Development and Evaluation of the Online Hybrid Model CAMx-LPiG
Abstract
1. Introduction
2. Materials and Methods
2.1. LPiG Description
- Greatly Reduced Execution and Simplified Dynamics (GREASD), which is a simplified NOx chemistry scheme developed for a computationally efficient treatment of early life plume chemistry, also including basic PM chemistry.
- Incremental Reactions for Organics and NOx (IRON), which is a more complete chemistry scheme for gas species but does not include PM chemistry.
2.1.1. LPiG Formulation
- The synpuff volume V is constant during the advection phase.
- The synpuff has the shape of a parallelepiped with sides Lx, Ly, Lz.
- The relative change in the plume spread along the puff’s minor axis matches the relative change in the length of the minor axis.
2.2. Case Study Definition
2.2.1. Modeling Set-Up
2.2.2. Meteorological and Emission Data
2.2.3. Connection of CAMx-LPiG with the Bottom-Up Modelling Chain
- Sum emission for public and private transport to one single file.
- Reduce the number of road links by merging consecutive road links that lie in straight lines and opposite direction lanes of the same carriageway (Figure 6). Road links were defined to be in a straight line if the angle between two consecutive links is less than 4.5°. We set a maximum length limit of 600 m for the newly merged roads.
- Sum emission for the merged links.
- Write the netCDF emission file for CAMx point sources for the merged links.
2.2.4. Model Evaluation Data
3. Results
3.1. Application of CAMx-LPiG
3.2. Model Evaluation
3.2.1. Daily Concentrations
3.2.2. Hourly Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- Mt = modelled concentration at time t (upper line indicates mean variable for all period)
- Ot = observed concentration at time t (upper line indicates mean variable for all period)
- N = number of cases.
Appendix B. LPiG Emission Timestep
- The initial age of the leading point of the puff is equal to the computational time step of the grid in which the puff is emitted and not to
- The puff is not divided into multiple puffs if the emission time exceeds the specific maximum timestep or if its dimension exceeds half of the finest grid cell.
- The puff evolution (chemistry, diffusion and advection) is not modified, the puff is free to evolve with the timestep of the grid where it is located.
Appendix C. GREASD Chemistry Modifications
Appendix D
- The sign of variable dstk (stack diameter in original CAMx point sources file) allows point/linear sources that are handled by the sub-grid schemes PiG/LPiG (dstk < 0) to be distinguished from point sources that are handled only at the grid level (dstk ≥ 0). The absolute value of the variable dstk in CAMx-LPiG represents the average width of the road segment, while in PiG it represents the stack diameter of the point source.
- The sign of variable hstk (stack height in the original CAMx point sources file) allows point sources (hstk ≥ 0) to be distinguished from linear sources (hstk < 0). In CAMx-LPiG, the emission height is not read from hstk but is replaced by the effective emission height, assumed equal to 2 m, as in ADMS-local, a gaussian model for urban air quality [36].
- In the original CAMx point source file, the xstk and ystk variables are the horizontal coordinates of the barycenter of the stack, whereas, variables tstk and vstk are the temperature and the exit velocity (in vertical direction) of the emission at the stack, respectively. For linear sources, xstk and ystk represent the horizontal coordinates of one vertex of the road segment (i.e., xA, yA), and tstk and vstk are used for the horizontal coordinates of the other vertex (i.e., xD, yD); the emission temperature is set to 373 K [59], and the vertical component of the emission velocity is set to 0.1 m/s.
PiG | LPiG | Notes | ||
---|---|---|---|---|
xstk | X coordinate | xa | X coordinate of the first street vertex. | |
ystk | Y coordinate | ya | Y coordinate of the first street vertex. | |
hstk | Stack height | LPiG_f | LPiG Flag. | If hstk < 0 the source is treated with LPiG. |
tstk | Temperature | xb | X coordinate of the second street vertex. | |
vstk | Exit velocity | Yb | Y coordinate of the second street vertex. | |
dstk | Stack diameter | Ws | Road width. | If dstk < 0 the source is treated with a sub-grid module (PiG/LPiG) |
References
- United Nations Department of Economic and Social Affairs Population Division. World Urbanization Prospects The 2018 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar]
- EEA. Air Quality in Europe—2020 Report; European Environment Agency: Copenhagen, Denmark, 2020; ISBN 1977-8449. [Google Scholar]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- EEA. Air Quality in Europe 2022. Report No. 05/2022; European Environmental Agency: Copenhagen, Denmark, 2022. [Google Scholar]
- Pepe, N.; Pirovano, G.; Balzarini, A.; Toppetti, A.; Riva, G.M.; Amato, F.; Lonati, G. Enhanced CAMx Source Apportionment Analysis at an Urban Receptor in Milan Based on Source Categories and Emission Regions. Atmos. Environ. X 2019, 2, 100020. [Google Scholar] [CrossRef]
- EC: Communication from the Commission. The European Green Deal; European Commission: Luxembourg, 2019. [Google Scholar]
- European Commission. Motorways; European Commission, Directorate General for Transport: Brussels, Belgium, 2018. [Google Scholar]
- Sokhi, R.S.; Moussiopoulos, N.; Baklanov, A.; Bartzis, J.; Coll, I.; Finardi, S.; Friedrich, R.; Geels, C.; Grönholm, T.; Halenka, T.; et al. Advances in Air Quality Research—Current and Emerging Challenges. Atmos. Chem. Phys. 2022, 22, 4615–4703. [Google Scholar] [CrossRef]
- Jensen, S.S.; Ketzel, M.; Becker, T.; Christensen, J.; Brandt, J.; Plejdrup, M.; Winther, M.; Nielsen, O.K.; Hertel, O.; Ellermann, T. High Resolution Multi-Scale Air Quality Modelling for All Streets in Denmark. Transp. Res. Part D Transp. Environ. 2017, 52, 322–339. [Google Scholar] [CrossRef]
- Kumar, A.; Patil, R.S.; Dikshit, A.K.; Kumar, R.; Brandt, J.; Hertel, O. Assessment of Impact of Unaccounted Emission on Ambient Concentration Using DEHM and AERMOD in Combination with WRF. Atmos. Environ. 2016, 142, 406–413. [Google Scholar] [CrossRef]
- Lefebvre, W.; Vercauteren, J.; Schrooten, L.; Janssen, S.; Degraeuwe, B.; Maenhaut, W.; de Vlieger, I.; Vankerkom, J.; Cosemans, G.; Mensink, C.; et al. Validation of the MIMOSA-AURORA-IFDM Model Chain for Policy Support: Modeling Concentrations of Elemental Carbon in Flanders. Atmos. Environ. 2011, 45, 6705–6713. [Google Scholar] [CrossRef]
- Oh, I.; Hwang, M.K.; Bang, J.H.; Yang, W.; Kim, S.; Lee, K.; Seo, S.C.; Lee, J.; Kim, Y. Comparison of Different Hybrid Modeling Methods to Estimate Intraurban NO2 Concentrations. Atmos. Environ. 2021, 244, 117907. [Google Scholar] [CrossRef]
- Fernandes, A.P.; Rafael, S.; Lopes, D.; Coelho, S.; Borrego, C.; Lopes, M. The Air Pollution Modelling System URBAIR: How to Use a Gaussian Model to Accomplish High Spatial and Temporal Resolutions. Air Qual. Atmos. Health 2021, 14, 1969–1988. [Google Scholar] [CrossRef]
- Hooyberghs, H.; De Craemer, S.; Lefebvre, W.; Vranckx, S.; Maiheu, B.; Trimpeneers, E.; Vanpoucke, C.; Janssen, S.; Meysman, F.J.R.; Fierens, F. Validation and Optimization of the ATMO-Street Air Quality Model Chain by Means of a Large-Scale Citizen-Science Dataset. Atmos. Environ. 2022, 272, 118946. [Google Scholar] [CrossRef]
- Fu, X.; Xiang, S.; Liu, Y.; Liu, J.; Yu, J.; Mauzerall, D.L.; Tao, S. High-Resolution Simulation of Local Traffic-Related NOx Dispersion and Distribution in a Complex Urban Terrain. Environ. Pollut. 2020, 263, 114390. [Google Scholar] [CrossRef]
- Degraeuwe, B.; Pisoni, E.; Christidis, P.; Christodoulou, A.; Thunis, P. SHERPA-City: A Web Application to Assess the Impact of Traffic Measures on NO2 Pollution in Cities. Environ. Model. Softw. 2021, 135, 104904. [Google Scholar] [CrossRef]
- Ferrari, F.; Maffeis, G.; Flemming, J.; Gianfreda, R. UTAQ, A TOOL TO MANAGE THE SEVERE AIR POLLUTION EPISODES. Environ. Eng. Manag. J. 2020, 19, 1915–1926. [Google Scholar] [CrossRef]
- Briant, R.; Seigneur, C. Multi-Scale Modeling of Roadway Air Quality Impacts: Development and Evaluation of a Plume-in-Grid Model. Atmos. Environ. 2013, 68, 162–173. [Google Scholar] [CrossRef]
- Kim, Y.; Wu, Y.; Seigneur, C.; Roustan, Y. Multi-Scale Modeling of Urban Air Pollution: Development and Application of a Street-in-Grid Model (v1.0) by Coupling MUNICH (v1.0) and Polair3D (v1.8.1). Geosci. Model Dev. 2018, 11, 611–629. [Google Scholar] [CrossRef]
- Kim, Y.; Lugon, L.; Maison, A.; Sarica, T.; Roustan, Y.; Valari, M.; Zhang, Y.; André, M.; Sartelet, K. MUNICH v2.0: A Street-Network Model Coupled with SSH-Aerosol (v1.2) for Multi-Pollutant Modelling. Geosci. Model Dev. 2022, 15, 7371–7396. [Google Scholar] [CrossRef]
- Wang, T.; Liu, H.; Li, J.; Wang, S.; Kim, Y.; Sun, Y.; Yang, W.; Du, H.; Wang, Z.; Wang, Z. A Two-Way Coupled Regional Urban–Street Network Air Quality Model System for Beijing, China. Geosci. Model Dev. 2023, 16, 5585–5599. [Google Scholar] [CrossRef]
- Karl, M.; Walker, S.-E.; Solberg, S.; Ramacher, M.O.P. The Eulerian Urban Dispersion Model EPISODE—Part~2: Extensions to the Source Dispersion and Photochemistry for EPISODE–CityChem v1.2 and Its Application to the City of Hamburg. Geosci. Model Dev. 2019, 12, 3357–3399. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, Y.-F.; Muñoz-Esparza, D.; Dai, J.; Li, C.W.Y.; Lichtig, P.; Tsang, R.C.-W.; Liu, C.-H.; Wang, T.; Brasseur, G.P. Coupled Mesoscale–Microscale Modeling of Air Quality in a Polluted City Using WRF-LES-Chem. Atmos. Chem. Phys. 2023, 23, 5905–5927. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J. A Description of the Advanced Research WRF Version 3; Technical Note NCAR/TN-475+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully Coupled “Online” Chemistry within the WRF Model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Piccoli, A.; Agresti, V.; Bedogni, M.; Lonati, G.; Pirovano, G. A Bottom-up Modelling Chain to Evaluate the Impact of Urban Road Transport Policies on Air Quality and Human Health. Urban Clim. 2024, 55, 101893. [Google Scholar] [CrossRef]
- Karamchandani, P.; Vijayaraghavan, K.; Yarwood, G. Sub-Grid Scale Plume Modeling. Atmosphere 2011, 2, 389–406. [Google Scholar] [CrossRef]
- Karamchandani, P.; Lohman, K.; Seigneur, C. Using a Sub-Grid Scale Modeling Approach to Simulate the Transport and Fate of Toxic Air Pollutants. Environ. Fluid Mech. 2009, 9, 59–71. [Google Scholar] [CrossRef]
- Emery, C.; Baker, K.; Wilson, G.; Yarwood, G. Comprehensive Air Quality Model with Extensions: Formulation and Evaluation for Ozone and Particulate Matter over the US. Atmosphere 2024, 15, 1158. [Google Scholar] [CrossRef]
- Lopes, D.; Ferreira, J.; Rafael, S.; Hoi, K.I.; Li, X.; Liu, Y.; Yuen, K.-V.; Mok, K.M.; Miranda, A.I. High-Resolution Multi-Scale Air Pollution System: Evaluation of Modelling Performance and Emission Control Strategies. J. Environ. Sci. 2024, 137, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Lopes, D.; Rafael, S.; Ferreira, J.; Relvas, H.; Almeida, S.M.; Faria, T.; Martins, V.; Diapouli, E.; Manousakas, M.; Vasilatou, V.; et al. Assessing the Levels of Regulated Metals in an Urban Area: A Modelling and Experimental Approach. Atmos. Environ. 2022, 290, 119366. [Google Scholar] [CrossRef]
- Ge, S.; Wang, S.; Xu, Q.; Ho, T. Source Apportionment Simulations of Ground-Level Ozone in Southeast Texas Employing OSAT/APCA in CAMx. Atmos. Environ. 2021, 253, 118370. [Google Scholar] [CrossRef]
- Giani, P.; Balzarini, A.; Pirovano, G.; Gilardoni, S.; Paglione, M.; Colombi, C.; Gianelle, V.L.; Belis, C.A.; Poluzzi, V.; Lonati, G. Influence of Semi- and Intermediate-Volatile Organic Compounds (S/IVOC) Parameterizations, Volatility Distributions and Aging Schemes on Organic Aerosol Modelling in Winter Conditions. Atmos. Environ. 2019, 213, 11–24. [Google Scholar] [CrossRef]
- Ramboll. CAMx User’s Guide Version 7.10; Ramboll Environ International Corporation: Novato, CA, USA, 2020. [Google Scholar]
- EPRI. SCICHEM Version 1.2: Technical Documentation; Final Report Prepared by ARAP/Titan Corporation, Princeton, NJ, for EPRI, Palo Alto, CA; EPRI: Palo Alto, CA, USA, 2000. [Google Scholar]
- Seaton, M.; O’Neill, J.; Bien, B.; Hood, C.; Jackson, M.; Jackson, R.; Johnson, K.; Oades, M.; Stidworthy, A.; Stocker, J.; et al. A Multi-Model Air Quality System for Health Research: Road Model Development and Evaluation. Environ. Model. Softw. 2022, 155, 105455. [Google Scholar] [CrossRef]
- Benavides, J.; Snyder, M.; Guevara, M.; Soret, A.; Pérez García-Pando, C.; Amato, F.; Querol, X.; Jorba, O. CALIOPE-Urban v1.0: Coupling R-LINE with a Mesoscale Air Quality Modelling System for Urban Air Quality Forecasts over Barcelona City (Spain). Geosci. Model Dev. 2019, 12, 2811–2835. [Google Scholar] [CrossRef]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, C.S.B.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S.; et al. The Integrated WRF/Urban Modelling System: Development, Evaluation, and Applications to Urban Environmental Problems. Int. J. Climatol. 2011, 31, 273–288. [Google Scholar] [CrossRef]
- Jia, H.; Kikumoto, H. Line Source Estimation of Environmental Pollutants Using Super-Gaussian Geometry Model and Bayesian Inference. Environ. Res. 2021, 194, 110706. [Google Scholar] [CrossRef]
- Zhang, L.; Gong, S.; Padro, J.; Barrie, L. A Size-Segregated Particle Dry Deposition Scheme for an Atmospheric Aerosol Module. Atmos. Environ. 2001, 35, 549–560. [Google Scholar] [CrossRef]
- Zhang, L.; Brook, J.R.; Vet, R. A Revised Parameterization for Gaseous Dry Deposition in Air-Quality Models. Atmos. Chem. Phys. 2003, 3, 2067–2082. [Google Scholar] [CrossRef]
- ISPRA. Italian Emission Inventory 1990–2018. Informative Inventory Report 2020; Istituto Superiore per la Protezione e la Ricerca Ambientale: Roma, Italy, 2020.
- ARPA Lombardia Inemar. Available online: https://www.inemar.eu/xwiki/bin/view/Inemar/HomeLombardia (accessed on 17 May 2023).
- UNC. SMOKE v3.5 User’s Manual; University of North Carolina at Chapel Hill: Chapel Hill, NC, USA, 2013. [Google Scholar]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of Global Terrestrial Isoprene Emissions Using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef]
- Gong, S.L. A Parameterization of Sea-Salt Aerosol Source Function for Sub- and Super-Micron Particles. Glob. Biogeochem. Cycles 2003, 17, 1097. [Google Scholar] [CrossRef]
- Rouil, L.; Honoré, C.; Vautard, R.; Beekman, M.; Bessagnet, B.; Malherbe, L.; Meleux, F.; Dufour, A.; Elichegaray, C.; Flaud, J.M.; et al. Prev’air: An Operational Forecasting and Mapping System for Air Quality in Europe. Bull. Am. Meteorol. Soc. 2009, 90, 73–84. [Google Scholar] [CrossRef]
- Guevara, M.; Tena, C.; Porquet, M.; Jorba, O.; Pérez García-Pando, C. HERMESv3, a Stand-Alone Multi-Scale Atmospheric Emission Modelling Framework-Part 2: The Bottom-up Module. Geosci. Model Dev. 2020, 13, 873–903. [Google Scholar] [CrossRef]
- EMEP/EEA. Air Pollutant Emission Inventory Guidebook 2016: Technical Guidance to Prepare National Emission Inventories; European Environment Agency: Copenhagen, Denmark, 2016; Volume 21/2016. [Google Scholar]
- Comune di Milano Portale Open Data|Comune Di Milano. Available online: https://dati.comune.milano.it/ (accessed on 17 May 2023).
- Yang, C.; Gidófalvi, G. Fast Map Matching, an Algorithm Integrating Hidden Markov Model with Precomputation. Int. J. Geogr. Inf. Sci. 2017, 32, 547–570. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. Openair—An R Package for Air Quality Data Analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Janssen, S.; Thunis, P. FAIRMODE Guidance Document on Modelling Quality Objectives and Benchmarking—Version 3.3; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Karner, A.A.; Eisinger, D.S.; Niemeier, D.A. Near-Roadway Air Quality: Synthesizing the Findings from Real-World Data. Environ. Sci. Technol. 2010, 44, 5334–5344. [Google Scholar] [CrossRef]
- Zhou, Y.; Levy, J.I. Factors Influencing the Spatial Extent of Mobile Source Air Pollution Impacts: A Meta-Analysis. BMC Public Health 2007, 7, 89. [Google Scholar] [CrossRef]
- Karamchandani, P.; Koo, A.; Seigneur, C. Reduced Gas-Phase Kinetic Mechanism for Atmospheric Plume Chemistry. Environ. Sci. Technol. 1998, 32, 1709–1720. [Google Scholar] [CrossRef]
- Berkowicz, R.; Hertel, O.; Larsen, S.E.; Sørensen, N.N.; Nielsen, M. Modelling Traffic Pollution in Streets; National Environmental Research Institute: Nagpur, India, 1997. [Google Scholar]
- Valencia, A.; Venkatram, A.; Heist, D.; Carruthers, D.; Arunachalam, S. Development and Evaluation of the R-LINE Model Algorithms to Account for Chemical Transformation in the near-Road Environment. Transp. Res. Part D Transp. Environ. 2018, 59, 464–477. [Google Scholar] [CrossRef] [PubMed]
- Venetsanos, A.G.; Vlachogiannis, D.; Papadopoulos, A.; Bartzis, J.G.; Andronopoulos, S. Studies on Pollutant Dispersion from Moving Vehicles. Water Air Soil Pollut. Focus 2002, 2, 325–337. [Google Scholar] [CrossRef]
Parameter | Scheme |
---|---|
Chemistry scheme | CB05 |
Aerosol treatment | CF |
Inorganic aerosol chemistry | ISORROPIA |
Organic aerosol chemistry | SOAP2.2 |
LPiG chemistry option | GREASD |
Dry deposition scheme | Zhang [40,41] |
Site | Site Code | Name | Type | X (°) | Y (°) | Z (m asl) | Distance from LPiG Source | Low Emission Zone |
---|---|---|---|---|---|---|---|---|
S1 | IT0477A | Viale Marche | Urban Traffic | 45.4963 | 9.1909 | 129 | 11 m | No |
S2 | IT0761A | Viale Liguria | Urban Traffic | 45.4438 | 9.1679 | 115 | 7 m | No |
S3 | IT1016A | Via Senato | Urban Traffic | 45.4705 | 9.1974 | 118 | 5 m | Yes |
Site | Data Coverage | Monthly Mean | MB | RMSE | NMB | COR | IOA | |
---|---|---|---|---|---|---|---|---|
Observed | Modelled | |||||||
% | ppb | ppb | ppb | ppb | % | - | - | |
S1 | 100 | 39.9 | 35.7 | −4.2 | 10.2 | −10.5 | 0.51 | 0.69 |
S2 | 74 | 37.7 | 34.7 | −2.7 | 12.3 | −8 | 0.30 | 0.53 |
S3 | 100 | 40.9 | 34.6 | −6.3 | 9.6 | −15.5 | 0.68 | 0.72 |
Site | Data Coverage | Hourly Mean | MB | RMSE | NMB | COR | IOA | |
---|---|---|---|---|---|---|---|---|
Observed | Modelled | |||||||
% | ppb | ppb | ppb | ppb | % | - | - | |
S1 | 100 | 39.9 | 35.7 | −4.2 | 18.6 | −10.5 | 0.32 | 0.54 |
S2 | 75 | 38.3 | 34.8 | −3.4 | 19.2 | −9 | 0.38 | 0.60 |
S3 | 100 | 40.9 | 34.6 | −6.3 | 15.7 | −15.5 | 0.5 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccoli, A.; Agresti, V.; Lonati, G.; Pirovano, G. Development and Evaluation of the Online Hybrid Model CAMx-LPiG. Atmosphere 2025, 16, 604. https://doi.org/10.3390/atmos16050604
Piccoli A, Agresti V, Lonati G, Pirovano G. Development and Evaluation of the Online Hybrid Model CAMx-LPiG. Atmosphere. 2025; 16(5):604. https://doi.org/10.3390/atmos16050604
Chicago/Turabian StylePiccoli, Andrea, Valentina Agresti, Giovanni Lonati, and Guido Pirovano. 2025. "Development and Evaluation of the Online Hybrid Model CAMx-LPiG" Atmosphere 16, no. 5: 604. https://doi.org/10.3390/atmos16050604
APA StylePiccoli, A., Agresti, V., Lonati, G., & Pirovano, G. (2025). Development and Evaluation of the Online Hybrid Model CAMx-LPiG. Atmosphere, 16(5), 604. https://doi.org/10.3390/atmos16050604