antti Lipponen, Tommi Bergman, Hannele Korhonen, Pekka Kolmonen, Larisa Sogacheva, Darren Ghent, and et al. 2018. "Summertime Aerosol Radiative Effects and Their Dependence on Temperature over the Southeastern USA" Atmosphere 9, no. 5: 180. https://doi.org/10.3390/atmos9050180
APA StyleMielonen, T., Hienola, A., Kühn, T., Merikanto, J., Lipponen, A., Bergman, T., Korhonen, H., Kolmonen, P., Sogacheva, L., Ghent, D., Pitkänen, M. R. A., Arola, A., De Leeuw, G., & Kokkola, H. (2018). Summertime Aerosol Radiative Effects and Their Dependence on Temperature over the Southeastern USA. Atmosphere, 9(5), 180. https://doi.org/10.3390/atmos9050180