Spatiotemporal Distribution of Lightning-Caused Wildfires on Mount Mainalo, Central Peloponnese, Greece
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pyne, S.J. Fire: A Brief History; University of Washington Press: Seattle, WA, USA, 2001. [Google Scholar]
- Pyne, S.J.; Andrews, P.L.; Laven, R.D. Introduction to Wildland Fire; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Scott, A.C.; Bowman, D.M.; Bond, W.J.; Pyne, S.J.; Alexander, M.E. Fire on Earth: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Scott, A.C. The Pre-Quaternary history of fire. Palaeogeogr. Palaeoclim. Palaeoecol. 2000, 164, 281–329. [Google Scholar] [CrossRef]
- Coogan, S.C.P.; Cannon, A.J.; Flannigan, M.D. Lightning ignition efficiency in Canadian forests. Fire Ecol. 2025, 21, 34. [Google Scholar] [CrossRef] [PubMed]
- Veraverbeke, S.; Rogers, B.M.; Goulden, M.L.; Jandt, R.R.; Miller, C.E.; Wiggins, E.B.; Randerson, J.T. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 2017, 7, 529–534. [Google Scholar] [CrossRef]
- Chen, Y.; Romps, D.M.; Seeley, J.T.; Veraverbeke, S.; Riley, W.J.; Mekonnen, Z.A.; Randerson, J.T. Future increases in Arctic lightning and fire risk for permafrost carbon. Nat. Clim. Change 2021, 11, 404–410. [Google Scholar] [CrossRef]
- Reineking, B.; Weibel, P.; Conedera, M.; Bugmann, H. Environmental determinants of lightning-v. human-induced forest fire ignitions differ in a temperate mountain region of Switzerland. Int. J. Wildland Fire 2010, 19, 541–557. [Google Scholar] [CrossRef]
- Pérez-Invernón, F.J.; Huntrieser, H.; Soler, S.; Gordillo-Vázquez, F.J.; Pineda, N.; Navarro-González, J.; Reglero, V.; Montanyà, J.; van der Velde, O.; Koutsias, N. Lightning-ignited wildfires and long continuing current lightning in the Mediterranean Basin: Preferential meteorological conditions. Atmos. Chem. Phys. 2021, 21, 17529–17557. [Google Scholar] [CrossRef]
- Hall, B.L. Precipitation associated with lightning-ignited wildfires in Arizona and New Mexico. Int. J. Wildland Fire 2007, 16, 242–254. [Google Scholar] [CrossRef]
- Colson, D. High level thunderstorms of July 31–August 1, 1959. Mon. Weather Rev. 1960, 88, 279–285. [Google Scholar] [CrossRef]
- Rorig, M.L.; McKay, S.J.; Ferguson, S.A.; Werth, P. Model-generated predictions of dry thunderstorm potential. J. Appl. Meteorol. Climatol. 2007, 46, 605–614. [Google Scholar] [CrossRef]
- Kalashnikov, D.; Abatzoglou, J.T.; Nauslar, N.J.; Swain, D.L.; Touma, D.; Singh, D. Meteorological and geographical factors associated with dry lightning in central and northern California. Environ. Res. Clim. 2022, 1, 025001. [Google Scholar] [CrossRef]
- Kharyutkina, E.; Moraru, E.; Pustovalov, K.; Loginov, S. Lightning-Ignited Wildfires and Associated Meteorological Conditions in Western Siberia for 2016–2021. Atmosphere 2024, 15, 106. [Google Scholar] [CrossRef]
- Rorig, M.L.; Ferguson, S.A. Characteristics of lightning and wildland fire ignition in the Pacific Northwest. J. Appl. Meteorol. 1999, 38, 1565–1575. [Google Scholar]
- Dowdy, A.J.; Mills, G.A. Characteristics of lightning-attributed wildland fires in south-east Australia. Int. J. Wildland Fire 2012, 21, 521–524. [Google Scholar] [CrossRef]
- Dowdy, A.J. Climatology of thunderstorms, convective rainfall and dry lightning environments in Australia. Clim. Dyn. 2020, 54, 3041–3052. [Google Scholar] [CrossRef]
- Hare, B.M.; Scholten, O.; Dwyer, J.; Trinh, T.N.G.; Buitink, S.; ter Veen, S.; Bonardi, A.; Corstanje, A.; Falcke, H.; Hörandel, J.R.; et al. Needle-like structures discovered on positively charged lightning branches. Nature 2019, 568, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.D.; Rakov, V.A. Initiation and propagation of cloud-to-ground lightning observed with a high-speed video camera. Sci. Rep. 2016, 6, 39521. [Google Scholar] [CrossRef] [PubMed]
- Ogilvie, C. Lightning fires in Saskatchewan forests. Fire Manag. Notes 1989, 50, 31–36. [Google Scholar]
- Nash, C.; Johnson, E. Synoptic climatology of lightning-caused forest fires in subalpine and boreal forests. Can. J. For. Res. 1996, 26, 1859–1874. [Google Scholar] [CrossRef]
- Anderson, K. A model to predict lightning-caused fire occurrences. Int. J. Wildland Fire 2002, 11, 163–172. [Google Scholar] [CrossRef]
- Pineda, N.; Rigo, T. The rainfall factor in lightning-ignited wildfires in Catalonia. Agric. For. Meteorol. 2017, 239, 249–263. [Google Scholar] [CrossRef]
- Schultz, C.J.; Nauslar, N.J.; Wachter, J.B.; Hain, C.R.; Bell, J.R. Spatial, temporal and electrical characteristics of lightning in reported lightning-initiated wildfire events. Fire 2019, 2, 18. [Google Scholar] [CrossRef]
- Wotton, B.M.; Martell, D.L. A lightning fire occurrence model for Ontario. Can. J. For. Res. 2005, 35, 1389–1401. [Google Scholar] [CrossRef]
- Moris, J.V.; Conedera, M.; Nisi, L.; Bernardi, M.; Cesti, G.; Pezzatti, G.B. Lightning-caused fires in the Alps: Identifying the igniting strokes. Agric. For. Meteorol. 2020, 290, 107990. [Google Scholar] [CrossRef]
- Pineda, N.; Peña, J.C.; Soler, X.; Aran, M.; Pérez-Zanón, N. Synoptic weather patterns conducive to lightning-ignited wildfires in Catalonia. Adv. Sci. Res. 2022, 19, 39–49. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Kolden, C.; Balch, J.K.; Bradley, B. Controls on interannual variability in lightning-caused fire activity in the western US. Environ. Res. Lett. 2016, 11, 045005. [Google Scholar] [CrossRef]
- Rodrigues, M.; Jiménez-Ruano, A.; Gelabert, P.J.; de Dios, V.R.; Torres, L.; Ribalaygua, J.; Vega-García, C. Modelling the daily probability of lightning-caused ignition in the Iberian Peninsula. Int. J. Wildland Fire 2023, 32, 351–362. [Google Scholar] [CrossRef]
- Mazarakis, N.; Kotroni, V.; Lagouvardos, K.; Argiriou, A.A. Storms and lightning activity in Greece during the warm periods of 2003–2006. J. Appl. Meteorol. Climatol. 2008, 47, 3089–3098. [Google Scholar] [CrossRef]
- Mazarakis, N. Observational and numerical study of the dynamical and physical processes that are been connected with the convection activity during the warm period over Greece. In Physics; University of Patras: Patras, Greece, 2010; p. 177. [Google Scholar]
- Nastos, P.; Matsangouras, I.; Chronis, T. Spatio-temporal analysis of lightning activity over Greece—Preliminary results derived from the recent state precision lightning network. Atmos. Res. 2014, 144, 207–217. [Google Scholar] [CrossRef]
- Komarek, E.V. Lightning and lightning fires as ecological forces. In Proceedings of the 8th Tall Timbers Fire Ecology Conference 1968, Tallahassee, FL, USA, 14–15 March 1968. [Google Scholar]
- Chen, F.; Du, Y.; Niu, S.; Zhao, J. Modeling forest lightning fire occurrence in the Daxinganling Mountains of Northeastern China with MAXENT. Forests 2015, 6, 1422–1438. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Song, Y.; Xu, C.; Li, X.; Oppong, F. Lightning-induced wildfires: An overview. Fire 2024, 7, 79. [Google Scholar] [CrossRef]
- Moris, J.V.; Ascoli, D.; Hunt, H.G. Survival functions of holdover time of lightning-ignited wildfires. Electr. Power Syst. Res. 2024, 231, 110296. [Google Scholar] [CrossRef]
- Pineda, N.; Montanyà, J.; van der Velde, O.A. Characteristics of lightning related to wildfire ignitions in Catalonia. Atmos. Res. 2014, 135, 380–387. [Google Scholar] [CrossRef]
- Pérez-Invernón, F.J.; Huntrieser, H.; Moris, J.V. Meteorological conditions associated with lightning ignited fires and long-continuing-current lightning in Arizona, New Mexico and Florida. Fire 2022, 5, 96. [Google Scholar] [CrossRef]
- Braun, W.J.; Stafford, J.E. Multivariate density estimation for interval-censored data with application to a forest fire modelling problem. Environmetrics 2016, 27, 345–354. [Google Scholar] [CrossRef]
- Anagnostou, E.N.; Chronis, T.; Lalas, D.P. New receiver network advances long-range lightning monitoring. Eos Trans. Am. Geophys. Union 2002, 83, 589–595. [Google Scholar] [CrossRef]
- Kotroni, V.; Lagouvardos, K. Lightning occurrence in relation with elevation, terrain slope, and vegetation cover in the Mediterranean. J. Geophys. Res. Atmos. 2008, 113, D21. [Google Scholar] [CrossRef]
- Conedera, M.; Cesti, G.; Pezzatti, G.; Zumbrunnen, T.; Spinedi, F. Lightning-induced fires in the Alpine region: An increasing problem. For. Ecol. Manag. 2006, 234, S68. [Google Scholar] [CrossRef]
Class | BuA Per Wildfire Class (ha) | Number of Wildfires (Frequency) | Total BuA (ha) |
---|---|---|---|
1 | 10−4–10−2 | 55 | 0.2 |
2 | 10−2–1 | 16 | 4.6 |
3 | 1–5 | 1 | 1.5 |
4 | 5–50 | 4 | 50.8 |
5 | 50–500 | 3 | 714 |
6 | 500–3100 | 1 | 3180 |
Year | Number of Wildfires (Frequency) | Total BuA (ha) |
---|---|---|
1998 | 2 | 20 |
1999 | 0 | 0 |
2000 | 6 | 3181.65 |
2001 | 1 | 0.05 |
2002 | 1 | 0.05 |
2003 | 2 | 0.06 |
2004 | 3 | 0.1 |
2005 | 3 | 0.008 |
2006 | 6 | 310 |
2007 | 4 | 0.04 |
2008 | 6 | 120 |
2009 | 2 | 1.5 |
2010 | 4 | 0.004 |
2011 | 8 | 316 |
2012 | 12 | 0.4 |
2013 | 0 | 0 |
2014 | 4 | 1.02 |
2015 | 4 | 0.01 |
2016 | 0 | 0 |
2017 | 4 | 0.01 |
2018 | 3 | 0.01 |
2019 | 0 | 0 |
2020 | 1 | 0.005 |
2021 | 0 | 0 |
2022 | 4 | 0.001 |
Fdt (hh:mm) | Elv (m) | BuA Per Fire (ha) | |
---|---|---|---|
Mean | 15:50 | 1243 | 9.9 |
S.E. | 23 min | 27 | 5.7 |
Median | 17:09 | 1241 | 0.005 |
Mode | 17:30 | 1342 | 0.005 |
S.D. | 3 h 16 min | 234 | 49.5 |
min | 8:02 | 420 | 0.0001 |
max | 21:30 | 1842 | 300 |
Total | 751.1 |
Fdt (hh:mm) | Elv (m) | Hldt (h) | BuA Per Fire (ha) | |
---|---|---|---|---|
Mean | 15:32 | 1205 | 20.86 | 15.6 |
S.E. | 29 min | 34 | 6.42 | 8.9 |
Median | 16:07 | 1195 | 1.74 | 0.003 |
Mode | 17:30 | 0.17 | 0.0002 | |
S.D. | 3 h 25 min | 232 | 44.45 | 62 |
min | 8:02 | 420 | 0.1 | 0.0001 |
max | 21:30 | 1842 | 222.8 | 300 |
Total | 749 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athanasiou, M.; Karadimitris, A.; Kouretas, I.; Nastos, P. Spatiotemporal Distribution of Lightning-Caused Wildfires on Mount Mainalo, Central Peloponnese, Greece. Atmosphere 2025, 16, 1085. https://doi.org/10.3390/atmos16091085
Athanasiou M, Karadimitris A, Kouretas I, Nastos P. Spatiotemporal Distribution of Lightning-Caused Wildfires on Mount Mainalo, Central Peloponnese, Greece. Atmosphere. 2025; 16(9):1085. https://doi.org/10.3390/atmos16091085
Chicago/Turabian StyleAthanasiou, Miltiadis, Athanasios Karadimitris, Ioannis Kouretas, and Panagiotis Nastos. 2025. "Spatiotemporal Distribution of Lightning-Caused Wildfires on Mount Mainalo, Central Peloponnese, Greece" Atmosphere 16, no. 9: 1085. https://doi.org/10.3390/atmos16091085
APA StyleAthanasiou, M., Karadimitris, A., Kouretas, I., & Nastos, P. (2025). Spatiotemporal Distribution of Lightning-Caused Wildfires on Mount Mainalo, Central Peloponnese, Greece. Atmosphere, 16(9), 1085. https://doi.org/10.3390/atmos16091085