The Impact of Stratospheric Intrusion on Surface Ozone in Urban Areas of the Northeastern Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observational and Reanalysis Data
2.2. Identification of Stratospheric Intrusion to Surface (SITS) Events
- 1.
- Event start
- 2.
- Event validation
- (1)
- At SITS start hour, the O3 concentration should exceed the seasonal noontime average (O3noon-season) when photochemical reactions are relatively active.
- (2)
- Throughout the SITS duration, CO levels must remain below their seasonal mean (CO-season).
- 3.
- Event termination
2.3. Quantification of SITS Contributions to Surface Ozone
- Calculate seasonal hourly mean surface O3 concentration
- 2.
- Quantify stratospheric O3 intrusion during SITS events
- 3.
- Determine the contribution ratio ()
3. Results and Discussion
3.1. Characteristics of Surface Ozone in Xining
3.2. Characteristics and Contribution Assessment of SITS Events
3.3. Stratospheric Intrusion Mechanisms in Ozone Pollution Formation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avnery, S.; Mauzerall, D.L.; Liu, J.F.; Horowitz, L.W. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmos. Environ. 2011, 45, 2284–2296. [Google Scholar] [CrossRef]
- Sicard, P.; Anav, A.; De Marco, A.; Paoletti, E. Projected global ground-level ozone impacts on vegetation under different emission and climate scenarios. Atmos. Chem. Phys. 2017, 17, 12177–12196. [Google Scholar] [CrossRef]
- Bell, M.L.; Goldberg, R.; Hogrefe, C.; Kinney, P.L.; Knowlton, K.; Lynn, B.; Rosenthal, J.; Rosenzweig, C.; Patz, J.A. Climate change, ambient ozone, and health in 50 US cities. Clim. Change 2007, 82, 61–76. [Google Scholar] [CrossRef]
- Donzelli, G.; Suarez-Varela, M.M. Tropospheric Ozone: A Critical Review of the Literature on Emissions, Exposure, and Health Effects. Atmosphere 2024, 15, 779. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, J.; Wang, J.; Kang, M.; Zhao, H. Quantifying the Impact of Surface Ozone on Human Health and Crop Yields in China. Atmosphere 2025, 16, 162. [Google Scholar] [CrossRef]
- Gong, C.; Liao, H.; Yue, X.; Ma, Y.; Lei, Y. Impacts of Ozone-Vegetation Interactions on Ozone Pollution Episodes in North China and the Yangtze River Delta. Geophys. Res. Lett. 2021, 48, e2021GL093814. [Google Scholar] [CrossRef]
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef]
- Utembe, S.; Rayner, P.; Silver, J.; Guérette, E.-A.; Fisher, J.; Emmerson, K.; Cope, M.; Paton-Walsh, C.; Griffiths, A.; Duc, H. Hot Summers: Effect of Extreme Temperatures on Ozone in Sydney, Australia. Atmosphere 2018, 9, 466. [Google Scholar] [CrossRef]
- Fix, M.J.; Cooley, D.; Hodzic, A.; Gilleland, E.; Russell, B.T.; Porter, W.C.; Pfister, G.G. Observed and predicted sensitivities of extreme surface ozone to meteorological drivers in three US cities. Atmos. Environ. 2018, 176, 292–300. [Google Scholar] [CrossRef]
- Jeong, J.I.; Park, R.J. Effects of the meteorological variability on regional air quality in East Asia. Atmos. Environ. 2013, 69, 46–55. [Google Scholar] [CrossRef]
- Kou, W.; Gao, Y.; Zhang, S.; Cai, W.; Geng, G.; Davis, S.J.; Wang, H.; Guo, X.; Cheng, W.; Zeng, X.; et al. High downward surface solar radiation conducive to ozone pollution more frequent under global warming. Sci. Bull. 2023, 68, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Peralta, A.H.D.; Gavidia-Calderon, M.; Andrade, M.D.F. Future Ozone Levels Responses to Changes in Meteorological Conditions under RCP 4.5 and RCP 8.5 Scenarios over Sao Paulo, Brazil. Atmosphere 2023, 14, 626. [Google Scholar] [CrossRef]
- Gong, C.; Lei, Y.; Ma, Y.; Yue, X.; Liao, H. Ozone–vegetation feedback through dry deposition and isoprene emissions in a global chemistry–carbon–climate model. Atmos. Chem. Phys. 2020, 20, 3841–3857. [Google Scholar] [CrossRef]
- Kavassalis, S.C.; Murphy, J.G. Understanding ozone-meteorology correlations: A role for dry deposition. Geophys. Res. Lett. 2017, 44, 2922–2931. [Google Scholar] [CrossRef]
- Wang, L.; Li, M.; Wang, Q.; Li, Y.; Xin, J.; Tang, X.; Du, W.; Song, T.; Li, T.; Sun, Y.; et al. Air stagnation in China: Spatiotemporal variability and differing impact on PM2.5 and O3 during 2013–2018. Sci. Total Environ. 2022, 819, 152778. [Google Scholar] [CrossRef]
- Zhou, D.; Ding, A.; Mao, H.; Fu, C.; Wang, T.; Chan, L.Y.; Ding, K.; Zhang, Y.; Liu, J.; Lu, A.; et al. Impacts of the East Asian monsoon on lower tropospheric ozone over coastal South China. Environ. Res. Lett. 2013, 8, 044011. [Google Scholar] [CrossRef]
- Liao, Z.; Gao, M.; Sun, J.; Fan, S. The impact of synoptic circulation on air quality and pollution-related human health in the Yangtze River Delta region. Sci. Total Environ. 2017, 607–608, 838–846. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, L.; Zhang, X.; Luo, Y.; Sun, L. A Case Study on the Impact of East Asian Summer Monsoon on Surface O3 in China. Atmosphere 2023, 14, 768. [Google Scholar] [CrossRef]
- Ni, R.; Lin, J.; Yan, Y.; Lin, W. Foreign and domestic contributions to springtime ozone over China. Atmos. Chem. Phys. 2018, 18, 11447–11469. [Google Scholar] [CrossRef]
- Lin, M.; Fiore, A.M.; Cooper, O.R.; Horowitz, L.W.; Langford, A.O.; Levy, H.; Johnson, B.J.; Naik, V.; Oltmans, S.J.; Senff, C.J. Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions. J. Geophys. Res. Atmos. 2012, 117, D00V22. [Google Scholar] [CrossRef]
- Li, D.; Vogel, B.; Müller, R.; Bian, J.; Günther, G.; Li, Q.; Zhang, J.; Bai, Z.; Vömel, H.; Riese, M. High tropospheric ozone in Lhasa within the Asian summer monsoon anticyclone in 2013: Influence of convective transport and stratospheric intrusions. Atmos. Chem. Phys. 2018, 18, 17979–17994. [Google Scholar] [CrossRef]
- Chou, Y.; Huang, Q.; Zhang, Y.; Luo, J.; Wang, M.; Liao, H.; Zhang, Y.; Bai, Z. Impacts of deep boundary layer on near-surface ozone concentration over the Tibetan Plateau. Atmos. Environ. 2023, 294, 119532. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, T.; Ning, G.; Xu, X.; Chen, Z.; Jia, M.; Sun, X.; Shu, Z.; Lu, Z.; Liu, J.; et al. A Unique Mechanism of Ozone Surges Jointly Triggered by Deep Stratospheric Intrusions and the Tibetan Plateau Topographic Forcing. Geophys. Res. Lett. 2025, 52, e2024GL114207. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Shen, L.; Lu, X.; De Smedt, I.; Liao, H. Increases in surface ozone pollution in China from 2013 to 2019: Anthropogenic and meteorological influences. Atmos. Chem. Phys. 2020, 20, 11423–11433. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, W.; Wang, S.; Song, T.; Gong, Z.; Ji, D.; Wang, L.; Liu, Z.; Tang, G.; Huo, Y.; et al. Contrasting trends of PM2.5 and surface ozone concentrations in China from 2013 to 2017. Natl. Sci. Rev. 2020, 7, 1331–1339. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Xing, Y. Long-Term Change Analysis of PM2.5 and Ozone Pollution in China’s Most Polluted Region during 2015–2020. Atmosphere 2022, 13, 104. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Vazquez Santiago, J.; Hata, H.; Martinez-Noriega, E.J.; Inoue, K. Ozone trends and their sensitivity in global megacities under the warming climate. Nat. Commun. 2024, 15, 10236. [Google Scholar] [CrossRef]
- Stevenson, D.S.; Dentener, F.J.; Schultz, M.G.; Ellingsen, K.; van Noije, T.P.C.; Wild, O.; Zeng, G.; Amann, M.; Atherton, C.S.; Bell, N.; et al. Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J. Geophys. Res. Atmos. 2006, 111, 301. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Yang, W.; Du, H.; Tang, X.; Ye, Q.; Wang, Z.; Sun, Y.; Pan, X.; Zhu, L.; et al. Influences of stratospheric intrusions to high summer surface ozone over a heavily industrialized region in northern China. Environ. Res. Lett. 2022, 17, 094023. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, J.; Qie, X.; Cheng, X.; Shen, Y.; Yang, M.; Jiang, R.; Liu, X. Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection. Atmos. Chem. Phys. 2022, 22, 8221–8240. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, X.; Bian, J.; Zhang, J.; Bai, Z. Vertical distribution of summer tropospheric ozone over the northern Tibetan Plateau. Acta Meteorol. Sin. 2022, 80, 806–818. [Google Scholar] [CrossRef]
- Tobo, Y.; Iwasaka, Y.; Zhang, D.; Shi, G.; Kim, Y.S.; Tamura, K.; Ohashi, T. Summertime “ozone valley” over the Tibetan Plateau derived from ozonesondes and EP/TOMS data. Geophys. Res. Lett. 2008, 35, L16801. [Google Scholar] [CrossRef]
- Yin, X.; Kang, S.; de Foy, B.; Cong, Z.; Luo, J.; Zhang, L.; Ma, Y.; Zhang, G.; Rupakheti, D.; Zhang, Q. Surface ozone at Nam Co in the inland Tibetan Plateau: Variation, synthesis comparison and regional representativeness. Atmos. Chem. Phys. 2017, 17, 11293–11311. [Google Scholar] [CrossRef]
- Yin, X.; Kang, S.; Foy, B.d.; Rupakheti, D.; Rupakheti, M.; Cong, Z.; Wan, X.; Zhang, G.; Zhang, Q. Impacts of Indian summer monsoon and stratospheric intrusion on air pollutants in the inland Tibetan Plateau. Geosci. Front. 2021, 12, 101255. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, J.-L.; Yan, P.; Tang, J.; Fang, S.-X.; Lin, W.-L.; Lou, M.-Y.; Liang, M.; Zhou, Q.; Jing, J.-S.; et al. Long-term variations of major atmospheric compositions observed at the background stations in three key areas of China. Adv. Clim. Change Res. 2020, 11, 370–380. [Google Scholar] [CrossRef]
- Barrero, M.A.; Orza, J.A.; Cabello, M.; Canton, L. Categorisation of air quality monitoring stations by evaluation of PM10 variability. Sci. Total Environ. 2015, 524–525, 225–236. [Google Scholar] [CrossRef]
- Song, C.; Wu, L.; Xie, Y.; He, J.; Chen, X.; Wang, T.; Lin, Y.; Jin, T.; Wang, A.; Liu, Y.; et al. Air pollution in China: Status and spatiotemporal variations. Environ. Pollut. 2017, 227, 334–347. [Google Scholar] [CrossRef]
- HJ 663–2013; Technical Regulation for Ambient Air Quality Assessment. Ministry of Environmental Protection of China: Beijing, China, 2013.
- Chen, Z.; Liu, J.; Qie, X.; Cheng, X.; Yang, M.; Shu, L.; Zang, Z. Stratospheric influence on surface ozone pollution in China. Nat. Commun. 2024, 15, 4064. [Google Scholar] [CrossRef]
- Trickl, T.; Vogelmann, H.; Giehl, H.; Scheel, H.E.; Sprenger, M.; Stohl, A. How stratospheric are deep stratospheric intrusions? Atmos. Chem. Phys. 2014, 14, 9941–9961. [Google Scholar] [CrossRef]
- Bartusek, S.; Wu, Y.; Ting, M.; Zheng, C.; Fiore, A.; Sprenger, M.; Flemming, J. Higher-Resolution Tropopause Folding Accounts for More Stratospheric Ozone Intrusions. Geophys. Res. Lett. 2023, 50, e2022GL101690. [Google Scholar] [CrossRef]
- Langford, A.O.; Aikin, K.C.; Eubank, C.S.; Williams, E.J. Stratospheric contribution to high surface ozone in Colorado during springtime. Geophys. Res. Lett. 2009, 36, L12801. [Google Scholar] [CrossRef]
- Granados-Muñoz, M.J.; Leblanc, T. Tropospheric ozone seasonal and long-term variability as seen by lidar and surface measurements at the JPL-Table Mountain Facility, California. Atmos. Chem. Phys. 2016, 16, 9299–9319. [Google Scholar] [CrossRef]
- GB 3095–2012; Ambient Air Quality Standards. Ministry of Environmental Protection of China: Beijing, China, 2012.
- Elbern, H.; Kowol, J.; Sládkovic, R.; Ebel, A. Deep stratospheric intrusions: A statistical assessment with model guided analyses. Atmos. Environ. 1997, 31, 3207–3226. [Google Scholar] [CrossRef]
- Trickl, T.; Couret, C.; Ries, L.; Vogelmann, H. Zugspitze ozone 1970–2020: The role of stratosphere–troposphere transport. Atmos. Chem. Phys. 2023, 23, 8403–8427. [Google Scholar] [CrossRef]
- Birner, T. Fine-scale structure of the extratropical tropopause region. J. Geophys. Res. Atmos. 2006, 111, D04104. [Google Scholar] [CrossRef]
- Trickl, T.; Vogelmann, H.; Ries, L.; Sprenger, M. Very high stratospheric influence observed in the free troposphere over the northern Alps—Just a local phenomenon? Atmos. Chem. Phys. 2020, 20, 243–266. [Google Scholar] [CrossRef]
- Liu, X.Y.; Yan, J.; Liu, H.; Niu, J.Q.; Yan, J.H.; Su, F.C. Spatial-temporal Variations and Driving Factors of Surface Ozone over the Qinghai-Xizang Plateau from 2015 to 2021. Environ. Sci. 2024, 45, 3778–3788. [Google Scholar] [CrossRef]
- Lin, W.; Xu, X.; Zheng, X.; Dawa, J.; Baima, C.; Ma, J. Two-year measurements of surface ozone at Dangxiong, a remote highland site in the Tibetan Plateau. J. Environ. Sci. 2015, 31, 133–145. [Google Scholar] [CrossRef]
- Hoskins, B.J.; McIntyre, M.E.; Robertson, A.W. On the Use And Significance of Isentropic Potential Vorticity Maps. Q. J. R. Meteorol. Soc. 1985, 111, 877–946. [Google Scholar] [CrossRef]
- Appenzeller, C.; Holton, J.R.; Rosenlof, K.H. Seasonal variation of mass transport across the tropopause. J. Geophys. Res.—Atmos. 1996, 101, 15071–15078. [Google Scholar] [CrossRef]
- Baray, J.L.; Ancellet, G.; Taupin, F.G.; Bessafi, M.; Baldy, S.; Keckhut, P. Subtropical tropopause break as a possible stratospheric source of ozone in the tropical troposphere. J. Atmos. Sol.—Terr. Phys. 1998, 60, 27–36. [Google Scholar] [CrossRef]
Year | 2019 | 2020 | 2021 | 2022 | 2023 | |
---|---|---|---|---|---|---|
Average concentration (μg m−3) | All | 92 | 93 | 95 | 99 | 94 |
Spring | 106 | 101 | 101 | 109 | 101 | |
Summer | 120 | 115 | 129 | 124 | 127 | |
Autumn | 80 | 84 | 86 | 90 | 84 | |
Winter | 63 | 72 | 66 | 70 | 69 | |
Number of days >Xμg m−3 | >160 | 0 | 3 | 18 | 7 | 1 |
>150 | 3 | 5 | 27 | 11 | 10 | |
>140 | 10 | 12 | 43 | 31 | 18 |
Month | Average Concentration (μg m−3) | Number of O3 Exceedance (>X μg m−3) in SITS Events | ||
---|---|---|---|---|
>160 | >150 | >140 | ||
1 | 65 | 0 | 0 | 0 |
2 | 83 | 0 | 0 | 0 |
3 | 92 | 0 | 0 | 0 |
4 | 102 | 0 | 0 | 0 |
5 | 115 | 0 | 1 | 2 |
6 | 120 | 1 | 1 | 2 |
7 | 129 | 2 | 2 | 2 |
8 | 118 | 0 | 1 | 1 |
9 | 101 | 0 | 0 | 0 |
10 | 83 | 0 | 0 | 0 |
11 | 70 | 0 | 0 | 0 |
12 | 58 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Kong, Y.; Fan, M.; Yu, C.; Zhang, Y.; Gu, J.; Tao, J.; Chen, L. The Impact of Stratospheric Intrusion on Surface Ozone in Urban Areas of the Northeastern Tibetan Plateau. Atmosphere 2025, 16, 708. https://doi.org/10.3390/atmos16060708
Li M, Kong Y, Fan M, Yu C, Zhang Y, Gu J, Tao J, Chen L. The Impact of Stratospheric Intrusion on Surface Ozone in Urban Areas of the Northeastern Tibetan Plateau. Atmosphere. 2025; 16(6):708. https://doi.org/10.3390/atmos16060708
Chicago/Turabian StyleLi, Mingge, Yawen Kong, Meng Fan, Chao Yu, Ying Zhang, Jianbin Gu, Jinhua Tao, and Liangfu Chen. 2025. "The Impact of Stratospheric Intrusion on Surface Ozone in Urban Areas of the Northeastern Tibetan Plateau" Atmosphere 16, no. 6: 708. https://doi.org/10.3390/atmos16060708
APA StyleLi, M., Kong, Y., Fan, M., Yu, C., Zhang, Y., Gu, J., Tao, J., & Chen, L. (2025). The Impact of Stratospheric Intrusion on Surface Ozone in Urban Areas of the Northeastern Tibetan Plateau. Atmosphere, 16(6), 708. https://doi.org/10.3390/atmos16060708