Deciphering Air Pollution Dynamics and Drivers in Riverine Megacities Using Remote Sensing Coupled with Geospatial Analytics for Sustainable Development
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Framework
2.2.1. Data Sources and Platform Selection
2.2.2. Quality Control and Data Preparation
2.2.3. Spatial Enhancement and Mapping
2.2.4. Temporal Analysis and Trend Assessment
3. Results and Discussion
3.1. Temporal Trends and Long-Term Variations of Atmospheric Pollutants (2012–2023)
3.2. Spatial Distribution Patterns and Source Attribution
3.3. Interrelationships and Correlation Analysis Among Pollutants
- Common sources driving positive correlations among combustion-related pollutants (SO2, CO, CH4);
- Chemical consumption processes causing negative correlations between precursors and oxidants (SO2/SO4 vs. O3);
- Physical–chemical transformations linking secondary products with aerosol properties (SO4–AOD).
3.4. Contribution to Sustainable Development Goals (SDGs)
3.4.1. Environmental Health and Public Well-Being Dimension
3.4.2. Sustainable Cities and Climate Action Dimension
3.4.3. Economic Development and Resource Management Dimension
3.4.4. Institutional Development and Partnership Dimension (20%)
3.4.5. Integrated SDG Impact Assessment
4. Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Fenger, J. Air pollution in the last 50 years-From local to global. Atmos. Environ. 2009, 43, 13–22. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Geneva. 2021. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 15 August 2025).
- World Bank Group. Review of Urban Air Quality in Sub-Saharan Africa Region. 2024. Available online: https://data.worldbank.org/indicator/EN.ATM.PM25.MC.M3?locations=ZG (accessed on 29 March 2025).
- Loho, M.A.; Ayek, A.A.E.; Alkhuraiji, W.S.; Eid, S.; Rebouh, N.Y.; Abd-Elmaboud, M.E.; Youssef, Y.M. Assessing Environmental Sustainability in the Eastern Mediterranean Under Anthropogenic Air Pollution Risks Through Remote Sensing and Google Earth Engine Integration. Atmosphere 2025, 16, 894. [Google Scholar] [CrossRef]
- Al-Hameedi, W.M.M.; Chen, J.; Faichia, C.; Al-Shaibah, B.; Nath, B.; Kafy, A.-A.; Hu, G.; Al-Aizari, A. Remote sensing-based urban sprawl modeling using multilayer perceptron neural network markov chain in Baghdad, Iraq. Remote Sens. 2021, 13, 4034. [Google Scholar] [CrossRef]
- Jumaah, H.J.; Ameen, M.H.; Mahmood, S.; Jumaah, S.J. Study of air contamination in Iraq using remotely sensed Data and GIS. Geocarto Int. 2023, 38, 2178518. [Google Scholar] [CrossRef]
- Arefin, R.; Rahman, A.T.M.S.; Das, J.; Jahan, C.S.; Mazumder, Q.H.; Gomaa, E.; El Aal, A.K.A.; Radwan, A.E.; Youssef, Y.M. Megacity solid waste disposal suitability mapping in Dhaka, Bangladesh: An integrated approach using remote sensing, GIS and statistics. Environ. Monit. Assess. 2024, 196, 910. [Google Scholar] [CrossRef]
- Hashim, B.M.; Al-Naseri, S.K.; Al-Maliki, A.; Al-Ansari, N. Impact of COVID-19 lockdown on NO2, O3, PM2.5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Sci. Total Environ. 2021, 754, 141978. [Google Scholar] [CrossRef]
- Rabie, M.S.; Timman, Z.L.; Jasim, L.Q.H. The Impact of Climate Change on Air Pollution in Baghdad and Its Health Implications. Web Humanit. J. Soc. Sci. Humanit. Res. 2024, 2, 1–15. [Google Scholar]
- Attiya, A.A.; Jones, B.G. A Huge Dust Storm Influenced Air Quality on 16 May 2022 in Baghdad City, Iraq; Tracked Using Remote Sensing Techniques and Meteorological Data. IOP Conf. Ser. Earth Environ. Sci. 2024, 1371, 22036. [Google Scholar] [CrossRef]
- IQAir. World Air Quality Report 2023: Region & City PM2.5 Rankings. 2024. Available online: https://www.iqair.com/dl/2023_World_Air_Quality_Report.pdf (accessed on 15 August 2025).
- World Health Organization. WHO Ambient (Outdoor) Air Pollution Database. 2022. Available online: https://www.who.int/data/gho/data/themes/air-pollution/who-air-quality-database (accessed on 15 August 2025).
- Ajaj, Q.M.; Awad, N.A.; Jumaah, H.J.; Rizeei, H.M. Air Quality Regression Analysis over Iraq During Severe Dust Periods Using GIS and Remotely Sensed PM 2.5. DYSONA-Applied Science. Available online: https://applied.dysona.org/article_214976.html (accessed on 17 August 2025).
- Alam, K.; Blaschke, T.; Madl, P.; Mukhtar, A.; Hussain, M.; Trautmann, T.; Rahman, S. Aerosol size distribution and mass concentration measurements in various cities of Pakistan. J. Environ. Monit. 2011, 13, 1944–1952. [Google Scholar] [CrossRef]
- Notaro, M.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Trajectory analysis of Saudi Arabian dust storms. J. Geophys. Res. Atmos. 2013, 118, 6028–6043. [Google Scholar] [CrossRef]
- Isaifan, R.J. Air pollution burden of disease over highly populated states in the Middle East. Front. Public Health 2023, 10, 1002707. [Google Scholar] [CrossRef] [PubMed]
- Ernst, A.; Zibrak, J.D. Carbon monoxide poisoning. N. Engl. J. Med. 1998, 339, 1603–1608. [Google Scholar] [CrossRef]
- Raub, J.A.; Mathieu-Nolf, M.; Hampson, N.B.; Thom, S.R. Carbon monoxide poisoning—A public health perspective. Toxicology 2000, 145, 1–14. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Le Quéré, C.; Peters, G.P.; Peters, W.; Pongratz, J.; et al. Global carbon budget 2020. Earth Syst. Sci. Data Discuss. 2020, 14, 1917–2005. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; Volume 2, p. 2391. [Google Scholar]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Reiss, R.; Anderson, E.L.; Cross, C.E.; Hidy, G.; Hoel, D.; McClellan, R.; Moolgavkar, S. Evidence of health impacts of sulfate- and nitrate-containing particles in ambient air. Inhal. Toxicol. 2007, 19, 419–449. [Google Scholar] [CrossRef]
- Maynard, D.; Coull, B.A.; Gryparis, A.; Schwartz, J. Mortality risk associated with short-term exposure to traffic particles and sulfates. Environ. Health Perspect. 2007, 115, 751–755. [Google Scholar] [CrossRef]
- Khalaf, I.; Taweek, Y.Q.; Naïf, S.S.; Al-Taai, O.T. Total Ozone Column Variability of Selected Stations over Iraq. IOP Conf. Ser. Earth Environ. Sci. 2021, 49, 12025. [Google Scholar] [CrossRef]
- Elshorbany, Y.; Ziemke, J.R.; Strode, S.; Petetin, H.; Miyazaki, K.; De Smedt, I.; Pickering, K.; Seguel, R.J.; Worden, H.; Emmerichs, T.; et al. Tropospheric ozone precursors: Global and regional distributions, trends, and variability. Atmos. Meas. Tech. 2024, 24, 12225–12257. [Google Scholar] [CrossRef]
- Ding, W.; Cai, Z.; Tsuruta, H.; Li, X. Key factors affecting spatial variation of methane emissions from freshwater marshes. Chemosphere 2003, 51, 167–173. [Google Scholar] [CrossRef]
- Shibata, M.; Terada, F. Factors affecting methane production and mitigation in ruminants. Anim. Sci. J. 2010, 81, 2–10. [Google Scholar] [CrossRef]
- Lelieveld, J.; Crutzen, P.J.; Dentener, F.J. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B Chem. Phys. Meteorol. 1998, 50, 128–150. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, J.; Fan, W.; Yang, Q.; Zhao, D. Review of aerosol optical depth retrieval using visibility data. Earth Sci. Rev. 2020, 200, 102986. [Google Scholar] [CrossRef]
- Streets, D.G.; Yan, F.; Chin, M.; Diehl, T.; Mahowald, N.; Schultz, M.; Wild, M.; Wu, Y.; Yu, C. Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006. J. Geophys. Res. Atmos. 2009, 114, D10. [Google Scholar] [CrossRef]
- Heger, M.; Vashold, L.; Palacios, A.; Alahmadi, M.; Bromhead, M.A.; Acerbi, M. Blue Skies, Blue Seas: Air Pollution, Marine Plastics, and Coastal Erosion in the Middle East and North Africa. Washington DC. 2022. Available online: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/833831644296462061 (accessed on 15 August 2025).
- Canton, H. World Meteorological Organization—WMO. In The Europa Directory of International Organizations, 23rd ed.; Routledge: London, UK, 2021. [Google Scholar]
- Iftakhar, N.; Islam, F.; Izhar Hussain, M.; Ahmad, M.N.; Lee, J.; Ur Rehman, N.; Qaysi, S.; Alarifi, N.; Youssef, Y.M. Revealing Land-Use Dynamics on Thermal Environment of Riverine Cities Under Climate Variability Using Remote Sensing and Geospatial Techniques. ISPRS Int. J. Geo-Inf. 2024, 14, 13. [Google Scholar] [CrossRef]
- Zak, D.; Hupfer, M.; Cabezas, A.; Jurasinski, G.; Audet, J.; Kleeberg, A.; McInnes, R.; Kristiansen, S.M.; Petersen, R.J.; Liu, H.; et al. Sulphate in freshwater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation. Earth-Sci. Rev. 2021, 212, 103446. [Google Scholar] [CrossRef]
- Jumaah, H.J.; Jasim, A.; Rashid, A.; Ajaj, Q. Air Pollution Risk Assessment Using GIS and Remotely Sensed Data in Kirkuk City, Iraq. J. Atmos. Sci. Res. 2023, 6, 41–51. [Google Scholar] [CrossRef]
- Al-Alola, S.S.; Alkadi, I.I.; Alogayell, H.M.; Mohamed, S.A.; Ismail, I.Y. Air quality estimation using remote sensing and GIS-spatial technologies along Al-Shamal train pathway, Al-Qurayyat City in Saudi Arabia. Environ. Sustain. Indic. 2022, 15, 100184. [Google Scholar] [CrossRef]
- Miller, C.A. Fifty years of EPA science for air quality management and control. Env. Manag. 2021, 67, 1017–1028. [Google Scholar] [CrossRef]
- Pal, S.; Sharma, A. Satellite-Based Mapping for Seasonal Variations of Air Pollution and its Environmental Effects in Odisha. J. Indian Soc. Remote Sens. 2024, 52, 2039–2055. [Google Scholar] [CrossRef]
- Box, G.; Jenkins, G.M. Analysis: Forecasting and Control; Holden Day: San Francisco, CA, USA, 1976. [Google Scholar]
- Adam, M.G.; Tran, P.T.M.; Balasubramanian, R. Air quality changes in cities during the COVID-19 lockdown: A critical review. Atmos. Res. 2021, 264, 105823. [Google Scholar] [CrossRef] [PubMed]
- Khadom, A.A.; Albawi, S.; Abboud, A.J.; Mahood, H.B.; Hassan, Q. Predicting air quality index and fine particulate matter levels in Bagdad city using advanced machine learning and deep learning techniques. J. Atmos. Sol.-Terr. Phys. 2024, 262, 106312. [Google Scholar] [CrossRef]
- Gagan, M.; Uniyal, D.P.; Chadha, K.; Sunil, K.; Gaurav, P.; Avinash, K.; Anjali, N.; Pawan, K. Impact of Pandemic COVID19 on Air and Water Quality in India: A Systematic Review. Int. J. Eng. Adv. Technol. 2022, 11, 149–167. [Google Scholar] [CrossRef]
- Hashim, B.M.; Al-Naseri, S.K.; Al Maliki, A.; Sa’adi, Z.; Malik, A.; Yaseen, Z.M. On the investigation of COVID-19 lockdown influence on air pollution concentration: Regional investigation over eighteen provinces in Iraq. Environ. Sci. Pollut. Res. 2021, 28, 50344–50362. [Google Scholar] [CrossRef]
- Allan, R.P.; Arias, P.A.; Berger, S.; Canadell, J.G.; Cassou, C.; Chen, D.; Cherchi, A.; Connors, S.L.; Coppola, E.; Cruz, F.A.; et al. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; pp. 3–32. [Google Scholar]
- World Health Organization. The World Health Report 2005: Make Every Mother and Child Count; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Moussa, Y.; Alwehab, A. Evaluation of Climate Change Indicators for Bagdad City Using Remote Sensing Technology. Iraqi J. Sci. 2023, 64, 4290–4301. [Google Scholar] [CrossRef]
- Tie, X.; Long, X.; Li, G.; Zhao, S.; Cao, J.; Xu, J. Ozone enhancement due to the photodissociation of nitrous acid in eastern China. Atmos. Chem. Phys. 2019, 19, 11267–11278. [Google Scholar] [CrossRef]
- Mahal, S.H.; Al-Lami, A.M.; Mashee, F.K. Assessment of the impact of urbanization growth on the climate of baghdad province using remote sensing techniques. Iraqi J. Agric. Sci. 2022, 53, 1021–1034. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Y.; Ren, K.; Zhao, Y.; Deng, K.; Wang, L. A Spatial Downscaling Approach for WindSat Satellite Sea Surface Wind Based on Generative Adversarial Networks and Dual Learning Scheme. Remote Sens. 2022, 14, 769. [Google Scholar] [CrossRef]
- Xu, K.; Tian, Q.; Yang, Y.; Yue, J.; Tang, S. How up-scaling of remote-sensing images affects land-cover classification by comparison with multiscale satellite images. Int. J. Remote Sens. 2019, 40, 2784–2810. [Google Scholar] [CrossRef]
- Loyola, D.G.; García, S.G.; Lutz, R.; Argyrouli, A.; Romahn, F.; Spurr, R.J.D.; Pedergnana, M.; Doicu, A.; García, V.M.; Schüssler, O. The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor. Atmos. Meas. Tech. 2018, 11, 409–427. [Google Scholar] [CrossRef]
- Acker, J.G.; Leptoukh, G. Online analysis enhances use of NASA earth science data. Eos Trans. Am. Geophys. Union 2007, 88, 14–17. [Google Scholar] [CrossRef]
- Seinfeld, J.; Pandis, S. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; Available online: https://books.google.nl/books?id=n_RmCgAAQBAJ (accessed on 16 August 2025).
- Radmanesh, Y.; Tabrizi, M.S.; Etedali, H.R.; Azizian, A.; Babazadeh, H. Comparative evaluation of the accuracy of re-analysed and gauge-based climatic data in Iran. J. Earth Syst. Sci. 2023, 132, 190. [Google Scholar] [CrossRef]
- Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 1153–1160. [Google Scholar] [CrossRef]
- Lehmann, T.M.; Gonner, C.; Spitzer, K. Survey: Interpolation methods in medical image processing. IEEE Trans. Med. Imaging 1999, 18, 1049–1075. [Google Scholar] [CrossRef] [PubMed]
- Bisong, E. Building Machine Learning and Deep Learning Models on Google Cloud Platform, 1st ed.; OTTAWA: Apress Berkeley, CA, USA, 2019; p. XXIX–709. Available online: https://link.springer.com/book/10.1007/978-1-4842-4470-8 (accessed on 16 August 2025).
- Paul, A.; Bhowmik, R.; Chowdary, V.M.; Dutta, D.; Sreedhar, U.; Ravi Sankar, H. Trend analysis of time series rainfall data using robust statistics. J. Water Clim. Change 2017, 8, 691–700. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Yuan, D.F.; Liu, Y.; Trabelsi, T.; Zhang, Y.R.; Li, J.; Francisco, J.S.; Guo, H.; Wang, L.-S. Probing the dynamics and bottleneck of the key atmospheric SO2 oxidation reaction by the hydroxyl radical. Proc. Natl. Acad. Sci. USA 2024, 121, e2314819121. [Google Scholar] [CrossRef]
- Sun, W.; Berasategui, M.; Pozzer, A.; Lelieveld, J.; Crowley, J.N. Kinetics of OH+SO2+M: Temperature-dependent rate coefficients in the fall-off regime and the influence of water vapour. Atmos. Meas. Tech. 2022, 22, 4969–4984. [Google Scholar] [CrossRef]
- Hoyle, C.R.; Fuchs, C.; Järvinen, E.; Saathoff, H.; Dias, A.; El Haddad, I.; Gysel, M.; Coburn, S.C.; Tröstl, J.; Bernhammer, A.-K.; et al. Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets. Atmos. Chem. Phys. 2016, 16, 1693–1712. [Google Scholar] [CrossRef]
- Liu, T.; Chan, A.W.H.; Abbatt, J.P.D. Multiphase Oxidation of Sulfur Dioxide in Aerosol Particles: Implications for Sulfate Formation in Polluted Environments. Environ Sci Technol. 2021, 55, 4227–4242. [Google Scholar] [CrossRef]
- Gao, J.; Wang, H.; Liu, W.; Xu, H.; Wei, Y.; Tian, X.; Feng, Y.; Song, S.; Shi, G. Hydrogen peroxide serves as pivotal fountainhead for aerosol aqueous sulfate formation from a global perspective. Nat. Commun. 2024, 15, 4625. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, J.; Ye, J.; Zhao, J.; Wu, Y.; Hu, J.; Liu, D.; Nie, D.; Shen, F.; Huang, X.; et al. Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nat. Commun. 2020, 11, 2844. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Liu, Y.X.; Huang, Q.; Chao, X.; Zhong, M.; Yin, J.; Zhang, X.; Li, L.-F.; Kang, X.-Y.; Chen, Z.; et al. Sulfate formation through copper-catalyzed SO2 oxidation by NO2 at aerosol surfaces. NPJ Clim. Atmos. Sci. 2025, 8, 57. [Google Scholar] [CrossRef]
- Ding, H.; Wang, H.; Huang, G.; Zhu, Y.; Zhang, L.; Zhang, X.; Zhou, M.; Wang, Q.; Li, X.; Xu, Q.; et al. Assessing the wastewater reclaim system consisted of wastewater plant-hybrid constructed wetland-ultra filtration and reverse osmosis in a chemical industrial park, a multi-criteria decision-making analysis. Sci. Total Environ. 2024, 926, 171942. [Google Scholar] [CrossRef]
- Lv, X.; Lily, M.; Tasheh, S.N.; Ghogomu, J.N.; Du, L.; Tsona Tchinda, N. Enhanced Sulfate Formation from Gas-Phase SO2 Oxidation in Non–•OH–Radical Environments. Atmosphere 2024, 15, 64. [Google Scholar] [CrossRef]
- Pathak, M.; Patel, V.K.; Kuttippurath, J. Spatial heterogeneity in global atmospheric CO during the COVID-19 lockdown: Implications for global and regional air quality policies. Environ. Pollut. 2023, 335, 122269. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Manning, M.R.; Dlugokencky, E.J.; Fisher, R.E.; Lowry, D.; Michel, S.E.; Myhre, C.L.; Platt, S.M.; Allen, G.; Bousquet, P.; et al. Very Strong Atmospheric Methane Growth in the 4 Years 2014–2017: Implications for the Paris Agreement. Glob. Biogeochem. Cycles 2019, 33, 318–342. [Google Scholar] [CrossRef]
- Abed, F.G. Spatiotemporal observations of CH4 and CO2 over Iraq using Atmospheric Infrared Sounder (AIRS) data. J. Appl. Adv. Res. 2020, 5, 6–10. [Google Scholar] [CrossRef]
- de Vries, D.F.H.; Bernardo, C.H. Spatial and temporal variability in atmospheric CO2 measurements. Energy Procedia 2011, 4, 5573–5578. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Zhou, D.; Lv, H.; Cheng, C. Analysis of the temporal and spatial distribution of atmospheric CO2 in China. Mausam 2018, 69, 459–464. Available online: http://103.215.208.102/index.php/MAUSAM/article/download/340/262 (accessed on 16 August 2025).
- Abbas, N.M.; Rajab, J.M. Sulfur Dioxide (SO2) anthropogenic emissions distributions over Iraq (2000–2009) using MERRA-2 data. Al-Mustansiriyah J. Sci. 2022, 33, 27–33. [Google Scholar] [CrossRef]
- Szopa, S.; Naik, V.; Adhikary, B.; Artaxo, P.; Berntsen, T.; Collins, W.D.; Fuzzi, S.; Gallardo, L.; Kiendler-Scharr, A.; Klimont, Z.; et al. Chapter 6: Short-Lived Climate Forcers. In Climate Change 2021: The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 817–922. Available online: https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-6/#6.3.2.1 (accessed on 15 February 2025).
- Namdari, S.; Karimi, N.; Sorooshian, A.; Mohammadi, G.; Sehatkashani, S. Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmos. Environ. 2018, 173, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Hossin, M.A.; Haque, A.; Saha, O.R.; Islam, R.; Shimin, T.I. A spatiotemporal analysis of air pollutants during and after COVID-19: A case study of Dhaka Division using Google Earth Engine. DYSONA - Appl. Sci. 2025, 6, 411–421. [Google Scholar] [CrossRef]
Atmospheric Indicator | Product Name (Version) | Units | Source/ Model | Data Resolution | Temporal Coverage | ||
---|---|---|---|---|---|---|---|
Temporal | Spatial | Start Date | End Date | ||||
Total Column Ozone (O3) | M2TMNXCHM v5.12.4 | Dobsons | MERRA-2 Reanalysis | Monthly | 0.5° × 0.625° | 1 January 1980 | 30 June 2025 |
Aerosol Optical Depth (AOD) | M2IMNXGAS v5.12.4 | - | MERRA-2 Reanalysis | Monthly | 0.5° × 0.625° | 1 January 1980 | 30 June 2025 |
Methane Mole Fraction (CH4) | AIRS3STM v006 | ppbv | AIRS | Monthly | 1° | 1 September 2002 | 30 June 2025 |
Surface Carbon Monoxide (CO) | M2TMNXCHM v5.12.4 | ppbv | MERRA-2 Reanalysis | Monthly | 0.5° × 0.625° | 1 January 1980 | 30 June 2025 |
Dry Air Column-Averaged CO2 | OCO2_GEOS_L3CO2_MONTH v10r | ppm | data | Monthly | 0.5° × 0.625° | 1 January 2015 | 28 February 2022 |
Sulfur Dioxide Column Mass Density (SO2) | M2TMNXAER v5.12.4 | kg/m2 | MERRA-2 Reanalysis | Monthly | 0.5° × 0.625° | 1 January 1980 | 30 June 2025 |
Sulfate Column Mass Density (SO4) | M2TMNXAER v5.12.4 | kg/m2 | MERRA-2 Reanalysis | Monthly | 0.5° × 0.625° | 1 January 1980 | 30 June 2025 |
SDG Dimension | Contribution (%) | SDG Target | Specific Sub-Target | Key Study Findings | Contribution Type | Relevant Indicator |
---|---|---|---|---|---|---|
Environmental Health and Public Well-being | 30% | SDG 3 | 3.9: Reduce deaths from pollution | CO reduction from 0.35–0.40 ppm to 0.10–0.15 ppm (2021–2023) | Direct | 3.9.1: Mortality rate from air pollution |
SDG 6 | 6.3: Improve water quality | Winter SO2 loading (1.95 × 10−5 kg/m2) impacts on Tigris River | Indirect | 6.3.2: Water bodies with good quality | ||
SDG 2 | 2.4: Sustainable food production | AOD spring maxima (0.52–0.65) affecting agricultural areas | Indirect | 2.4.1: Sustainable agricultural area | ||
Sustainable Cities and Climate Action | 25% | SDG 11 | 11.6: Reduce urban environmental impact | Urban–rural CO gradient (0.40 ppm vs. 0.20 ppm) | Direct | 11.6.2: Urban particulate matter levels |
SDG 13 | 13.3: Climate change capacity building | 17 ppm CO2 increase = 0.31 W/m2 radiative forcing | Direct | 13.3.2: Climate capacity strengthening | ||
SDG 7 | 7.2: Increase renewable energy share | Linear SO2 gradient from power plants identified | Indirect | 7.2.1: Renewable energy share | ||
Economic Development and Resource Management | 25% | SDG 8 | 8.4: Resource efficiency and decoupling | 60–70% CO reduction during COVID-19 lockdowns | Indirect | 8.4.1 & 8.4.2: Material footprint metrics |
SDG 12 | 12.4: Sound chemical management | Transportation accounts for 75% of urban CO burden | Direct | 12.4.2: Hazardous waste treatment | ||
SDG 9 | 9.4: Sustainable infrastructure | 5.9% CH4 increase linked to industrial activities | Indirect | 9.4.1: CO2 emission per value added | ||
Institutional Development and Partnership | 20% | SDG 16 | 16.6: Effective institutions | Satellite monitoring for evidence-based governance | Indirect | 16.6.1: Government budget allocation |
SDG 17 | 17.6: Technology cooperation | Integration of NASA, ESA, and Google platforms | Direct | 17.6.1: Science cooperation agreements | ||
SDG 4 | 4.7: Education for sustainable development | Google Earth Engine methodology documentation | Indirect | 4.7.1: Sustainable development in curricula | ||
TOTAL | 100% | 12 SDGs | 12 Sub-targets | 7 Atmospheric Pollutants Monitored | 6 Direct, 6 Indirect | 12 Specific Indicators |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayek, A.A.E.; Loho, M.A.; Alkhuraiji, W.S.; Eid, S.; Abd-Elmaboud, M.E.; Nahas, F.; M. Youssef, Y. Deciphering Air Pollution Dynamics and Drivers in Riverine Megacities Using Remote Sensing Coupled with Geospatial Analytics for Sustainable Development. Atmosphere 2025, 16, 1084. https://doi.org/10.3390/atmos16091084
Ayek AAE, Loho MA, Alkhuraiji WS, Eid S, Abd-Elmaboud ME, Nahas F, M. Youssef Y. Deciphering Air Pollution Dynamics and Drivers in Riverine Megacities Using Remote Sensing Coupled with Geospatial Analytics for Sustainable Development. Atmosphere. 2025; 16(9):1084. https://doi.org/10.3390/atmos16091084
Chicago/Turabian StyleAyek, Almustafa Abd Elkader, Mohannad Ali Loho, Wafa Saleh Alkhuraiji, Safieh Eid, Mahmoud E. Abd-Elmaboud, Faten Nahas, and Youssef M. Youssef. 2025. "Deciphering Air Pollution Dynamics and Drivers in Riverine Megacities Using Remote Sensing Coupled with Geospatial Analytics for Sustainable Development" Atmosphere 16, no. 9: 1084. https://doi.org/10.3390/atmos16091084
APA StyleAyek, A. A. E., Loho, M. A., Alkhuraiji, W. S., Eid, S., Abd-Elmaboud, M. E., Nahas, F., & M. Youssef, Y. (2025). Deciphering Air Pollution Dynamics and Drivers in Riverine Megacities Using Remote Sensing Coupled with Geospatial Analytics for Sustainable Development. Atmosphere, 16(9), 1084. https://doi.org/10.3390/atmos16091084