Particulate-Bound Polycyclic Aromatic Hydrocarbons and Heavy Metals in Indoor Air Collected from Religious Places for Human Health Risk Assessment
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sampling of Particulate Matter
2.3. Quantitative Analysis of PAHs
2.4. Quantitative Analysis of Heavy Metals
2.5. Health Risk Assessment
2.5.1. Particulate Matter Health Assessment
2.5.2. PAHs Health Assessment
2.5.3. Heavy Metal Health Assessment
2.6. Quality Assurance and Control
2.7. Statistical Analysis
3. Results
3.1. Particle Mass Concentration
3.2. PAH Concentration
3.3. Heavy Metal Concentration
3.4. Particle Matter Health Assessment
3.5. PAH Health Assessment
3.6. Heavy Metal Health Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PAHs | Polycyclic aromatic hydrocarbons |
NAP | Naphthalene |
ACY | Acenaphthylene |
ACE | Acenaphthene |
FLU | Fluorene |
FLT | Fluoranthene |
ANT | Anthracene |
PHE | Phenanthrene |
BaA | Benzo[a]anthracene |
CHR | Chrysene |
PYR | Pyrene |
BbF | Benzo[b]fluoranthene |
BkF | Benzo[k]fluoranthene |
BaP | Benzo[a]pyrene |
B[ghi]P | Benzo[g,h,i]perylene |
IND | Indeno [1,2,3-c,d]pyrene |
DahA | Dibenzo[a,h]antracene |
LMW | Low molecular weight polycyclic aromatic hydrocarbons |
HMW | High molecular weight polycyclic aromatic hydrocarbons |
COMB | Polycyclic aromatic hydrocarbons from combustion |
Li | Lithium |
V | Vanadium |
Cr | Chromium |
Mn | Manganese |
Co | Cobalt |
Ni | Nickel |
Cu | Copper |
As | Arsenic |
Cd | Cadmium |
Pb | Lead |
ILCR | Incremental lifetime cancer risk |
HQ | Hazard quotient |
LADD | Lifetime average daily dose |
ADD | Average daily dose |
References
- Wierzbicka, A.; Bohgard, M.; Pagels, J.H.; Dahl, A.; Löndahl, J.; Hussein, T.; Swietlicki, E.; Gudmundsson, A. Quantification of differences between occupancy and total monitoring periods for better assessment of exposure to particles in indoor environments. Atmos. Environ. 2015, 105, 419–428. [Google Scholar] [CrossRef]
- Karimi, B.; Samadi, S. Mortality associated with fine particulate and its components: A systematic review and meta-analysis. Atmos. Pollut. Res. 2023, 14, 101648. [Google Scholar] [CrossRef]
- Zhisheng, L.; Qingmei, W.; Ruilin, Z. Sources, health effects and control strategies of indoor fine particulate matter (PM2.5): A review. Sci. Total Environ. 2017, 586, 610–622. [Google Scholar]
- Song, K.; Tang, R.; Li, A.; Wan, Z.; Zhang, Y.; Gong, Y.; Lv, D.; Lu, S.; Tan, Y.; Yan, S.; et al. Particulate organic emissions from incense-burning smoke: Chemical compositions and emission characteristics. Sci. Total Environ. 2023, 897, 165319. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Wan, B. Characteristics of emissions of air pollutants from burning of incense in a large environmental chamber. Atmos. Environ. 2004, 38, 941–951. [Google Scholar] [CrossRef]
- Cohen, R.; Sexton, K.G.; Yeatts, K.B. Hazard assessment of United Arab Emirates (UAE) incense smoke. Sci. Total Environ. 2013, 458–460, 176–186. [Google Scholar] [CrossRef]
- Bootdee, S.; Chantara, S.; Prapamontol, T. Determination of PM2.5 and polycyclic aromatic hydrocarbons from incense burning emission at shrine for health risk assessment. Atmos. Pollut. Res. 2016, 7, 680–689. [Google Scholar] [CrossRef]
- Navasumrit, P.; Arayasiri, M.; Hiang, O.M.; Leechawengwongs, M.; Promvijit, J.; Choonvisase, S.; Chantchaemsai, S.; Nakngam, N.; Mahidol, C.; Ruchirawat, M. Potential health effects of exposure to carcinogenic compounds in incense smoke in temple workers. Chem. Biol. Interact. 2008, 173, 19–31. [Google Scholar] [CrossRef]
- Fang, G.C.; Chang, C.N.; Chu, C.C.; Wu, Y.S.; Fu, P.P.C.; Chang, S.C.; Yang, I.L. Fine (PM2.5), coarse (PM2.5–10), and metallic elements of suspended particulates for incense burning at Tzu Yun Yen temple in central Taiwan. Chemosphere 2003, 51, 983–991. [Google Scholar] [CrossRef]
- Lin, T.C.; Yang, C.R.; Chang, F.H. Burning characteristics and emission products related to metallic content in incense. J. Hazard. Mater. 2007, 140, 165–172. [Google Scholar] [CrossRef]
- Yadav, V.K.; Malik, P.; Tirth, V.; Khan, S.H.; Yadav, K.K.; Islam, S.; Choudhary, N.; Inwati, G.K.; Arabi, A.; Kim, D.-H.; et al. Health and Environmental Risks of Incense Smoke: Mechanistic Insights and Cumulative Evidence. J. Inflamm. Res. 2022, 15, 2665–2693. [Google Scholar] [CrossRef] [PubMed]
- Buddhist Monastery Department Thailand. Number of Temples in Thailand, 2012–2021. Available online: https://www.onab.go.th/th/content/category/index/id/805 (accessed on 1 October 2023).
- Kanchanasuta, S.; Ingviya, T.; Dumavibhat, N.; Wongrathanandha, C.; Sansanayudh, N.; Chalongviriyalert, P.; Muntham, D.; Chusut, W.; Bunplod, N. Constructing an AQHI as a health risk communication tool for Bangkok, Thailand. Environ. Chall. 2024, 16, 26670100. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Li, P.-H.; Shou, Y.-P.; Li, T.; Yang, M.-M.; Wang, L.; Yue, J.-J.; Yi, X.-L.; Guo, L.-Q. Polycyclic Aromatic Hydrocarbons (PAHs) at High Mountain Site in North China: Concentration, Source and Health Risk Assessment. Aerosol Air Qual. Res. 2017, 17, 2867–2877. [Google Scholar] [CrossRef]
- Voutsa, D.; Anthemidis, A.; Giakisikli, G.; Samara, C.; Kouimtzis, T. Size Distribution of Total and Water-Soluble Fractions of Particle-Bound Elements—Assessment of Possible Risks via Inhalation. Environ. Sci. Pollut. Res. 2015, 22, 13412–13426. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, H.; Du, W.; Deng, J. Determination of Metal Elements in Workplace Air by ICP-MS. MATEC Web Conf. 2020, 319, 02005. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund: Volume III—Part A, Process for Conducting Probabilistic Risk Assessment. 2001. Available online: https://semspub.epa.gov/work/HQ/134487.pdf (accessed on 1 October 2024).
- Currie, L.A. Nomenclature in Evaluation of Analytical Methods Including Detection and Quantification Capabilities (IUPAC Recommendations 1995). Pure App Chem. 1995, 67, 1699–1723. [Google Scholar] [CrossRef]
- Chy, S.; Kanchana-at, T.; Trivitayanurak, W. Characterization of ultrafine particles and number size distribution of airborne particles in Buddhists religious spaces in Bangkok. In Proceedings of the International Conference on Sustainable Energy Green Technology, Bangkok, Thailand, 15–18 December 2024; p. 229. [Google Scholar]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River Basin: A Critical Appraisal of PAH Ratios as Indicators of PAH Source and Composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Hischenhuber, C.; Stijve, T. Determination of Benzo[a]pyrene in Roasted Coffee and Coffee Brews by HPLC with Fluorescence Detection. Dtsch. Lebensm. Rundsch. 1987, 83, 1–4. [Google Scholar]
- Wang, C.; Wu, S.; Zhou, S.; Shi, Y.; Song, J. Characteristics and Source Identification of Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Soils: A Review. Pedosphere 2017, 27, 17–26. [Google Scholar] [CrossRef]
- Pandey, P.K.; Patel, K.S.; Lenicek, J. Polycyclic Aromatic Hydrocarbons: Need for Assessment of Health Risks in India? Study of an Urban-Industrial Location in India. Environ. Monit. Assess. 1999, 59, 287–319. [Google Scholar] [CrossRef]
- Department of Health, Ministry of Public Health, Thailand. Announcement on Indoor Air Quality Surveillance Standards for Public Buildings B.E. 2565. 2022. Available online: https://laws.anamai.moph.go.th/th/practices/download/?did=211864&id=99012&reload= (accessed on 1 October 2023).
- World Health Organization. WHO Global Air Quality Guidelines. Available online: https://www.c40knowledgehub.org/s/article/WHO-Air-Quality-Guidelines?language=en_US (accessed on 1 October 2023).
- Wang, B.; Lee, S.C.; Ho, K.F.; Kang, Y.M. Characteristics of emissions of air pollutants from burning of incense in temples, Hong Kong. Sci. Total Environ. 2007, 377, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Nonthakanok, V. Inhalation Exposure to Particle-Bound Polycyclic Aromatic Hydrocarbons and Health Risk Assessment of Workers at Religion Place in Bangkok. Master’s Thesis, Chulalongkorn University, Bangkok, Thailand, 2013. [Google Scholar]
- Abdel-Shafy, H.I.; Mansour, M.S. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Saha, M.; Togo, A.; Mizukawa, K.; Murakami, M.; Takada, H.; Zakaria, M.P.; Chiem, N.H.; Tuyen, B.C.; Prudente, M.; Boonyatumanond, R.; et al. Sources of sedimentary PAHs in tropical Asian waters: Differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance. Mar. Pollut. Bull. 2009, 58, 189–200. [Google Scholar] [CrossRef]
- Siripanich, S.; Siriwong, W.; Keawrueang, P.; Borjan, M.; Robson, M. Incense and Joss Stick Making in Small Household Factories, Thailand. Int. J. Occup. Environ. Med. 2014, 5, 137–145. [Google Scholar]
- Chen, K.F.; Tsai, Y.P.; Lai, C.H.; Xiang, Y.K.; Chuang, K.Y.; Zhu, Z.H. Human health-risk assessment based on chronic exposure to the carbonyl compounds and metals emitted by burning incense at temples. Environ. Sci. Pollut. Res. Int. 2021, 28, 40640–40652. [Google Scholar] [CrossRef] [PubMed]
- Bu-Olayan, A.H.; Thomas, B.V. Exposition of respiratory ailments from trace metals concentrations in incenses. Sci. Rep. 2021, 11, 2045–2322. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Yang, Y.H.; Chao, M.R.; Hu, C.W. The exposure of temple workers to polycyclic aromatic hydrocarbons. Sci. Total Environ. 2008, 401, 44–50. [Google Scholar] [CrossRef]
- Dons, E.; Panis, L.I.; Poppel, M.V.; Theunis, J.; Wets, G. Personal exposure to Black Carbon in transport microenvironments. Atmos. Environ. 2012, 55, 392–398. [Google Scholar] [CrossRef]
- Cui, L.; Duo, B.; Zhang, F.; Li, C.; Fu, H.; Chen, J. Physiochemical characteristics of aerosol particles collected from the Jokhang Temple indoors and the implication to human exposure. Environ. Pollut. 2018, 236, 992–1003. [Google Scholar] [CrossRef]
- Liao, C.M.; Chiang, K.C. Probabilistic risk assessment for personal exposure to carcinogenic polycyclic aromatic hydrocarbons in Taiwanese temples. Chemosphere 2006, 63, 1610–1619. [Google Scholar] [CrossRef]
- Kolakkandi, V.; Sharma, B.; Rana, A.; Dey, S.; Rawat, P.; Sarkar, S. Spatially resolved distribution, sources and health risks of heavy metals in size-fractionated road dust from 57 sites across megacity Kolkata, India. Sci. Total Environ. 2020, 705, 135805. [Google Scholar] [CrossRef] [PubMed]
- Sainnokhoi, T.A.; Kováts, N.; Gelencsér, A.; Hubai, K.; Teke, G.; Pelden, B.; Tserenchimed, T.; Erdenechimeg, Z.; Galsuren, J. Characteristics of particle-bound polycyclic aromatic hydrocarbons (PAHs) in indoor PM2.5 of households in the Southwest part of Ulaanbaatar capital, Mongolia. Environ. Monit. Assess. 2022, 194, 1573–2959. [Google Scholar] [CrossRef] [PubMed]
PAHs | PAH Concentrations (µg/m3) | |||
---|---|---|---|---|
Site 1 a (n = 6) | Site 2 b (n = 6) | Site 3 c (n = 6) | Site 4 d (n = 6) | |
NAP | 19.03 ± 1.46 (17.50–20.42) | 60.04 ± 1.93 (58.83–62.27) | ND | ND |
FLU | 41.47 ± 3.14 (38.65–44.85) | 46.28 ± 3.41 (42.34–48.3) | 22.93 ± 8.08 (17.36–32.2) | 17.90 ± 4.62 (14.24–23.09) |
FLT | ND | 125.93 ± 34.61 (97.86–164.60) | ND | ND |
PHE | ND | 331.29 ± 46.98 (295.90–384.59) | ND | ND |
BaA | ND | 851.79 ± 188.49 (636.05–984.56) | ND | ND |
CHR | ND | 290.88 ± 49.06 (235.19–327.75) | ND | ND |
PYR | ND | 118.53 ± 36.40 (78.83–150.32) | ND | ND |
Total | 60.5 ± 4.60 | 1824.74 ± 360.88 | 22.93 ± 8.08 | 17.90 ± 4.62 |
Isomeric Ratios | Ratio Values of PAHs Within Site 2 | Reference Values | Sources | References |
---|---|---|---|---|
FLT/(FLT+PYR) | 0.52 | <0.40 | Petroleum input | [20] |
0.40–0.50 | Fossil fuel combustion | |||
>0.50 | Grass, wood, and coal combustion | |||
BaA/(BaA+CHR) | 0.75 | <0.20 | Petroleum | [21] |
0.20–0.35 | Petroleum or combustion | |||
>0.35 | Combustion | |||
ΣLMW/ΣHMW | 0.32 | <1 | Pyrogenic including incomplete combustion | [22] |
of fossil fuels or wood | ||||
>1 | Petrogenic sources including spilled oil or petroleum products | |||
ΣCOMB/ΣPAHs | 1.26 | 0.3 | Petrogenic | [23] |
0.7 | Pyrogenic |
Element | Metal Concentrations (µg/m3) | |||
---|---|---|---|---|
Site 1 a (n = 6) | Site 2 b (n = 6) | Site 3 c (n = 6) | Site 4 d (n = 6) | |
Li | 0.116 ± 0.016 (0.098–0.140) | 0.965 ± 0.212 (0.739–1.341) | 0.314 ± 0.053 (0.279–0.358) | 0.355 ± 0.033 (0.313–0.430) |
V | 0.407 ± 0.049 (0.353–0.474) | 0.382 ± 0.040 (0.355–0.460) | 0.247 ± 0.004 (0.243–0.253) | 0.412 ± 0.033 (0.375–0.465) |
Cr | 2.147 ± 0.112 (2.054–2.320) | ND | 0.382 ± 0.021 (0.345–0.403) | 1.928 ± 0.088 (1.756–2.005) |
Mn | 4.536 ± 0.270 (4.077–4.768) | 17.081 ± 0.696 (16.345–18.340) | 0.880 ± 0.080 (0.757–0.967) | 4.513 ± 0.295 (4.120–4.806) |
Co | 0.736 ± 0.085 (0.636–0.857) | ND | 0.316 ± 0.021 (0.295–0.337) | 0.258 ± 0.044 (0.194–0.295) |
Ni | 3.377 ± 0.196 (3.056–3.578) | 8.204 ± 0.280 (7.946–8.635) | 0.509 ± 0.159 (0.307–0.684) | 10.272 ± 1.672 (8.354–12.464) |
Cu | ND | 5.854 ± 1.263 (3.475–6.874) | 1.337 ± 0.248 (1.078–1.754) | 5.346 ± 1.164 (3.982–6.865) |
As | 0.366 ± 0.041 (0.300–0.398) | 0.717 ± 0.080 (0.578–0.799) | 0.161 ± 0.032 (0.108–0.190) | 0.289 ± 0.054 (0.206–0.367) |
Cd | 0.059 ± 0.016 (0.037–0.075) | 0.156 ± 0.038 (0.097–0.178) | ND | 0.273 ± 0.067 (0.195–0.356) |
Pb | 4.086 ± 0.235 (3.793–4.268) | 3.999 ± 0.572 (3.450–4.934) | 2.504 ± 0.494 (1.934–3.020) | 5.289 ± 0.971 (3.407–5.930) |
Total | 15.830 ± 1.019 | 37.358 ± 3.182 | 6.650 ± 1.093 | 28.935 ± 4.422 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanchana-at, T.; Trivitayanurak, W.; Chy, S.; Bordeerat, N.K. Particulate-Bound Polycyclic Aromatic Hydrocarbons and Heavy Metals in Indoor Air Collected from Religious Places for Human Health Risk Assessment. Atmosphere 2025, 16, 678. https://doi.org/10.3390/atmos16060678
Kanchana-at T, Trivitayanurak W, Chy S, Bordeerat NK. Particulate-Bound Polycyclic Aromatic Hydrocarbons and Heavy Metals in Indoor Air Collected from Religious Places for Human Health Risk Assessment. Atmosphere. 2025; 16(6):678. https://doi.org/10.3390/atmos16060678
Chicago/Turabian StyleKanchana-at, Thitisuda, Win Trivitayanurak, Sopannha Chy, and Narisa Kengtrong Bordeerat. 2025. "Particulate-Bound Polycyclic Aromatic Hydrocarbons and Heavy Metals in Indoor Air Collected from Religious Places for Human Health Risk Assessment" Atmosphere 16, no. 6: 678. https://doi.org/10.3390/atmos16060678
APA StyleKanchana-at, T., Trivitayanurak, W., Chy, S., & Bordeerat, N. K. (2025). Particulate-Bound Polycyclic Aromatic Hydrocarbons and Heavy Metals in Indoor Air Collected from Religious Places for Human Health Risk Assessment. Atmosphere, 16(6), 678. https://doi.org/10.3390/atmos16060678