Los Angeles Wildfires 2025: Satellite-Based Emissions Monitoring and Air-Quality Impacts
Abstract
1. Introduction
2. Datasets and Methodology
2.1. Satellite Observations
2.1.1. Tropospheric Emissions Monitoring of Pollution (TEMPO)
2.1.2. TROPOspheric Monitoring Instrument (TROPOMI)
TROPOMI/S5P Trace Gas Observations
TROPOMI/S5P Aerosol Observations
2.1.3. Fire Radiative Power from Sentinel-3 Polar-Orbiting Satellites
2.1.4. ATmospheric LIDar (ATLID) Instrument Observations
3. Results and Discussion
TROPOMI and TEMPO Tropospheric Gas Monitoring
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coop, J.D.; Parks, S.A.; Stevens-Rumann, C.S.; Ritter, S.M.; Hoffman, C.M. Extreme fire spread events and area burned under recent and future climate in the western USA. Glob. Ecol. Biogeogr. 2022, 31, 1949–1959. [Google Scholar] [CrossRef]
- Kelley, D.I.; Burton, C.; di Giuseppe, F.; Jones, M.W.; Barbosa, M.L.F.; Brambleby, E.; McNorton, J.R.; Liu, Z.; Bradley, A.S.I.; Blackford, K.; et al. State of Wildfires 2024–2025. Earth Syst. Sci. Data 2025, 17, 5377–5488. [Google Scholar] [CrossRef]
- Keeley, J.E.; Syphard, A.D. Large California wildfires: 2020 fires in historical context. Fire Ecol. 2021, 17, 22. [Google Scholar] [CrossRef]
- Keeley, J.E.; Flannigan, M.; Brown, T.J.; Rolinski, T.; Cayan, D.; Syphard, A.D.; Guzman-Morales, J.; Gershunov, A. Climate and weather drivers in southern California Santa Ana Wind and non-Santa Wind fires. Int. J. Wildland Fire 2024, 33, WF23190. [Google Scholar] [CrossRef]
- Billmire, M.; French, N.H.F.; Loboda, T.; Owen, R.C.; Tyner, M. Santa Ana winds and predictors of wildfire progression in southern California. Int. J. Wildland Fire 2014, 23, 1119–1129. [Google Scholar] [CrossRef]
- Goss, M.; Swain, D.L.; Abatzoglou, J.T.; Sarhadi, A.; Kolden, C.A.; Williams, A.P.; Diffenbaugh, N.S. Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environ. Res. Lett. 2020, 15, 094016. [Google Scholar] [CrossRef]
- Jin, Y.; Goulden, M.L.; Faivre, N.; Veraverbeke, S.; Sun, F.; Hall, A.; Hand, M.S.; Hook, S.; Randerson, J.T. Identification of two distinct fire regimes in Southern California: Implications for economic impact and future change. Environ. Res. Lett. 2015, 10, 094005. [Google Scholar] [CrossRef]
- Collins, B.; Qiu, M.; Chen, D.; Kelp, M.; Li, J.; Huang, G.; Yazdi, M.D. The rising threats of wildland-urban interface fires in the era of climate change: The Los Angeles 2025 fires. Innovation 2025, 6, 100835. [Google Scholar] [CrossRef]
- Wang, D.; Guan, D.; Zhu, S.; Kinnon, M.M.; Geng, G.; Zhang, Q.; Zheng, H.; Lei, T.; Shao, S.; Gong, P.; et al. Economic footprint of California wildfires in 2018. Nat. Sustain. 2021, 4, 252–260. [Google Scholar] [CrossRef]
- Chisty, M.A. Before moments become memories: Virtual reconnaissance of the 2025 Southern California wildfires. Int. J. Disaster Risk Reduct. 2025, 129, 105769. [Google Scholar] [CrossRef]
- Schlosser, J.S.; Braun, R.A.; Bradley, T.; Dadashazar, H.; MacDonald, A.B.; Aldhaif, A.A.; Aghdam, M.A.; Mardi, A.H.; Xian, P.; Sorooshian, A. Analysis of aerosol composition data for western United States wildfires between 2005 and 2015: Dust emissions, chloride depletion, and most enhanced aerosol constituents. J. Geophys. Res. Atmos. 2017, 122, 8951–8966. [Google Scholar] [CrossRef]
- Wan, N.; Xiong, X.; Kluitenberg, G.J.; Hutchinson, J.M.S.; Aiken, R.; Zhao, H.; Lin, X. Estimation of biomass burning emission of NO2 and CO from 2019–2020 Australia fires based on satellite observations. Atmos. Chem. Phys. 2023, 23, 711–724. [Google Scholar] [CrossRef]
- Van der Velde, I.R.; van der Werf, G.R.; Houweling, S.; Eskes, H.J.; Veefkind, J.P.; Borsdorff, T.; Aben, I. Biomass burning combustion efficiency observed from space using measurements of CO and NO2 by the TROPOspheric Monitoring Instrument (TROPOMI). Atmos. Chem. Phys. 2021, 21, 597–616. [Google Scholar] [CrossRef]
- Koukouli, M.-E.; Pseftogkas, A.; Karagkiozidis, D.; Mermigkas, M.; Panou, T.; Balis, D.; Bais, A. Extreme wildfires over Northern Greece during Summer 2023–Part B. Adverse effects on regional air quality. Atmos. Res. 2025, 320, 108034. [Google Scholar] [CrossRef]
- Magro, C.; Nunes, L.; Gonçalves, O.C.; Neng, N.R.; Nogueira, J.M.F.; Rego, F.C.; Vieira, P. Atmospheric Trends of CO and CH4 from Extreme Wildfires in Portugal Using Sentinel-5P TROPOMI Level-2 Data. Fire 2021, 4, 25. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Sun, D. Deterioration of air quality associated with the 2020 US wildfires. Sci. Total Environ. 2022, 826, 154103. [Google Scholar] [CrossRef]
- Michailidis, K.; Garane, K.; Karagkiozidis, D.; Peletidou, G.; Voudouri, K.-A.; Balis, D.; Bais, A. Extreme wildfires over northern Greece during summer 2023–Part A: Effects on aerosol optical properties and solar UV radiation. Atmos. Res. 2024, 311, 107700. [Google Scholar] [CrossRef]
- Zoogman, P.; Liu, X.; Suleiman, R.; Pennington, W.; Flittner, D.; Al-Saadi, J.; Hilton, B.; Nicks, D.; Newchurch, M.; Carr, J.; et al. Tropospheric Emissions: Monitoring of Pollution (TEMPO). J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 17–39. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, U.; Ahn, M.-H.; Kim, J.H.; Park, R.J.; Lee, H.; Song, C.H.; Choi, Y.-S.; Lee, K.-H.; Yoo, J.-M.; et al. New era of air quality monitoring from space: Geostationary environment monitoring spectrometer (GEMS). Bull. Am. Meteorol. Soc. 2020, 101, E1–E22. [Google Scholar] [CrossRef]
- Holmlund, K.; Grandell, J.; Schmetz, J.; Stuhlmann, R.; Bojkov, B.; Munro, R.; Lekouara, M.; Coppens, D.; Viticchie, B.; August, T.; et al. Meteosat Third Generation (MTG): Continuation and Innovation of Observations from Geostationary Orbit. Bull. Am. Meteorol. Soc. 2021, 102, E990–E1015. [Google Scholar] [CrossRef]
- Abad, G.G.; Nowlan, C.; Wang, H.; Chong, H.; Houck, J.; Liu, X.; Chance, K. Tropospheric Emissions: Monitoring of Pollution (Tempo) Project, Trace Gas and Cloud Level 2 and 3 Data Products User Guide, 2024. Available online: https://asdc.larc.nasa.gov/documents/tempo/guide/TEMPO_Level-2-3_trace_gas_clouds_user_guide_V1.2.pdf (accessed on 12 March 2025).
- Nowlan, C.R.; Abad, G.G.; Liu, X.; Wang, H.; Chance, K. TEMPO Nitrogen Dioxide Retrieval Algorithm Theoretical Basis Document; NASA Algorithm Publication Tool; NASA: Washington, DC, USA, 2025. [Google Scholar] [CrossRef]
- Abad, G.G.; Nowlan, C.; Liu, X.; Wang, H.; Chance, K. TEMPO Formaldehyde Retrieval Algorithm Theoretical Basis Document; NASA Algorithm Publication Tool; NASA: Washington, DC, USA, 2025. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Van Geffen, J.; Eskes, H.; Compernolle, S.; Pinardi, G.; Verhoelst, T.; Lambert, J.-C.; Sneep, M.; Ter Linden, M.; Ludewig, A.; Boersma, K.F.; et al. Sentinel-5P TROPOMI NO2 retrieval: Impact of version v2.2 improvements and comparisons with OMI and ground-based data. Atmos. Meas. Tech. 2022, 15, 2037–2060. [Google Scholar] [CrossRef]
- Vigouroux, C.; Langerock, B.; Bauer Aquino, C.A.; Blumenstock, T.; de Mazière, M.; de Smedt, I.; Grutter, M.; Hannigan, J.; Jones, N.; Kivi, R.; et al. TROPOMI/S5P formaldehyde validation using an extensive network of ground-based FTIR stations. Atmos. Meas. Tech. 2020, 13, 3751–3767. [Google Scholar] [CrossRef]
- Landgraf, J.; van de Brugh, J.; Scheepmaker, R.; Borsdorff, T.; Hu, H.; Houweling, S.; Butz, A.; Aben, I.; Hasekamp, O. Carbon monoxide total column retrievals from TROPOMI shortwave infrared measurements. Atmos. Meas. Tech. 2016, 9, 4955–4975. [Google Scholar] [CrossRef]
- Lorente, A.; Borsdorff, T.; Martinez-Velarte, M.C.; Butz, A.; Hasekamp, O.P.; Wu, L.; Landgraf, J. Evaluation of the methane full-physics retrieval applied to TROPOMI ocean sun glint measurements. Atmos. Meas. Tech. 2022, 15, 6585–6603. [Google Scholar] [CrossRef]
- De Graaf, M.; Sneep, M.; Ter Linden, M.; Tilstra, L.G.; Donovan, D.P.; van Zadelhoff, G.-J.; Veefkind, J.P. Improvements in aerosol layer height retrievals from TROPOMI oxygen A-band measurements by surface albedo fitting in optimal estimation. Atmos. Meas. Tech. 2025, 18, 2553–2571. [Google Scholar] [CrossRef]
- Lambert, J.-C.; Keppens, S.; Compernolle, K.-U.; Eichmann, M.; de Graaf, D.; Hubert, B.; Langerock, M.K.; Sha, E.; van der Plas, T.; Verhoelst, T.; et al. Quarterly Validation Report of the Copernicus Sentinel-5 Precursor Operational Data Products #28: April 2018–August 2025, S5P MPC Routine Operations Consolidated Validation Report Series, Issue #28, Version 28.00.00, 227p. 15 September 2025. Available online: https://mpc-vdaf.tropomi.eu/ProjectDir/reports//pdf/S5P-MPC-IASB-ROCVR-28.00.00_FINAL_signed-jcl-AD.pdf (accessed on 4 November 2025).
- Eskes, H.; van Geffen, J.; Boersma, F.; Eichmann, K.-U.; Apituley, A.; Pedergnana, M.; Sneep, M.; Veefkind, J.P.; Loyola, D. Sentinel-5 Precursor/TROPOMI Level 2 Product User Manual Nitrogendioxide, CI-7570-PUM, Issue: 4.5.0, 8 August 2025, Status: Released. Available online: https://sentiwiki.copernicus.eu/__attachments/1673595/S5P-KNMI-L2-0021-MA%20-%20Sentinel-5P%20Level%202%20Product%20User%20Manual%20Nitrogendioxide%202025-4.5.0.pdf?inst-v=599b7aa2-c20f-42bb-a34e-f66fb27e39ee (accessed on 31 March 2025).
- Romahn, F.; Pedergnana, M.; Loyola, D.; Apituley, D.; Sneep, M.; Veefkind, P. Sentinel-5 precursor/TROPOMI Level 2 Product User Manual Formaldehyde HCHO, S5P-L2-DLR-PUM-400F, CI-400F-PUM, Issue: 02.04.00, 11 July 2022. Available online: https://sentiwiki.copernicus.eu/__attachments/1673595/S5P-L2-DLR-PUM-400F%20-%20Sentinel-5P%20Level%202%20Product%20User%20Manual%20Formaldehyde%20HCHO%202022%20-%202.4.pdf?inst-v=87ef0ca0-8091-4ed6-bc9f-05ea3a6bc632 (accessed on 31 March 2025).
- Zhou, S.; Collier, S.; Jaffe, D.A.; Briggs, N.L.; Hee, J.; Sedlacek, A.J., III; Kleinman, L.; Onasch, T.B.; Zhang, Q. Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol. Atmos. Chem. Phys. 2017, 17, 2477–2493. [Google Scholar] [CrossRef]
- IPCC-Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Chen, Y., Goldfarb, L., Gomis, M.I., Robin Matthews, J.B., Berger, S., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Pandis, S.N.; Harley, R.A.; Cass, G.R.; Seinfeld, J.H. Secondary Organic Aerosol Formation and Transport. Atmos. Environ. 1992, 26, 2266–2282. [Google Scholar] [CrossRef]
- Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.H.; et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155–5236. [Google Scholar] [CrossRef]
- Stein Zweers, D.C. TROPOMI ATBD of the UV Aerosol Index, Royal Netherlands Meteorological Institute, S5P-KNMI-L2-0008-RP, CI-7430-ATBD_UVAI, Issue: 2.1.0, 22 July 2022, Status: Released. Available online: https://sentinels.copernicus.eu/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-UV-Aerosol-Index.pdf (accessed on 15 April 2025).
- De Graaf, M.; Stammes, P. SCIAMACHY Absorbing Aerosol Index–calibration issues and global results from 2002–2004. Atmos. Chem. Phys. 2005, 5, 2385–2394. [Google Scholar] [CrossRef]
- Apituley, A.; Pedergnana, M.; Sneep, M.; Veefkind, J.P.; Loyola, D.; Zweers, D.S. Sentinel-5 Precursor/TROPOMI Level 2 Product User Manual UV Aerosol Index, S5P-KNMI-L2-0026-MA, CI-7570-PUM, Issue: 2.4.0, 11 July 2022, Status: Released. Available online: https://sentinels.copernicus.eu/documents/247904/2474726/Sentinel-5P-Level-2-Product-User-Manual-Aerosol-Index-product (accessed on 2 July 2025).
- Nanda, S.; de Graaf, M.; Sneep, M.; de Haan, J.F.; Stammes, P.; Sanders, A.F.J.; Tuinder, O.; Veefkind, J.P.; Levelt, P.F. Error sources in the retrieval of aerosol information over bright surfaces from satellite measurements in the oxygen A band. Atmos. Meas. Tech. 2018, 11, 161–175. [Google Scholar] [CrossRef]
- Apituley, A.; Pedergnana, M.; Sneep, M.; Veefkind, J.P.; Loyola, D.; Sanders, B.; de Graaf, M. Sentinel-5 Precursor/TROPOMI Level 2 Product User Manual Aerosol Layer Height, S5P-KNMI-L2-0022-MA, Issue 2.8.0, 8 November 2024, CI-7570-PUM. Available online: https://sentiwiki.copernicus.eu/web/s5p-products (accessed on 15 March 2025).
- Michailidis, K.; Koukouli, M.-E.; Balis, D.; Veefkind, J.P.; de Graaf, M.; Mona, L.; Papagianopoulos, N.; Pappalardo, G.; Tsikoudi, I.; Amiridis, V.; et al. Validation of the TROPOMI/S5P aerosol layer height using EARLINET lidars. Atmos. Chem. Phys. 2023, 23, 1919–1940. [Google Scholar] [CrossRef]
- Xu, W.; Wooster, M.J.; He, J.; Zhang, T. First study of Sentinel-3 SLSTR active fire detection and FRP retrieval: Night-time algorithm enhancements and global intercomparison to MODIS and VIIRS AF products. Remote Sens. Environ. 2020, 248, 111947. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias PFrerick, F.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Illingworth, A.J.; Barker, H.W.; Beljaars, A.; Ceccaldi, M.; Chepfer, H.; Clerbaux, N.; Cole, J.; Delanoë, J.; Domenech, C.; Donovan, D.P.; et al. The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation. Bull. Am. Meteorol. Soc. 2015, 96, 1311–1332. [Google Scholar] [CrossRef]
- van Zadelhoff, G.-J.; Donovan, D.P.; Wang, P. Detection of aerosol and cloud features for the EarthCARE atmospheric lidar (ATLID): The ATLID FeatureMask (A-FM) product. Atmos. Meas. Tech. 2023, 16, 3631–3651. [Google Scholar] [CrossRef]
- Wehr, T.; Kubota, T.; Tzeremes, G.; Wallace, K.; Nakatsuka, H.; Ohno, Y.; Koopman, R.; Rusli, S.; Kikuchi, M.; Eisinger, M.; et al. The EarthCARE mission–science and system overview. Atmos. Meas. Tech. 2023, 16, 3581–3608. [Google Scholar] [CrossRef]
- Donovan, D.P.; van Zadelhoff, G.-J.; Wang, P. The EarthCARE lidar cloud and aerosol profile processor (A-PRO): The A-AER, A-EBD, A-TC, and A-ICE products. Atmos. Meas. Tech. 2024, 17, 5301–5340. [Google Scholar] [CrossRef]
- Eisinger, M.; Marnas, F.; Wallace, K.; Kubota, T.; Tomiyama, N.; Ohno, Y.; Tanaka, T.; Tomita, E.; Wehr, T.; Bernaerts, D. The EarthCARE mission: Science data processing chain overview. Atmos. Meas. Tech. 2024, 17, 839–862. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; Wiley: New York, NY, USA, 2016. [Google Scholar]
- Jacob, D.J. Heterogeneous chemistry and tropospheric ozone. Atmos. Environ. 2000, 34, 2131–2159. [Google Scholar] [CrossRef]
- Lamsal, L.N.; Krotkov, N.A.; Celarier, E.A.; Swartz, W.H.; Pickering, K.E.; Bucsela, E.J.; Gleason, J.F.; Martin, R.V.; Philip, S.; Irie, H.; et al. Evaluation of OMI operational standard NO2 column retrievals using in situ and surface-based NO2 observations. Atmos. Chem. Phys. 2015, 14, 11587–11609. [Google Scholar] [CrossRef]
- Duncan, B.N.; Lamsal, L.N.; Thompson, A.; Yoshida, Y.; Lu, Z.; Streets, D.G.; Hurwitz, M.M.; Pickering, K.E. A space-based, high-resolution view of notable changes in urban NO2 pollution around the world (2005–2014). J. Geophys. Res. Atmos. 2016, 121, 976–996. [Google Scholar] [CrossRef]
- Krotkov, N.A.; McLinden, C.A.; Li, C.; Lamsal, L.N.; Celarier, E.A.; Marchenko, S.V.; Swartz, W.H.; Bucsela, E.J.; Joiner, J.; Duncan, B.N.; et al. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos. Chem. Phys. 2016, 16, 4605–4629. [Google Scholar] [CrossRef]
- Van Geffen, J.H.G.M.; Eskes, H.J.; Boersma, K.F.; Veefkind, J.P. TROPOMI ATBD of the Total and Tropospheric NO2 Data Products, S5P-KNMI-L2-0005-RP, CI-7430-ATBD, Issue: 2.8.0, 18 November 2024, Status: Released, TROPOMI ATBD of the Total and Tropospheric NO2 Data Products. Available online: https://sentiwiki.copernicus.eu/__attachments/1673595/S5P-KNMI-L2-0005-RP%20-%20Sentinel-5P%20TROPOMI%20ATBD%20NO2%20data%20products%202024%20-%202.8.0.pdf (accessed on 4 November 2025).
- De Smedt, I.; Theys, N.; Vlietinck, J.; Yu, H.; Danckaert, T.; Lerot, C.; van Roozendael, M. S5P/TROPOMI HCHO ATBD, S5P- BIRA-L2-400F-ATBD, CI-400F-ATBD, Issue: 2.7.0, 2024-10-01, Status: Update for the Version 2.7.0 of the Operational Processor, S5P Documents. Available online: https://sentiwiki.copernicus.eu/__attachments/1673595/S5P-BIRA-L2-400F-ATBD%20-%20Sentinel-5P%20TROPOMI%20HCHO%20ATBD%202024%20-%202.7.0.pdf?inst-v=19224347-b78a-4e98-8878-0bb2ef5b4589 (accessed on 4 November 2025).
- Szykman, J.; Pierce, R.B.; Henderson, B.; Judd, L. Validation and Quality Assessment of the TEMPO Level-2 Trace Gas Products, SAO-DRD-XX, Version: Baseline, Release Date: 15 September 2025. Available online: https://asdc.larc.nasa.gov/documents/tempo/TEMPO_validation_report_baseline_draft.pdf (accessed on 30 October 2025).
- Stavrakou, T.; Müller, J.-F.; Bauwens, M.; de Smedt, I.; van Roozendael, M.; de Mazière, M.; Vigouroux, C.; Hendrick, F.; George, M.; Clerbaux, C.; et al. How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI? Atmos. Chem. Phys. 2015, 15, 11861–11884. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, H.; de Smedt, I.; Lin, J.; Theys, N.; van Roozendael, M.; Pinardi, G.; Compernolle, S.; Ni, R.; Ren, F.; et al. Global retrieval of TROPOMI tropospheric HCHO and NO2 columns with improved consistency based on the updated Peking University OMI NO2 algorithm. Atmos. Meas. Tech. 2025, 18, 1561–1589. [Google Scholar] [CrossRef]
- Griffin, D.; McLinden, C.A.; Dammers, E.; Adams, C.; Stockwell, C.E.; Warneke, C.; Bourgeois, I.; Peischl, J.; Ryerson, T.B.; Zarzana, K.J.; et al. Biomass burning nitrogen dioxide emissions derived from space with TROPOMI: Methodology and validation. Atmos. Meas. Tech. 2021, 14, 7929–7957. [Google Scholar] [CrossRef]
- Zhao, T.; Mao, J.; Simpson, W.R.; de Smedt, I.; Zhu, L.; Hanisco, T.F.; Wolfe, G.M.; Clair, J.M.S.; Abad, G.G.; Nowlan, C.R.; et al. Source and variability of formaldehyde (HCHO) at northern high latitudes: An integrated satellite, aircraft, and model study. Atmos. Chem. Phys. 2022, 22, 7163–7178. [Google Scholar] [CrossRef]
- Liao, J.; Wolfe, G.M.; Hannun, R.A.; Clair, J.M.S.; Hanisco, T.F.; Gilman, J.B.; Lamplugh, A.; Selimovic, V.; Diskin, G.S.; Nowak, J.B.; et al. Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ). Atmos. Chem. Phys. 2021, 21, 18319–18331. [Google Scholar] [CrossRef]
- Eke, M.; Cingiroglu, F.; Kaynak, B. Investigation of 2021 wildfire impacts on air quality in southwestern Turkey. Atmos. Environ. 2024, 325, 120445. [Google Scholar] [CrossRef]
- Schollaert, C.; Connolly, R.; Cushing, L.; Jerrett, M.; Liu, T.; Marlier, M. Air Quality Impacts of the January 2025 Los Angeles Wildfires: Insights from Public Data Sources. Environ. Sci. Technol. Lett. 2025, 12, 911–917. [Google Scholar] [CrossRef]
- Bi, J.; Wallace, L.A.; Sarnat, J.A.; Liu, Y. Characterizing outdoor infiltration and indoor contribution of PM2.5 with citizen-based low-cost monitoring data. Environ. Pollut. 2021, 276, 116763. [Google Scholar] [CrossRef]
- Wallace, L.; Bi, J.; Ott, W.R.; Sarnat, J.; Liu, Y. Calibration of low-cost PurpleAir outdoor monitors using an improved method of calculating PM2.5. Atmos. Environ. 2021, 256, 118432. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (EPA). Technical Assistance Document for the Reporting of Daily Air Quality–the Air Quality Index (AQI) (EPA-454/B-16-002); U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards: Washington, DC, USA, 2016.
- Das, A.; Johany, S.; Shahriar, S.; Kayes, I. Tracking the Impact of Wildfire on Urban Air Pollution: A Satellite-Based Assessment of 2025 Los Angeles Wildfire. Preprints 2025. [Google Scholar] [CrossRef]
- Seydi, S.T. Assessment of the January 2025 Los Angeles County wildfires: A multi-modal analysis of impact, response, and population exposure. arXiv 2025, arXiv:2501.17880. [Google Scholar]
- Lindsey, S.; Garcia-Gonzales, D.A.; Jerrett, M.; Bekker, C.; Marlier, M.E.; Su, J.G.; Gaw, E.; Li, Y. Assessing Air Quality and Health Benefits of Enhanced Management of Forests, Shrublands, and Grasslands Against Wildfires in California. GeoHealth 2025, 9, e2025GH001475. [Google Scholar] [CrossRef]
- Burki, T. Wildfires in southern California: Concerns for lung health. Lancet Respir. Med. 2025, 13, 202. [Google Scholar] [CrossRef]
- Casey, J.A.; Gu, Y.M.; Schwarz, L.; Frankland, T.B.; Wilner, L.B.; McBrien, H.; Flores, N.M.; Dey, A.K.; Lee, G.S.; Chen, C.; et al. The 2025 Los Angeles Wildfires and Outpatient Acute Health Care Utilization. JAMA Health Forum 2025, 6, e254632. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Michailidis, K.; Pseftogkas, A.; Koukouli, M.-E.; Biskas, C.; Balis, D. Los Angeles Wildfires 2025: Satellite-Based Emissions Monitoring and Air-Quality Impacts. Atmosphere 2026, 17, 50. https://doi.org/10.3390/atmos17010050
Michailidis K, Pseftogkas A, Koukouli M-E, Biskas C, Balis D. Los Angeles Wildfires 2025: Satellite-Based Emissions Monitoring and Air-Quality Impacts. Atmosphere. 2026; 17(1):50. https://doi.org/10.3390/atmos17010050
Chicago/Turabian StyleMichailidis, Konstantinos, Andreas Pseftogkas, Maria-Elissavet Koukouli, Christodoulos Biskas, and Dimitris Balis. 2026. "Los Angeles Wildfires 2025: Satellite-Based Emissions Monitoring and Air-Quality Impacts" Atmosphere 17, no. 1: 50. https://doi.org/10.3390/atmos17010050
APA StyleMichailidis, K., Pseftogkas, A., Koukouli, M.-E., Biskas, C., & Balis, D. (2026). Los Angeles Wildfires 2025: Satellite-Based Emissions Monitoring and Air-Quality Impacts. Atmosphere, 17(1), 50. https://doi.org/10.3390/atmos17010050

