Kinetics of Different Substituted Phenolic Compounds’ Aqueous OH Oxidation in Atmosphere
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Photochemical Reaction Experiments
2.3. Analysis Method and Kinetics
2.3.1. Determination of Phenols Concentration
2.3.2. Kinetic Experiments
2.4. Determination of •OH and 1O2 Concentrations
2.5. Determination of Oxidation Potentials via Cyclic Voltammetry
3. Result and Discussions
3.1. Rate Constants Between Phenolic Compounds with •OH
3.2. Factors Affecting the First-Order Rate Constant
3.3. Second-Order Rate and Structure–Activity Relationship
3.3.1. Second-Order Rate Constants of Substituted Phenols with OH
3.3.2. Relationship Between Second-Order Rate Constant and Selected Parameters
3.4. Qualitative and Quantitative Evaluations of ROS Role
3.4.1. Determination of [•OH]ss and [1O2]ss
3.4.2. Contribution of ROS to Phenolic Compounds Photodegradation
3.5. Estimation of the Lifespan of Phenols in the Atmosphere
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Wang, B.; Wang, T.T.; Zhang, D.; Song, X.S.; Yuan, M.H.; Lu, X.; Wang, W.J.; Yin, S.S.; Zhang, R.Q. Pollution characteristics, sources, and environmental impacts of VOCs in Zhengzhou city during summer based on photochemical loss. Environ. Sci. 2024, 45, 5157–5167. [Google Scholar]
- Zhang, X.; Zhang, N.; Wei, R.; Su, W.K.; He, J.L.; Song, K.L.; Zhang, M.M.; Zhao, J.W.; Meng, K.; Zhang, Y.P. Pollution characteristics, chemical reactivity, and source apportionment of VOCs in the high-tech zone of Shijiazhuang in autumn. Environ. Sci. 2024, 45, 7021–7030. [Google Scholar]
- Ma, L.; Guzman, C.; Niedek, C.; Tran, T.; Zhang, Q.; Anastasio, C. Kinetics and mass yields of aqueous secondary organic aerosol from highly substituted phenols reacting with a triplet excited state. Environ. Sci. Technol. 2021, 55, 5772–5781. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Worland, R.; Jiang, W.; Niedek, C.; Guzman, C.; Bein, K.J.; Zhang, Q.; Anastasio, C. Predicting photooxidant concentrations in aerosol liquid water based on laboratory extracts of ambient particles. Atmos. Chem. Phys. 2023, 23, 8805–8821. [Google Scholar] [CrossRef]
- McNeill, V.F. Aqueous organic chemistry in the atmosphere: Sources and chemical processing of organic aerosols. Environ. Sci. Technol. 2015, 49, 1237–1244. [Google Scholar] [CrossRef]
- Kaur, R.; Anastasio, C. Light absorption and the photoformation of hydroxyl radical and singlet oxygen in fog waters. Atmos. Environ. 2017, 164, 387–397. [Google Scholar] [CrossRef]
- Tao, Y.; Chen, Y.T.; Li, W.L.; Zhang, X.Y.; Ye, Z.L.; Gai, X.L. Liquid—Phase oxidation of dissolved organic matter (DOM) in aerosols. Environ. Sci. 2021, 42, 2659–2667. [Google Scholar]
- Ye, Z.L.; Hu, D.D.; Wang, Z.X.; Wang, H.; Ge, X. Aqueous photochemical aging of water-soluble smoke particles from crop straws burning. Atmos. Environ. 2025, 340, 120897. [Google Scholar] [CrossRef]
- Smith, J.D.; Kinney, H.; Anastasio, C. Phenolic carbonyls undergo rapid aqueous photodegradation to form low-volatility, light-absorbing products. Atmos. Environ. 2016, 126, 36–44. [Google Scholar] [CrossRef]
- Go, B.R.; Li, Y.J.; Huang, D.D.; Chan, C.K. Aqueous—Phase photoreactions of mixed aromatic carbonyl photosensitizers yield more oxygenated, oxidized, and less light-absorbing secondary organic aerosol (SOA) than single systems. Environ. Sci. Technol. 2024, 58, 7924–7936. [Google Scholar] [CrossRef]
- Cai, B.; Wang, Y.; Yang, X.; Li, Y.; Zhai, J.; Zeng, Y.; Ye, J.; Zhu, L.; Fu, T.-M.; Zhang, Q. Rapid aqueous-phase dark reaction of phenols with nitrosonium ions: Novel mechanism for atmospheric nitrosation and nitration at low pH. Proc. Natl. Acad. Sci. USA Nexus 2024, 3, 385. [Google Scholar] [CrossRef]
- Arakaki, T.; Anastasio, C.; Kuroki, Y.; Nakajima, H.; Okada, K.; Kotani, Y.; Handa, D.; Azechi, S.; Kimura, T.; Tsuhako, A.; et al. A General scavenging rate constant for reaction of hydroxyl radical with organic carbon in atmospheric waters. Environ. Sci. Technol. 2013, 47, 8196–8203. [Google Scholar] [CrossRef] [PubMed]
- Arciva, S.; Niedek, C.; Mavis, C.; Yoon, M.; Sanchez, M.E.; Zhang, Q.; Anastasio, C. Aqueous ·OH oxidation of highly substituted phenols as a source of secondary organic aerosol. Environ. Sci. Technol. 2022, 56, 9959–9967. [Google Scholar] [CrossRef]
- Yu, L.; Smith, J.; Laskin, A.; George, K.M.; Anastasio, C.; Laskin, J.; Dillner, A.M.; Zhang, Q. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: Competition among oligomerization, functionalization, and fragmentation. Atmos. Chem. Phys. 2016, 16, 4511–4527. [Google Scholar] [CrossRef]
- Kroflič, A.; Schaefer, T.; Huš, M.; Le, H.P.; Otto, T.; Herrmann, H. OH radicals reactivity towards phenol-related pollutants in water: Temperature dependence of the rate constants and novel insights into the [OH–phenol] adduct formation. Phys. Chem. Chem. Phys. 2019, 22, 1324–1332. [Google Scholar] [CrossRef]
- Błaziak, A.; Schaefer, T.; Rudziński, K.; Herrmann, H. Photo-oxidation of α-pinene oxidation products in atmospheric waters—pH- and temperature-dependent kinetic studies. J. Phys. Chem. A 2024, 128, 4507–4516. [Google Scholar] [CrossRef]
- Hoffmann, E.H.; Tilgner, A.; Wolke, R.; Böge, O.; Walter, A.; Herrmann, H. Oxidation of substituted aromatic hydrocarbons in the tropospheric aqueous phase: Kinetic mechanism development and modelling. Phys. Chem. Chem. Phys. 2018, 20, 10960–10977. [Google Scholar] [CrossRef] [PubMed]
- Hems, R.F.; Abbatt, J.P.D. Aqueous phase photo—Oxidation of brown carbon nitrophenols: Reaction kinetics, mechanism, and evolution of light absorption. ACS Earth Space Chem. 2018, 2, 225–234. [Google Scholar] [CrossRef]
- Tomaz, S.; Cui, T.; Chen, Y.; Sexton, K.G.; Roberts, J.M.; Warneke, C.; Yokelson, R.J.; Surratt, J.D.; Turpin, B.J. Photochemical cloud processing of primary wildfire emissions as a potential source of secondary organic aerosol. Environ. Sci. Technol. 2018, 52, 11027–11037. [Google Scholar] [CrossRef]
- Chen, Y.; Li, N.; Li, X.; Tao, Y.; Luo, S.; Zhao, Z.; Ma, S.; Huang, H.; Chen, Y.; Ye, Z.; et al. Secondary organic aerosol formation from 3C⁎-initiated oxidation of 4-ethylguaiacol in atmospheric aqueous-phase. Sci. Total. Environ. 2020, 723, 137953. [Google Scholar] [CrossRef]
- Li, X.D.; Tao, Y.; Zhu, L.; Ma, S.; Luo, S.; Zhao, Z.; Sun, N.; Ge, X.; Ye, Z. Optical and chemical properties and oxidative potential of aqueous-phase products from OH and 3C∗-initiated photooxidation of eugenol. Atmos. Chem. Phys. 2022, 22, 7793–7814. [Google Scholar] [CrossRef]
- He, L.H.; Schaefer, T.; Otto, T.; Kroflič, A.; Herrmann, H. Kinetic and theoretical study of the atmospheric aqueous-phase reactions of OH radicals with methoxyphenolic compounds. J. Phys. Chem. A 2019, 123, 7828–7838. [Google Scholar] [CrossRef]
- Li, F.H.; Zhou, S.Z.; Du, L.; Zhao, J.; Hang, J.; Wang, X. Aqueous—Phase chemistry of atmospheric phenolic compounds: A critical review of laboratory studies. Sci. Total Environ. 2023, 856, 158895. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Tsona, N.T.; Li, J.; Du, L. Aqueous-phase oxidation of syringic acid emitted from biomass burning: Formation of light-absorbing compounds. Sci. Total. Environ. 2021, 765, 144239. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Yu, Y.F.; Lei, X.; Liang, X.; Cheng, S.; Ouyang, G.; Yang, X. Assessing the Use of probes and quenchers for understanding the reactive species in advanced oxidation processes. Environ. Sci. Technol. 2023, 57, 5433–5444. [Google Scholar] [CrossRef] [PubMed]
- Tratnyek, P.G.; Hoigne, J. Oxidation of substituted phenols in the environment: A QSAR analysis of rate constants for reaction with singlet oxygen. Environ. Sci. Technol. 1991, 25, 1596–1604. [Google Scholar] [CrossRef]
- Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. The environmental implications of hydroxyl radical (OH). Chem. Rev. 2015, 115, 13051–13092. [Google Scholar] [CrossRef]
- Anastasio, C.; Faust, B.C.; Rao, C.J. Aromatic Carbonyl Compounds as Aqueous-phase photochemical sources of hydrogen peroxide in acidic sulfate aerosols, fogs, and clouds. 1. non-Phenolic Methoxybenzaldehydes and Methoxyacetophenones with Reductants (Phenols). Environ. Sci. Technol. 1997, 31, 218–232. [Google Scholar] [CrossRef]
- Xie, Y.X.; Deng, Q.X.; He, B.W.; Liu, S.; He, J.; Wang, Y.; Li, X.; Yu, Z.; Pang, H.; Gligorovski, S. Acidity of atmospheric waters induces enhanced H2O2 production through photosensitized chemistry of phenolic substances. ACS Earth Space Chem. 2025, 9, 169–177. [Google Scholar] [CrossRef]
- Deguillaume, L.; Leriche, M.; Desboeufs, K.; Mailhot, G.; George, C.; Chaumerliac, N. Transition metals in atmospheric liquid phases: Sources, reactivity, and sensitive parameters. Chem. Rev. 2005, 105, 3388–3431. [Google Scholar] [CrossRef]
- Wang, J.L.; Wang, S.Z. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chem. Eng. J. 2020, 401, 126158. [Google Scholar] [CrossRef]
- Herrmann, H.; Hoffmann, D.; Schaefer, T.; Bräuer, P.; Tilgner, A. Tropospheric Aqueous-phase free-radical chemistry: Radical Sources, Spectra, Reaction Kinetics and Prediction Tools. ChemPhysChem 2010, 11, 3796–3822. [Google Scholar] [CrossRef]
- Sandhiya, L.; Kolandaivel, P.; Senthilkumar, K. Mechanism and kinetics of the atmospheric oxidative degradation of dimethylphenol isomers initiated by OH radical. J. Phys. Chem. A 2013, 117, 4611–4626. [Google Scholar] [CrossRef] [PubMed]
- Hansch, C.; Leo, A.; Taft, R.W. A Survey of hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165–195. [Google Scholar] [CrossRef]
- Takahata, Y.; Chong, D. Estimation of Hammett sigma constants of substituted benzenes through accurate density-functional calculation of core-electron binding energy shifts. Int. J. Quantum Chem. 2005, 103, 509–515. [Google Scholar] [CrossRef]
- Bernhardt, P.C.; Dabbs, J.M., Jr.; Fielden, J.A.; Lutter, C.D. Testosterone changes during vicarious experiences of winning and losing among fans at sporting events. Physiol. Behav. 1998, 65, 59–62. [Google Scholar] [CrossRef]
- Anastasio, C.; McGregor, K.G. Chemistry of fog waters in California’s Central Valley: 1. In situ photoformation of hydroxyl radical and singlet molecular oxygen. Atmos. Environ. 2001, 35, 1079–1089. [Google Scholar] [CrossRef]
- Leresche, F.; Salazar, J.R.; Pfotenhauer, D.J.; Hannigan, M.P.; Majestic, B.J.; Rosario-Ortiz, F.L. Photochemical aging of atmospheric particulate matter in the aqueous phase. Environ. Sci. Technol. 2021, 55, 13152–13163. [Google Scholar] [CrossRef]
- Ma, L.; Worland, R.; Tran, T.; Anastasio, C. Evaluation of probes to measure oxidizing organic triplet excited states in aerosol liquid water. Environ. Sci. Technol. 2023, 57, 6052–6062. [Google Scholar] [CrossRef]
- Kaur, R.; Anastasio, C. First measurements of organic triplet excited states in atmospheric waters. Environ. Sci. Technol. 2018, 52, 5218–5226. [Google Scholar] [CrossRef]
Name | Abbreviation | Formula | kPhCs, OH (×109 L mol−1 s−1) | kPhCs, OH from Ref. (×109 L mol−1 s−1) | ||
---|---|---|---|---|---|---|
pH 2 | pH 5 | pH 2 | pH 5 | |||
4-ethylphenol | 4EP | 6.42 ± 1.07 | 44.52 ± 14.84 | |||
4-ethylguaiacol | 4EG | 5.43 ± 0.9 | 40.45 ± 13.48 | |||
2,6-dimethoxy-4-Methyl-Phenol | DMP | 13.89 ± 2.31 | 60.34 ± 20.11 | |||
syringol | SYR | 9.10 ± 1.52 | 20.53 ± 6.84 | 15 ± 7 (293 K) [9] | 20 ± 4 (293 K) [9] | |
catechol | CAT | 3.35 ± 0.56 | 12.07 ± 4.02 | 2.5 ± 0.3 (293 K) [9] | 6.9 ± 2.4 (293 K) [9] | |
3-methylcatechol | 3MC | 4.87 ± 0.81 | 13.40 ± 4.47 | |||
4-nitrocatechol | 4NC | 2.45 ± 0.41 | 17.43 ± 5.81 | |||
syringic acid | SA | 6.53 ± 1.09 | 27.84 ± 9.28 | 9.9 ± 4.4 (293 K) [13] | ||
guaiacyl acetone | GA | 12.38 ± 2.06 | 57.65 ± 19.22 | 8.8 ± 4.2 (293 K) [13] | 15 ± 5 (293 K) [13] | |
acetosyringone | AS | 7.92 ± 1.32 | 45.75 ± 15.25 |
pH 2 | pH 5 | |||||||
---|---|---|---|---|---|---|---|---|
ΔG°ox (kJ/mol, V) | Eox (V vs. SHE) | E0 (V vs. SHE) | E0* (V vs. SHE) | ΔG°ox (kJ/mol, V) | Eox (V vs. SHE) | E0 (V vs. SHE) | E0* (V vs. SHE) | |
4EP | −82.01 | 0.85 | −0.41 | 0.44 | −27.02 | 0.28 | 0.48 | 0.76 |
4EG | −90.70 | 0.94 | −0.44 | 0.5 | −34.73 | 0.36 | 0.19 | 0.55 |
DMP | −80.08 | 0.83 | −0.36 | 0.47 | −27.98 | 0.29 | 0.14 | 0.43 |
SYR | −88.77 | 0.92 | −0.4 | 0.52 | −54.03 | 0.56 | −0.05 | 0.51 |
CAT | −94.56 | 0.98 | −0.46 | 0.52 | −81.05 | 0.84 | −0.48 | 0.36 |
3MC | −86.84 | 0.9 | −0.43 | 0.47 | −16.40 | 0.17 | 0.16 | 0.33 |
4NC | −113.85 | 1.18 | −0.5 | 0.68 | −107.10 | 1.11 | −0.58 | 0.53 |
SA | −88.77 | 0.92 | −0.41 | 0.51 | −64.65 | 0.67 | −0.07 | 0.6 |
GA | −97.45 | 1.01 | −0.42 | 0.59 | −39.56 | 0.41 | 0.34 | 0.75 |
AS | −92.63 | 0.96 | −0.41 | 0.55 | −29.91 | 0.31 | 0.33 | 0.64 |
Substituted Phenols | pH | Reference Compounds | ||
---|---|---|---|---|
Phenol | Catechol | Guaiacol | ||
3MC | pH 2 | (4.87 ± 0.81) × 109 | (7.53 ± 0.18) × 109 | (9.78 ± 0.95) × 109 |
pH 5 | (1.34 ± 0.45) × 1010 | (2.89 ± 1.01) × 1010 | (2.44 ± 0.76) × 1010 | |
4NC | pH 2 | (2.45 ± 0.41) × 109 | (3.08 ± 0.37) × 109 | (5.32 ± 2.42) × 109 |
pH 5 | (1.74 ± 0.58) × 1010 | (1.15 ± 0.40) × 1010 | (1.44 ± 0.45) × 1010 |
Urban | Remote | Marine | |||||
---|---|---|---|---|---|---|---|
Medium | Cloud Droplets | Wet Aerosols | Cloud Droplets | Wet Aerosols | Cloud Droplets | Wet Aerosols | |
[OH]ss/mol L−1 | 3.5 × 10−15 | 4.4 × 10−13 | 2.2 × 10−14 | 3.0 × 10−12 | 2.0 × 10−12 | 1.0 × 10−13 | |
τ/h | pH 2 | 5.7~32.4 | 0.045~0.258 | 0.9~5.2 | 0.007~0.038 | 0.010~0.845 | 0.2~1.1 |
pH 5 | 1.3~6.6 | 0.105~0.052 | 0.21~1.05 | 0.002~0.008 | 0.002~0.012 | 0.046~0.230 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, D.; Wang, Z.; Aruffo, E.; Dai, X.; Zhao, Z.; Ye, Z. Kinetics of Different Substituted Phenolic Compounds’ Aqueous OH Oxidation in Atmosphere. Atmosphere 2025, 16, 567. https://doi.org/10.3390/atmos16050567
Hu D, Wang Z, Aruffo E, Dai X, Zhao Z, Ye Z. Kinetics of Different Substituted Phenolic Compounds’ Aqueous OH Oxidation in Atmosphere. Atmosphere. 2025; 16(5):567. https://doi.org/10.3390/atmos16050567
Chicago/Turabian StyleHu, Dandan, Zixuan Wang, Eleonora Aruffo, Xuanli Dai, Zhuzi Zhao, and Zhaolian Ye. 2025. "Kinetics of Different Substituted Phenolic Compounds’ Aqueous OH Oxidation in Atmosphere" Atmosphere 16, no. 5: 567. https://doi.org/10.3390/atmos16050567
APA StyleHu, D., Wang, Z., Aruffo, E., Dai, X., Zhao, Z., & Ye, Z. (2025). Kinetics of Different Substituted Phenolic Compounds’ Aqueous OH Oxidation in Atmosphere. Atmosphere, 16(5), 567. https://doi.org/10.3390/atmos16050567