Variation in Total Electron Content During a Severe Geomagnetic Storm, 23–24 April 2023
Abstract
:1. Introduction
2. Data Acquisition and Methodology
2.1. Data on Geomagnetic Index and Solar Wind Parameters
2.2. IGS Data
2.3. Global TEC Map Data
3. Results and Discussions
3.1. Time-Series Analysis Before, During, and After the Geomagnetic Storm
3.2. Variation in TEC Before, During, and After the Geomagnetic Storm
3.2.1. Variation in TEC over MSVG, ATQK, and BAKE
3.2.2. Variation in TEC over TIDB, DUND, and CHTI
3.2.3. Variation in TEC over CN41, YKRO, BELE, KANZ, HYDE, and HKSL
3.2.4. Variation in TEC over KAZA, BJFS, OTMT, MADR, ZECK, and GODS
3.3. Variation in Percentage Deviation in TEC (dTEC%) Before, During, and After the Geomagnetic Storm
3.4. Global Ionospheric Maps Showing the Storm
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gautam, S.P.; Adhikari, L.; Zank, G.P.; Silwal, A.; Zhao, L. Solar Cycle Dependence of the Turbulence Cascade Rate at 1 au. Astrophys. J. 2024, 968, 12. [Google Scholar]
- Gautam, S.P.; Silwal, A.; Bashyal, A.; Chaudhary, K.; Khanal, M.; Ale, B.; Adhikari, B.; Poudel, P.; Karki, M.; Chapagain, N.P. Tracking IMF fluctuations nearby Sun using wavelet analysis: Parker solar probe first encounter data. Geomagn. Aeron. 2022, 62, 138–150. [Google Scholar]
- Pokharia, M.; Prasad, L.; Bhoj, C.; Mathpal, C. A study of geomagnetic storms and solar and Interplanetary parameters for solar cycles 22 and 24. Sol. Phys. 2018, 293, 126. [Google Scholar] [CrossRef]
- Astafyeva, E.; Zakharenkova, I.; Forster, M. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview. J. Geophys. Res. Space Phys. 2015, 120, 9023–9037. [Google Scholar] [CrossRef]
- Akala, A.O.; Oyeyemi, E.O.; Amaechi, P.O.; Radicella, S.M.; Nava, B.; Amory-Mazaudier, C. Longitudinal responses of the equatorial/low-latitude ionosphere over the oceanic regions to geomagnetic storms of May and September 2017. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027963. [Google Scholar] [CrossRef]
- Mendillo, M. Storms in the ionosphere: Patterns and processes for total electron content. Rev. Geophys. 2006, 44, RG4001. [Google Scholar] [CrossRef]
- Adhikari, B.; Klausner, V.; Cândido, C.M.N.; Poudel, P.; Gimenes, H.M.; Silwal, A.; Gautam, S.P.; Calabia, A.; Shah, M. Lithosphere–atmosphere–ionosphere coupling during the September 2015 Coquimbo earthquake. J. Earth Syst. Sci. 2024, 133, 35. [Google Scholar]
- Poudel, P.; Silwal, A.; Ghimire, B.D.; Gautam, S.P.; Karki, M.; Chapagain, N.P.; Adhikari, B.; Pandit, D.; Amory-Mazaudier, C. A study of vTEC above Nepal exploring different calibration techniques, including a comparison with the NeQuick-2 model. Astrophys. Space Sci. 2022, 367, 41. [Google Scholar]
- Eastwood, J.P.; Biffis, E.; Hapgood, M.A.; Green, L.; Bisi, M.M.; Bentley, R.D.; Wicks, R.; Mckinell, L.A.; Gibbs, M.; Burnett, C. The Economic impact of space weather: Where do we stand? Risk Anal. 2017, 37, 206–218. [Google Scholar] [CrossRef]
- Schrijver, C.J.; Bageral, F.; Sojka, J.J. Helio Physics V, Space Weather and Society. 2015. Available online: https://heliophysics.ucar.edu/sites/default/files/heliophysics/documents/HSS5.pdf (accessed on 10 June 2023).
- Silwal, A.; Gautam, S.P.; Poudel, P.; Karki, M.; Chapagain, N.P.; Adhikari, B. Variation of Total Electron Content Over Nepal During Geomagnetic Storms: GPS Observations. Russ. J. Earth Sci. 2023, 23, 3012. [Google Scholar]
- Uga, C.I.; Gautam, S.P.; Seba, E.B. TEC disturbances caused by the CME-triggered geomagnetic storm of September 6–9, 2017. Heliyon 2024, 10, e30725. [Google Scholar] [PubMed]
- Gautam, S.P.; Silwal, A.; Baral, B.D.; Adhikari, B. The possible impact of solar activity on rainfall in Nepal: A case study. Adv. Space Res. 2024; in press. [Google Scholar]
- Adewale, A.O.; Oyeyemi, E.O.; Adeloye, A.B.; Mitchell, C.N.; Rose, J.A.R.; Cilliers, P.J. A study of L-band scintillations and total electron content at an Equatorial station, Lagos, Nigeria. Radio Sci. 2012, 47, RS2011. [Google Scholar] [CrossRef]
- Magdaleno, S.; Herraiz, M.; Altadill, D.; de la Morena, B.A. Climatology characterization of equatorial plasma bubbles using GPS data. J. Space Weather Space Clim 2017, 7, A3. [Google Scholar] [CrossRef]
- Mukherjee, S.; Sarkar, S.; Purohit, P.K.; Gwal, A.K. Seasonal variation of Total Electron Content at crest of equatorial anomaly station during low solar activity conditions. Adv. Spac Res. 2010, 46, 291–295. [Google Scholar]
- Ndeda, O.H.; Odera, P.O. Analysis of Longitudinal Advancement of the peak Total Electron Content in the African equatorial anomaly region using data from GPS receivers and GIS stations in Kenya. Appl. Phys. Res. 2014, 6, 19. [Google Scholar] [CrossRef]
- Radiciella, S. Workshop on Science Applications of GNSS in Developing Countries (11–27 April) Followed by the Seminar on Development and Use of Ionospheric Ne Quick Model 30 April–1 May 2012. Available online: https://indico.ictp.it/event/a11159/material/4/0.pdf (accessed on 10 June 2023).
- Fayose, R.S.; Oladosu, O.R.; Rabiu, A.B.; Grooves, K. Variation of Total Electron Content [TEC] and their Effect on GNSS over Akure, Nigeria. Appl. Phys. Res. 2012, 4, 105. [Google Scholar] [CrossRef]
- Wang, C.; Shi, C.; Fan, L.; Zhang, H. Improved modeling of Global Ionospheric Total Electron content using prior information. Remote Sens. 2018, 10, 63. [Google Scholar] [CrossRef]
- Misra, P.; Enge, P. Global Positioning System Signals, Measurements and Performance; Ganga-Jamuna Press: Lincoln, MA, USA, 2001. [Google Scholar]
- Wawrzaszek, A.; Hajra, R.; Gil, A.; Modzelewska, R.; Tsurutani, B.T.; Wawrzaszek, R. Geoelectric fields and geomagnetically induced currents during the April 23–24, 2023 geomagnetic storm. Sci. Rep. 2024, 14, 25074. [Google Scholar]
- Hu, P.; Chen, G.; Zhang, S.; Gong, W.; Zhang, M. Low-latitude ionospheric responses to the severe geomagnetic storm during 23–25 april 2023 over the American sector. J. Geophys. Res. Space Phys. 2025, 130, e2024JA033692. [Google Scholar]
- Tariq, M.A.; Liu, L.; Shah, M.; Yang, Y.; Sun, W.; Shah, M.A.; Zhang, R.; Yoshikawa, A. Longitudinal variations of ionospheric responses to the February and April 2023 geomagnetic storms over American and Asian sectors. Adv. Space Res. 2024, 73, 3033–3049. [Google Scholar]
- Hajra, R.; Tsurutani, B.T.; Lakhina, G.S.; Lu, Q.; Du, A. Interplanetary causes and impacts of the 2024 May superstorm on the geosphere: An overview. Astrophys. J. 2024, 974, 264. [Google Scholar]
- Kundu, S.; Sasmal, S.; Chakraborti, S.; Chakrabarti, K. Study the Ionospheric Total Electron Content (TEC) variation during Geomagnetic Storm in 24th Solar Cycle. In Proceedings of the 2020 URSI Regional Conference on Radio Science (URSI-RCRS), Varanasi, India, 12–14 February 2020. [Google Scholar]
- Mishra, R.K.; Adhikari, B.; Chapagain, N.P.; Baral, R.; Das, P.K.; Klausner, V.; Sharma, M. Variation of Solar Wind Parameters and Total Electron Content from Indian, Australian, Brazilian and South African Sectors during the Intense Geomagnetic Storms. Radio Sci. 2020, 55, e2020RS007129. [Google Scholar] [CrossRef]
- Adhikari, B.; Kaphle, B.; Adhikari, N.; Limbu, S.; Sunar, A.; Mishra, R.K.; Adhikari, S. Analysis of cosmic ray, solar wind energies, components of Earth’s magnetic field, and ionospheric total electron content during solar superstorm of November 18–22, 2003. SN Appl. Sci. 2019, 1, 453. [Google Scholar]
- Blagoveshchenskii, D.V. Effect of Geomagnetic Storms (Substorms) on the Ionosphere: 1. A Review. Geomagn. Aeron. 2013, 53, 275–290. [Google Scholar] [CrossRef]
- Liu, G.; Shen, H. A severe negative response of ionosphere to the intense geomagnetic storm of 17 March 2015 observed at middle and low latitude stations in China zone. Adv. Space Res. 2017, 59, 2301–2312. [Google Scholar] [CrossRef]
- Gurtner, W.; Estey, L. Rinex—The Receiver Independent Exchange Format-Version 3.00; Astronomical Institute, University of Bern and UNAVCO: Bolulder, CO, USA, 2007. [Google Scholar]
- Tariku, Y.A. Patterns of gps-tec variation over low-latitude regions (African sector) during the deep solar minimum (2008 to 2009) and solar maximum (2012 to 2013) phases. Earth Planets Space 2015, 67, 35. [Google Scholar]
- Cepni, M.S.; Potts, L.V.; Miima, J.B. High-resolution station-based diurnal ionospheric total electron content (TEC) from dual-frequency GPS observations. Space Weather 2013, 11, 520–528. [Google Scholar]
- Horvath, I.; Essex, E.A. Vertical E × B drift velocity variations and associated low-latitude ionospheric irregularities investigated with the TOPEX and GPS satellite data. Ann. Geophys. 2003, 21, 1017–1030. [Google Scholar]
- Idosa Uga, C.; Prasad Gautam, S.; Beshir Seba, E. Impact of geomagnetic storms on ionospheric TEC at high latitude stations: A comparative analysis of GPS observations and the IRI-2016 model. Astrophys. Space Sci. 2023, 368, 85. [Google Scholar]
- Singh, R.; Sripathi, S. Ionospheric response to 22–23 June 2015 storm as investigated using ground-based ionosondes and GPS receivers over India. J. Geophys. Res. Space Phys. 2017, 122, 11645–11664. [Google Scholar] [CrossRef]
- Jin, S.; Park, J.; Wang, J.; Choi, B.; Park, P. Electron density profiles derived from Ground-based observations. J. Navig. 2006, 59, 395–401. [Google Scholar]
- Ma, X.F.; Maruyama, T.; Ma, G.; Takeda, T. Three-dimensional ionospheric tomography using observation data of GPS ground receivers and Ionosonde by neural network. J. Geophys. Res. Space Phys. 2005, 110, A05308. [Google Scholar] [CrossRef]
- Heise, S.; Jakowski, N.; Wehrenpfennig, A.; Reigber, C.; Lühr, H. Sounding of the topside ionosphere/plasmasphere based on GPS measurements from champ: Initial results. Geophys. Res. Lett. 2002, 29, 44-1. [Google Scholar]
- Jawoski, N.; Mayer, C.; Hoque, M.; Wilken, V. Total electron content models and their use in ionosphere monitoring. Radio. Sci. 2011, 46, 1–11. [Google Scholar]
- Ciraolo, L.; Azpilicueta, F.; Brunini, C.; Meza, A.; Radicella, S.M. Calibration errors on experimental slant total electron content determined by the GPS. J. Geod. 2007, 81, 111–120. [Google Scholar]
- Kassa, T.; Damtie, B. Ionospheric irregularities over Bahir dar, Ethiopia during selected geomagnetic storms. Adv. Space Res. 2017, 60, 121–129. [Google Scholar]
- Liu, J.; Wang, W.; Burns, A.; Yue, X.; Zhang, S.; Zhang, Y.; Huang, C. Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm. J. Geophys. Res. Space Phys. 2016, 121, 727–744. [Google Scholar] [CrossRef]
- Sharma, S.K.; Singh, A.K.; Panda, S.K.; Ahmed, S.S. The effect of geomagnetic storms on the total electron content over the low latitude Saudi Arab region: A focus on St. Patrick’s Day storm. Astrophys. Space Sci. 2020, 365, 35. [Google Scholar] [CrossRef]
- Oikonomou, C.; Haralambous, H.; Paul, A.; Ray, S.; Alfonsi, L.; Cesaroni, C.; Sur, D. Investigation of the negative ionospheric response of the 8 September 2017 geomagnetic storm over the European sector. Adv. Space Res. 2022, 70, 1104–1120. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Lei, J.; Larson, K.M.; Forbes, J.M. Observation of the ionospheric response to the 15 December 2006 geomagnetic storm: Long duration positive storm effect. J. Geophys. Res. 2009, 114, A12313. [Google Scholar]
- Blanc, M.; Richmond, A. The ionospheric disturbance dynamo. J. Geophys. Res. 1980, 85, 1669–1686. [Google Scholar] [CrossRef]
- Vasyliunas, V.M. Mathematical models of magnetospheric convection and its coupling to the ionosphere. In Particules and Fields in the Magnetosphere; Mc Cormac, M., Reidel, D., Eds.; Springer: Dordrecht, The Netherlands, 1970; pp. 60–71. [Google Scholar] [CrossRef]
- Vasyliunas, V.M. The inter-relationship of magnetospheric processes. In Earth’s Magnetosphere Processes; Mc Cormac, M., Reidel, D., Eds.; Springer: Dordrecht, The Netherlands, 1972; pp. 29–38. [Google Scholar] [CrossRef]
- Senior, C.; Blanc, M. On the control of magnetospheric convection by the spatial distribution of ionospheric conductivities. J. Geophys. Res. 1984, 89, 261–284. [Google Scholar] [CrossRef]
- Huang, C.M. Disturbance dynamo electric fields in response to geomagnetic storms occurring at different universal times. J. Geophys. Res. Space Phys. 2013, 118, 496–501. [Google Scholar] [CrossRef]
- Nava, B.; Rodríguez-Zuluaga, J.; Alazo-Cuartas, K.; Kashcheyev, A.; Migoya-Orué, Y.; Radicella, S.; Amory-Mazaudier, C.; Fleury, R. Middle and low latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm. J. Geophys. Res. Space Phys. 2016, 121, 3421–3438. [Google Scholar] [CrossRef]
- Fagundes, P.R.; Cardoso, F.A.; Fejer, B.G.; Venkatesh, K.; Ribeiro, B.A.G.; Pillat, V.G. Positive and negative GPS-TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector. J. Geophys. Res. Space Phys. 2016, 121, 5613–5625. [Google Scholar] [CrossRef]
- Kikuchi, T.; Hashimoto, K.K.; Nozaki, K. Penetration of magnetospheric electric fields to the equator during a geomagnetic storm. J. Geophys. Res. 2008, 113, A06214. [Google Scholar] [CrossRef]
- Narayanan, V.L.; Gurubaran, S.; Emperumal, K.; Patil, P.T. A study on the night time equator-ward movement of ionization anomaly using thermospheric airglow imaging technique. J. Atmos. Sol.-Terr. Phys. 2013, 103, 113–120. [Google Scholar] [CrossRef]
- Kane, R.P. Storm effects of ionospheric total electron content (TEC) at low latitudes. J. Geomag. Geoelectr. 1981, 33, 399–409. [Google Scholar]
- Rishbeth, H.; Mendillo, M. Patterns of F2-layer variability. J. Atmos. Sol. Terr. Phys. 2001, 63, 1661–1680. [Google Scholar]
- de Abreu, A.J.; Fagundes, P.R.; Gende, M.; Bolaji, O.S.; de Jesus, R.; Brunini, C. Investigation of ionospheric response to two moderate geomagnetic storms using GPS–TEC measurements in the South American and African sectors during the ascending phase of Solar Cycle 24. Adv. Space Res. 2014, 53, 1313–1328. [Google Scholar] [CrossRef]
- Simi, K.G.; Manju, G.; Haridas, M.K.M.; Nayar, S.R.P.; Pant, T.K.; Alex, S. Ionospheric response to a geomagnetic storm during November 8–10, 2004. Earth Planets Space 2013, 65, 343–350. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Millward, G.H.; Richmond, A.D.; Codrescu, M.V. Storm-time changes in the upper atmosphere at low latitudes. J. Atmos. Sol.-Terr. Phys. 2002, 64, 1383–1391. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tilahun, A.M.; Uluma, E.; Ejigu, Y.G. Variation in Total Electron Content During a Severe Geomagnetic Storm, 23–24 April 2023. Atmosphere 2025, 16, 676. https://doi.org/10.3390/atmos16060676
Tilahun AM, Uluma E, Ejigu YG. Variation in Total Electron Content During a Severe Geomagnetic Storm, 23–24 April 2023. Atmosphere. 2025; 16(6):676. https://doi.org/10.3390/atmos16060676
Chicago/Turabian StyleTilahun, Atirsaw Muluye, Edward Uluma, and Yohannes Getachew Ejigu. 2025. "Variation in Total Electron Content During a Severe Geomagnetic Storm, 23–24 April 2023" Atmosphere 16, no. 6: 676. https://doi.org/10.3390/atmos16060676
APA StyleTilahun, A. M., Uluma, E., & Ejigu, Y. G. (2025). Variation in Total Electron Content During a Severe Geomagnetic Storm, 23–24 April 2023. Atmosphere, 16(6), 676. https://doi.org/10.3390/atmos16060676