Spatial Mapping of Air Pollution Hotspots around Commercial Meat-Cooking Restaurants Using Bicycle-Based Mobile Monitoring
Abstract
:1. Introduction
2. Methods
2.1. Study Site and Period
2.2. Mobile Monitoring by Bicycle
2.3. Data Processing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Air Emission Inventory and Research Center (NAIR). 2021 National Air Pollutant Emissions Inventory; NAIR: Osong, Republic of Korea, 2023. Available online: https://www.air.go.kr (accessed on 20 July 2024).
- Hsu, W.-T.; Chen, J.-L.; Lung, S.-C.C.; Chen, Y.-C. PM2.5 exposure of various microenvironments in a community: Characteristics and applications. Environ. Pollut. 2020, 263, 114522. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-M.; Han, Y.-J.; Cho, S.-H.; Kim, H.-W. Characteristics of carbonaceous PM2.5 in a small residential city in Korea. Atmosphere 2018, 9, 490. [Google Scholar] [CrossRef]
- Wang, L.; Xiang, Z.; Stevanovic, S.; Ristovski, Z.; Salimi, F.; Gao, J.; Wang, H.; Li, L. Role of Chinese cooking emissions on ambient air quality and human health. Sci. Total Environ. 2017, 589, 173–181. [Google Scholar] [CrossRef]
- Park, S.-K.; Choi, S.-J.; Kim, J.-Y.; Lee, H.-J.; Jang, Y.-K.; Bong, C.-K.; Kim, J.-H.; Hwang, U.-H. A study on the development of particulate matters emission factors from biomass burning: Mainly commercial meat cooking. J. Korean Soc. Atmos. Environ. 2011, 27, 426–435, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Bandowe, B.A.M.; Lui, K.H.; Jones, T.; BéruBé, K.; Adams, R.; Niu, X.; Wei, C.; Cao, J.-J.; Lee, S.C.; Chuang, H.-C.; et al. The chemical composition and toxicological effects of fine particulate matter (PM2.5) emitted from different cooking styles. Environ. Pollut. 2021, 288, 117754. [Google Scholar] [CrossRef]
- Torkmahalleh, M.A.; Gorjinezhad, S.; Unluevcek, H.S.; Hopke, P.K. Review of factors impacting emission/concentration of cooking generated particulate matter. Sci. Total Environ. 2017, 586, 1046–1056. [Google Scholar] [CrossRef]
- Jeong, H.; Park, D. Contribution of time-activity pattern and microenvironment to black carbon (BC) inhalation exposure and potential internal dose among elementary school children. Atmos. Environ. 2017, 164, 270–279. [Google Scholar] [CrossRef]
- Seo, Y.-H.; Ku, M.-S.; Choi, J.-W.; Kim, K.-M.; Kim, S.-M.; Sul, K.-H.; Jo, H.-J.; Kim, K.-J.; Kim, K.-H. Characteristics of PM2.5 emission and distribution in a highly commercialized area in Seoul, Korea. J. Korean Soc. Atmos. Environ. 2015, 31, 97–104, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Westerdahl, D.; Fruin, S.; Sax, T.; Fine, P.M.; Sioutas, C. Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles. Atmos. Environ. 2005, 39, 3597–3610. [Google Scholar] [CrossRef]
- Hagler, G.S.W.; Thoma, E.D.; Baldauf, R.W. High-resolution mobile monitoring of carbon monoxide and ultrafine particle concentrations in a near-road environment. J. Air Waste Manag. Assoc. 2010, 60, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Rakowska, A.; Wong, K.C.; Townsend, T.; Chan, K.L.; Westerdahl, D.; Ng, S.; Mocnik, G.; Drinovec, L.; Ning, Z. Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon. Atmos. Environ. 2014, 98, 260–270. [Google Scholar] [CrossRef]
- Kim, K.H.; Woo, D.; Lee, S.-B.; Bae, G.-N. On-road measurements of ultrafine particles and associated air pollutants in a densely populated area of Seoul, Korea. Aerosol Air Qual. Res. 2015, 15, 142–153. [Google Scholar] [CrossRef]
- Van den Bossche, J.; Peters, J.; Verwaeren, J.; Botteldooren, D.; Theunis, J.; De Baets, B. Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset. Atmos. Environ. 2015, 105, 148–161. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Y.; Wang, Z.; Wang, L.; Chi, X.; Ding, A.; Yao, M.; Li, Y.; Li, Q.; Wu, M.; et al. Mobile monitoring of urban air quality at high spatial resolution by low-cost sensors: Impacts of COVID-19 pandemic lockdown. Atmos. Chem. Phys. 2021, 21, 7199–7215. [Google Scholar] [CrossRef]
- Kim, K.H.; Kwak, K.-H.; Lee, J.Y.; Woo, S.H.; Kim, J.B.; Lee, S.-B.; Ryu, S.H.; Kim, C.H.; Bae, G.-N.; Oh, I. Spatial mapping of a highly non-uniform distribution of particle-bound PAH in a densely populated urban area. Atmosphere 2020, 11, 496. [Google Scholar] [CrossRef]
- Elen, B.; Peters, J.; Van Poppel, M.; Bleux, N.; Theunis, J.; Reggente, M.; Standaert, A. The aeroflux: A bicycle for mobile air quality measurements. Sensors 2013, 13, 221–240. [Google Scholar] [CrossRef] [PubMed]
- MacNaughton, P.; Melly, S.; Vallarino, J.; Adamkiewicz, A.; Spengler, J.D. Impact of bicycle route type on exposure to traffic-related air pollution. Sci. Total Environ. 2014, 490, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Hankey, S.; Marshall, J.D. On-bicycle exposure to particulate air pollution: Particle number, black carbon, PM2.5, and particle size. Atmos. Environ. 2015, 122, 65–73. [Google Scholar] [CrossRef]
- Bertero, C.; Léon, J.-F.; Trédan, G.; Roy, M.; Argengaud, A. Urban-scale NO2 prediction with sensors aboard bicycles: A comparison of statistical methods using synthetic observations. Atmosphere 2020, 11, 1014. [Google Scholar] [CrossRef]
- Pattinson, W.; Longley, I.; Kingham, S. Using mobile monitoring to visualise diurnal variation of traffic pollutants across two near-highway neighbourhoods. Atmos. Environ. 2014, 94, 782–792. [Google Scholar] [CrossRef]
- Samad, A.; Vogt, U. Investigation of urban air quality by performing mobile measurements using a bicycle (MOBAIR). Urban Clim. 2020, 33, 100650. [Google Scholar] [CrossRef]
- Samad, A.; Vogt, U. Mobile air quality measurements using bicycle to obtain spatial distribution and high temporal resolution in and around the city center of Stuttgart. Atmos. Environ. 2021, 244, 117915. [Google Scholar] [CrossRef]
- Robinson, E.S.; Gu, P.; Ye, Q.; Li, H.Z.; Shah, R.U.; Apte, J.S.; Robinson, A.L.; Presto, A.A. Restaurant impacts on outdoor air quality: Elevated organic aerosol mass from restaurant cooking with neighborhood-scale plume extents. Environ. Sci. Technol. 2018, 52, 9285–9294. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-Y.; Park, S.-W.; Byun, J.-Y.; Han, Y.-J. Characteristics of locally occurring high PM2.5 concentration episodes in a small city in South Korea. Atmosphere 2021, 12, 86. [Google Scholar] [CrossRef]
- Park, S.-W.; Choi, S.-Y.; Byun, J.-Y.; Kim, H.; Kim, W.-J.; Kim, P.-R.; Han, Y.-J. Different characteristics of PM2.5 measured in downtown and suburban areas of a medium-sized city in South Korea. Atmosphere 2021, 12, 832. [Google Scholar] [CrossRef]
- Cao, C.; Yang, Y.; Lu, Y.; Schultze, N.; Gu, P.; Zhou, Q.; Xu, J.; Lee, X. Performance evaluation of a smart mobile air temperature and humidity sensor for characterizing intracity thermal environment. J. Atmos. Ocean. Technol. 2020, 37, 1891–1905. [Google Scholar] [CrossRef]
- Li, B.; Cao, R.; Wang, Z.; Song, R.-F.; Peng, Z.-R.; Xiu, G.; Fu, Q. Use of multi-rotor unmanned aerial vehicles for fine-grained roadside air pollution monitoring. J. Trans. Res. Board 2019, 2673, 169–180. [Google Scholar] [CrossRef]
- Liu, X.; Hadiatullah, H.; Zhang, X.; Hill, L.D.; White, A.H.A.; Schnelle-Kreis, J.; Bendl, J.; Jakobi, G.; Schloter-Hai, B.; Zimmermann, R. Analysis of mobile monitoring data from the microAeth® MA200 for measuring changes in black carbon on the roadside in Augsburg. Atmos. Meas. Tech. 2021, 14, 5139–5151. [Google Scholar] [CrossRef]
- Alas, H.D.C.; Müller, T.; Weinhold, K.; Pfeifer, S.; Glojek, K.; Gregoric, A.; Mocnik, G.; Drinovec, L.; Costabile, F.; Ristorini, M.; et al. Performance of micro aethalometers: Real-world field intercomparisons from multipile mobile measurement campaigns in different atmospheric environments. Aero. Air Qual. Res. 2020, 20, 2640–2653. [Google Scholar] [CrossRef]
- Park, Y.; Park, H.-S.; Han, S.; Hwang, K.; Lee, S.; Choi, J.-Y.; Lee, J.-B.; Lee, S.-H.; Kwak, K.-H.; Kim, J.-J.; et al. Intra-community scale variability of air quality in the center of a megacity in South Korea: A high-density cost-effective sensor network. Appl. Sci. 2021, 11, 9105. [Google Scholar] [CrossRef]
- Lung, S.-C.C.; Wang, W.-C.V.; Wen, T.-Y.J.; Liu, C.-H.; Hu, S.-C. A versatile low-cost sensing device for assessing PM2.5 spatiotemporal variation and quantifying source contribution. Sci. Total Environ. 2020, 716, 137145. [Google Scholar] [CrossRef]
- Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.H.; Hamburg, S.P. High-resolution air pollution mapping with Google street view cars: Exploiting big data. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef]
- Messier, K.P.; Chambliss, S.E.; Gani, S.; Alvarez, R.; Brauer, M.; Choi, J.J.; Hamburg, S.P.; Kerckhoffs, J.; LaFranchi, B.; Lunden, M.M.; et al. Mapping air pollution with Google street view cars: Efficient approaches with mobile monitoring and land use regression. Environ. Sci. Technol. 2018, 52, 12563–12572. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Kwak, K.-H. Assessing 3-D spatial extent of near-road air pollution around a signalized intersection using drone monitoring and WRF-CFD modeling. Int. J. Environ. Res. Public Health 2020, 17, 6915. [Google Scholar] [CrossRef]
- Park, S.-W.; Han, Y.-J.; Hong, J.-H.; Lee, T.-H. PM2.5-bound inorganic and nonpolar organic compounds in Chuncheon, Korea. Asian J. Atmos. Environ. 2022, 16, 2022111. [Google Scholar] [CrossRef]
- Kim, S.-C.; Lee, T.-J.; Jeon, J.-M.; Kim, D.-S.; Jo, Y.-M. Emission characteristics and control device effectiveness of particulate matters and particulate-phase PAHs from urban charbroiling restaurants: A field test. Aero. Air Qual. Res. 2020, 20, 2185–2195. [Google Scholar] [CrossRef]
- Yao, D.; Lyu, X.; Lu, H.; Zeng, L.; Liu, T.; Chan, C.K.; Guo, H. Characteristics, sources and evolution processes of atmospheric organic aerosols at a roadside site in Hong Kong. Atmos. Environ. 2021, 252, 118298. [Google Scholar] [CrossRef]
- Park, S.K.; Kim, D.K.; Hwang, U.H.; Lee, J.J.; Lee, J.B.; Bae, I.S.; Eo, S.-M.; Jung, K. Emission characteristics of air pollutants from meat charbroiling. J. Clim. Change Res. 2015, 6, 311–318, (In Korean with English Abstract). [Google Scholar] [CrossRef]
- Sim, S.; Jeong, S.; Park, H.; Park, C.; Kwak, K.-H.; Lee, S.-B.; Kim, C.H.; Lee, S.; Chang, J.; Kang, H.; et al. Co-benefit potential of urban CO2 and air quality monitoring: A study on the first mobile campaign and building monitoring experiments in Seoul during the winter. Atmos. Pollut. Res. 2020, 11, 1963–1970. [Google Scholar] [CrossRef]
- Kwak, K.-H.; Han, B.-S.; Park, K.; Moon, S.; Jin, H.-G.; Park, S.-B.; Baik, J.-J. Inter- and intra-city comparisons of PM2.5 concentration changes under COVID-19 social distancing in seven major cities of South Korea. Air Qual. Atmos. Health 2021, 14, 1155–1168. [Google Scholar] [CrossRef]
- Hwang, K.; Kim, J.; Lee, J.Y.; Park, J.-S.; Park, S.; Lee, G.; Kim, C.H.; Kim, P.; Shin, S.H.; Lee, K.Y.; et al. Physicochemical characteristics and seasonal variations of PM2.5 in urban, industrial, and suburban areas in South Korea. Asian J. Atmos. Environ. 2023, 17, 19. [Google Scholar] [CrossRef]
Variable | Model | Resolution | Flow Rate (L min−1) | Time Interval (s) |
---|---|---|---|---|
Air temperature/Relative humidity | Imet-XQ2 | 0.01 °C, 0.1% | - | 1 |
BC | MA200 | 0.001 μg m−3 | 0.15 | 5 |
PM2.5 | AM520 | 1 μg m−3 | 1.7 | 1 |
NO2 | Series500 | 0.001 ppm | - | 60 |
Location | RCV-3000 | - | - | 1 |
Area | BC (%) | PM2.5 (%) | NO2 (%) | |||
---|---|---|---|---|---|---|
Morning | Evening | Morning | Evening | Morning | Evening | |
Roadside | 57 | 57 | 4 | −2 | 9 | 23 |
Commercial A | 28 | 72 | 0 | 48 | 3 | 23 |
Commercial B | 26 | 88 | 0 | 64 | 3 | 23 |
Residential | 23 | 76 | −1 | 54 | 0 | 20 |
Stream A * | 12 | 26 | −1 | 17 | 0 | 11 |
Stream B ** | 10 | 34 | 0 | 27 | −3 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yong, G.-S.; Mun, G.-W.; Kwak, K.-H. Spatial Mapping of Air Pollution Hotspots around Commercial Meat-Cooking Restaurants Using Bicycle-Based Mobile Monitoring. Atmosphere 2024, 15, 991. https://doi.org/10.3390/atmos15080991
Yong G-S, Mun G-W, Kwak K-H. Spatial Mapping of Air Pollution Hotspots around Commercial Meat-Cooking Restaurants Using Bicycle-Based Mobile Monitoring. Atmosphere. 2024; 15(8):991. https://doi.org/10.3390/atmos15080991
Chicago/Turabian StyleYong, Gwang-Soon, Gun-Woo Mun, and Kyung-Hwan Kwak. 2024. "Spatial Mapping of Air Pollution Hotspots around Commercial Meat-Cooking Restaurants Using Bicycle-Based Mobile Monitoring" Atmosphere 15, no. 8: 991. https://doi.org/10.3390/atmos15080991
APA StyleYong, G. -S., Mun, G. -W., & Kwak, K. -H. (2024). Spatial Mapping of Air Pollution Hotspots around Commercial Meat-Cooking Restaurants Using Bicycle-Based Mobile Monitoring. Atmosphere, 15(8), 991. https://doi.org/10.3390/atmos15080991