A Proxy Model for Traffic Related Air Pollution Indicators Based on Traffic Count
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
− 44.4978440597x4 + 244.7426228105x3 − 615.8006568175x2 + 505.4296359966x + 51.4997991675
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Borrego, C.; Tchepel, O.; Costa, A.; Martins, H.; Ferreira, J.; Miranda, A. Traffic-related particulate air pollution exposure in urban areas. Atmos. Environ. 2006, 40, 7205–7214. [Google Scholar] [CrossRef]
- Han, X.; Naeher, L.P. A review of traffic-related air pollution exposure assessment studies in the developing world. Environ. Int. 2006, 32, 106–120. [Google Scholar] [CrossRef]
- Harrison, R.M.; Vu, T.V.; Jafar, H.; Shi, Z. More mileage in reducing urban air pollution from road traffic. Environ. Int. 2021, 149, 106329. [Google Scholar] [CrossRef] [PubMed]
- Khreis, H. Traffic, air pollution, and health. In Advances in Transportation and Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 59–104. ISBN 978-0-12-819136-1. [Google Scholar]
- Laumbach, R.J.; Kipen, H.M. Respiratory health effects of air pollution: Update on biomass smoke and traffic pollution. J. Allergy Clin. Immunol. 2012, 129, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Boogaard, H.; Patton, A.P.; Atkinson, R.W.; Brook, J.R.; Chang, H.H.; Crouse, D.L.; Fussell, J.C.; Hoek, G.; Hoffmann, B.; Kappeler, R.; et al. Long-term exposure to traffic-related air pollution and selected health outcomes: A systematic review and meta-analysis. Environ. Int. 2022, 164, 107262. [Google Scholar] [CrossRef] [PubMed]
- Fussell, J.C.; Franklin, M.; Green, D.C.; Gustafsson, M.; Harrison, R.M.; Hicks, W.; Kelly, F.J.; Kishta, F.; Miller, M.R.; Mudway, I.S.; et al. A Review of Road Traffic-Derived Non-Exhaust Particles: Emissions, Physicochemical Characteristics, Health Risks, and Mitigation Measures. Environ. Sci. Technol. 2022, 56, 6813–6835. [Google Scholar] [CrossRef]
- Mak, H.W.L.; Ng, D.C.Y. Spatial and Socio-Classification of Traffic Pollutant Emissions and Associated Mortality Rates in High-Density Hong Kong via Improved Data Analytic Approaches. Int. J. Environ. Res. Public Health 2021, 18, 6532. [Google Scholar] [CrossRef]
- Zhang, K.; Batterman, S. Air pollution and health risks due to vehicle traffic. Sci. Total Environ. 2013, 450–451, 307–316. [Google Scholar] [CrossRef]
- Batterman, S.; Chambliss, S.; Isakov, V. Spatial resolution requirements for traffic-related air pollutant exposure evaluations. Atmos. Environ. 2014, 94, 518–528. [Google Scholar] [CrossRef]
- Ghadiri, Z.; Rashidi, Y.; Broomandi, P. Evaluation Euro IV of effectiveness in transportation systems of Tehran on air quality: Application of IVE model. Pollution 2017, 3, 639–653. [Google Scholar] [CrossRef]
- Liu, Y.; Martinet, S.; Louis, C.; Pasquier, A.; Tassel, P.; Perret, P. Emission Characterization of In-Use Diesel and Gasoline Euro 4 to Euro 6 Passenger Cars Tested on Chassis Dynamometer Bench and Emission Model Assessment. Aerosol Air Qual. Res. 2017, 17, 2289–2299. [Google Scholar] [CrossRef]
- Serrano, J.R.; Piqueras, P.; Abbad, A.; Tabet, R.; Bender, S.; Gómez, J. Impact on Reduction of Pollutant Emissions from Passenger Cars when Replacing Euro 4 with Euro 6d Diesel Engines Considering the Altitude Influence. Energies 2019, 12, 1278. [Google Scholar] [CrossRef]
- Tzamkiozis, T.; Ntziachristos, L.; Samaras, Z. Diesel passenger car PM emissions: From Euro 1 to Euro 4 with particle filter. Atmos. Environ. 2010, 44, 909–916. [Google Scholar] [CrossRef]
- Williams, R.; Hamje, H.; Zemroch, P.J.; Clark, R.; Samaras, Z.; Dimaratos, A.; Jansen, L.; Fittavolini, C. Effect of Fuel Properties on Emissions from Euro 4 and Euro 5 Diesel Passenger Cars. Transp. Res. Procedia 2016, 14, 3149–3158. [Google Scholar] [CrossRef]
- Weiss, M.; Bonnel, P.; Kühlwein, J.; Provenza, A.; Lambrecht, U.; Alessandrini, S.; Carriero, M.; Colombo, R.; Forni, F.; Lanappe, G.; et al. Will Euro 6 reduce the NOx emissions of new diesel cars?—Insights from on-road tests with Portable Emissions Measurement Systems (PEMS). Atmos. Environ. 2012, 62, 657–665. [Google Scholar] [CrossRef]
- Fazakas, E.; Neamtiu, I.A.; Gurzau, E.S. Health effects of air pollutant mixtures (volatile organic compounds, particulate matter, sulfur and nitrogen oxides)—A review of the literature. Rev. Environ. Health 2024, 39, 459–478. [Google Scholar] [CrossRef]
- Jonson, J.E.; Borken-Kleefeld, J.; Simpson, D.; Nyíri, A.; Posch, M.; Heyes, C. Impact of excess NOx emissions from diesel cars on air quality, public health and eutrophication in Europe. Environ. Res. Lett. 2017, 12, 094017. [Google Scholar] [CrossRef]
- Milojević, S.; Glišović, J.; Savić, S.; Bošković, G.; Bukvić, M.; Stojanović, B. Particulate Matter Emission and Air Pollution Reduction by Applying Variable Systems in Tribologically Optimized Diesel Engines for Vehicles in Road Traffic. Atmosphere 2024, 15, 184. [Google Scholar] [CrossRef]
- Wang, B.; Wang, B.; Lv, B.; Wang, R. Impact of Motor Vehicle Exhaust on the Air Quality of an Urban City. Aerosol Air Qual. Res. 2022, 22, 220213. [Google Scholar] [CrossRef]
- Gehrsitz, M. The effect of low emission zones on air pollution and infant health. J. Environ. Econ. Manag. 2017, 83, 121–144. [Google Scholar] [CrossRef]
- Holman, C.; Harrison, R.; Querol, X. Review of the efficacy of low emission zones to improve urban air quality in European cities. Atmos. Environ. 2015, 111, 161–169. [Google Scholar] [CrossRef]
- Malina, C.; Scheffler, F. The impact of Low Emission Zones on particulate matter concentration and public health. Transp. Res. Part Policy Pract. 2015, 77, 372–385. [Google Scholar] [CrossRef]
- Publications of the Central Administration of the City of Helsinki. The Carbon-Neutral Helsinki 2035 Action Plan; Publications of the Central Administration of the City of Helsinki: Helsinki, Finland, 2018. [Google Scholar]
- Gariazzo, C.; Carlino, G.; Silibello, C.; Renzi, M.; Finardi, S.; Pepe, N.; Radice, P.; Forastiere, F.; Michelozzi, P.; Viegi, G.; et al. A multi-city air pollution population exposure study: Combined use of chemical-transport and random-Forest models with dynamic population data. Sci. Total Environ. 2020, 724, 138102. [Google Scholar] [CrossRef] [PubMed]
- Gariazzo, C.; Carlino, G.; Silibello, C.; Tinarelli, G.; Renzi, M.; Finardi, S.; Pepe, N.; Barbero, D.; Radice, P.; Marinaccio, A.; et al. Impact of different exposure models and spatial resolution on the long-term effects of air pollution. Environ. Res. 2021, 192, 110351. [Google Scholar] [CrossRef]
- Hennig, F.; Sugiri, D.; Tzivian, L.; Fuks, K.; Moebus, S.; Jöckel, K.-H.; Vienneau, D.; Kuhlbusch, T.; De Hoogh, K.; Memmesheimer, M.; et al. Comparison of Land-Use Regression Modeling with Dispersion and Chemistry Transport Modeling to Assign Air Pollution Concentrations within the Ruhr Area. Atmosphere 2016, 7, 48. [Google Scholar] [CrossRef]
- Shogrkhodaei, S.Z.; Fathnia, A.; Razavi-Termeh, S.V.; Badami, S.H.D.; Al-Kindi, K.M. Application of dynamic spatiotemporal modeling to predict urban traffic–related air pollution changes. Air Qual. Atmos. Health 2024, 17, 439–454. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, X.; Zhao, Y.; Liu, L.; Li, Z.; Tao, L.; Wang, X.; Guo, X.; Luo, Y. Application of nonlinear land use regression models for ambient air pollutants and air quality index. Atmos. Pollut. Res. 2021, 12, 101186. [Google Scholar] [CrossRef]
- Petrić, V.; Hussain, H.; Časni, K.; Vuckovic, M.; Schopper, A.; Andrijić, Ž.U.; Kecorius, S.; Madueno, L.; Kern, R.; Lovrić, M. Ensemble Machine Learning, Deep Learning, and Time Series Forecasting: Improving Prediction Accuracy for Hourly Concentrations of Ambient Air Pollutants. Aerosol Air Qual. Res. 2024, 24, 230317. [Google Scholar] [CrossRef]
- Lovrić, M.; Pavlović, K.; Vuković, M.; Grange, S.K.; Haberl, M.; Kern, R. Understanding the true effects of the COVID-19 lockdown on air pollution by means of machine learning. Environ. Pollut. 2020, 274, 115900. [Google Scholar] [CrossRef]
- Šimić, I.; Lovrić, M.; Godec, R.; Kröll, M.; Bešlić, I. Applying machine learning methods to better understand, model and estimate mass concentrations of traffic-related pollutants at a typical street canyon. Environ. Pollut. 2020, 263, 114587. [Google Scholar] [CrossRef]
- Bizualem, B.; Tefera, N.; Angassa, K.; Feyisa, G.L. Spatial and Temporal Analysis of Particulate Matter and Gaseous Pollutants at Six Heavily Used Traffic Junctions in Megenagna, Addis Ababa, Ethiopia. Aerosol Sci. Eng. 2023, 7, 118–130. [Google Scholar] [CrossRef]
- Führer, C.; Solem, J.E.; Verdier, O. Scientific Computing with Python: High-Performance Scientific Computing with NumPy, SciPy, and Pandas, 2nd ed.; Packt Publishing: Birmingham, UK, 2021; ISBN 978-1-83882-232-3. [Google Scholar]
- Teoh, T.T.; Rong, Z. Python for Data Analysis. In Artificial Intelligence with Python, Machine Learning: Foundations, Methodologies, and Applications; Springer: Singapore, 2022; pp. 107–122. ISBN 9789811686146. [Google Scholar]
- Fung, P.L.; Sillanpää, S.; Niemi, J.V.; Kousa, A.; Timonen, H.; Zaidan, M.A.; Saukko, E.; Kulmala, M.; Petäjä, T.; Hussein, T. Improving the current air quality index with new particulate indicators using a robust statistical approach. Sci. Total Environ. 2022, 844, 157099. [Google Scholar] [CrossRef] [PubMed]
- Hasnain, A.; Sheng, Y.; Hashmi, M.Z.; Bhatti, U.A.; Hussain, A.; Hameed, M.; Marjan, S.; Bazai, S.U.; Hossain, M.A.; Sahabuddin, M.; et al. Time Series Analysis and Forecasting of Air Pollutants Based on Prophet Forecasting Model in Jiangsu Province, China. Front. Environ. Sci. 2022, 10, 945628. [Google Scholar] [CrossRef]
- Samal, K.K.R.; Babu, K.S.; Das, S.K.; Acharaya, A. Time Series based Air Pollution Forecasting using SARIMA and Prophet Model. In Proceedings of the 2019 International Conference on Information Technology and Computer Communications, New York, NY, USA, 16–18 August 2019; ACM: Singapore, 2019; pp. 80–85. [Google Scholar]
- Cáceres-Tello, J.; Galán-Hernández, J.J. Analysis and Prediction of PM2.5 Pollution in Madrid: The Use of Prophet–Long Short-Term Memory Hybrid Models. AppliedMath 2024, 4, 1428–1452. [Google Scholar] [CrossRef]
- Nguyen, N.-L.; Vo, H.-T.; Lam, G.-H.; Nguyen, T.-B.; Do, T.-H. Real-Time Traffic Congestion Forecasting Using Prophet and Spark Streaming. In Intelligence of Things: Technologies and Applications, Proceedings of the First International Conference on Intelligence of Things (ICIT 2022), Hanoi, Vietnam, 17–19 August 2022; Nguyen, N.-T., Dao, N.-N., Pham, Q.-D., Le, H.A., Eds.; Lecture Notes on Data Engineering and Communications Technologies; Springer: Cham, Switzerland, 2022; Volume 148, pp. 388–397. ISBN 978-3-031-15062-3. [Google Scholar]
- Rafferty, G. Forecasting Time Series Data with Prophet: Build, Improve, and Optimize Time Series Forecasting Models Using Meta’s Advanced Forecasting Tool, 2nd ed.; Packt Publishing: Birmingham, UK, 2023; ISBN 978-1-83763-041-7. [Google Scholar]
- Taylor, S.J.; Letham, B. Forecasting at Scale. Am. Stat. 2018, 72, 37–45. [Google Scholar] [CrossRef]
- Putaud, J.-P.; Pisoni, E.; Mangold, A.; Hueglin, C.; Sciare, J.; Pikridas, M.; Savvides, C.; Ondracek, J.; Mbengue, S.; Wiedensohler, A.; et al. Impact of 2020 COVID-19 lockdowns on particulate air pollution across Europe. Atmos. Chem. Phys. 2023, 23, 10145–10161. [Google Scholar] [CrossRef]
- Askariyeh, M.H.; Vallamsundar, S.; Farzaneh, R. Investigating the Impact of Meteorological Conditions on Near-Road Pollutant Dispersion between Daytime and Nighttime Periods. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 99–110. [Google Scholar] [CrossRef]
- Ghenu, A.; Rosant, J.-M.; Sini, J.-F. Dispersion of pollutants and estimation of emissions in a street canyon in Rouen, France. Environ. Model. Softw. 2008, 23, 314–321. [Google Scholar] [CrossRef]
- Gupta, S.K.; Elumalai, S.P. Dependence of urban air pollutants on morning/evening peak hours and seasons. Arch. Environ. Contam. Toxicol. 2019, 76, 572–590. [Google Scholar] [CrossRef]
- Liang, M.; Chao, Y.; Tu, Y.; Xu, T. Vehicle Pollutant Dispersion in the Urban Atmospheric Environment: A Review of Mechanism, Modeling, and Application. Atmosphere 2023, 14, 279. [Google Scholar] [CrossRef]
- Keyes, T.; Domingo, R.; Dynowski, S.; Graves, R.; Klein, M.; Leonard, M.; Pilgrim, J.; Sanchirico, A.; Trinkaus, K. Low-cost PM2.5 sensors can help identify driving factors of poor air quality and benefit communities. Heliyon 2023, 9, e19876. [Google Scholar] [CrossRef] [PubMed]
- Kortoçi, P.; Motlagh, N.H.; Zaidan, M.A.; Fung, P.L.; Varjonen, S.; Rebeiro-Hargrave, A.; Niemi, J.V.; Nurmi, P.; Hussein, T.; Petäjä, T.; et al. Air pollution exposure monitoring using portable low-cost air quality sensors. Smart Health 2022, 23, 100241. [Google Scholar] [CrossRef]
- Lin, C.; Labzovskii, L.D.; Leung Mak, H.W.; Fung, J.C.H.; Lau, A.K.H.; Kenea, S.T.; Bilal, M.; Vande Hey, J.D.; Lu, X.; Ma, J. Observation of PM2.5 using a combination of satellite remote sensing and low-cost sensor network in Siberian urban areas with limited reference monitoring. Atmos. Environ. 2020, 227, 117410. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J. Urban and transport planning pathways to carbon neutral, liveable and healthy cities; A review of the current evidence. Environ. Int. 2020, 140, 105661. [Google Scholar] [CrossRef] [PubMed]
- Pasanen, T.P.; Lanki, T.; Siponen, T.; Turunen, A.W.; Tiittanen, P.; Heikinheimo, V.; Tiitu, M.; Viinikka, A.; Halonen, J.I. What Makes a Liveable Neighborhood? Role of Socio-Demographic, Dwelling, and Environmental Factors and Participation in Finnish Urban and Suburban Areas. J. Urban Health 2024, 101, 1207–1220. [Google Scholar] [CrossRef]
- Willberg, E.; Poom, A.; Helle, J.; Toivonen, T. Cyclists’ exposure to air pollution, noise, and greenery: A population-level spatial analysis approach. Int. J. Health Geogr. 2023, 22, 5. [Google Scholar] [CrossRef]
- European Commission. European Green Deal: Delivering on our Targets; Publications Office: Luxembourg, 2021. [Google Scholar]
Pollutant | Station | RMSE | R2 |
---|---|---|---|
NO2 | Mäkelänkatu | 0.1982 | 0.4843 |
NO2 | Kalio | 0.3002 | 0.2073 |
PM10 | Mäkelänkatu | 0.2402 | 0.4995 |
PM10 | Kalio | 0.2864 | 0.1730 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Račić, N.; Petrić, V.; Mureddu, F.; Portin, H.; Niemi, J.V.; Hussein, T.; Lovrić, M. A Proxy Model for Traffic Related Air Pollution Indicators Based on Traffic Count. Atmosphere 2025, 16, 538. https://doi.org/10.3390/atmos16050538
Račić N, Petrić V, Mureddu F, Portin H, Niemi JV, Hussein T, Lovrić M. A Proxy Model for Traffic Related Air Pollution Indicators Based on Traffic Count. Atmosphere. 2025; 16(5):538. https://doi.org/10.3390/atmos16050538
Chicago/Turabian StyleRačić, Nikolina, Valentino Petrić, Francesco Mureddu, Harri Portin, Jarkko V. Niemi, Tareq Hussein, and Mario Lovrić. 2025. "A Proxy Model for Traffic Related Air Pollution Indicators Based on Traffic Count" Atmosphere 16, no. 5: 538. https://doi.org/10.3390/atmos16050538
APA StyleRačić, N., Petrić, V., Mureddu, F., Portin, H., Niemi, J. V., Hussein, T., & Lovrić, M. (2025). A Proxy Model for Traffic Related Air Pollution Indicators Based on Traffic Count. Atmosphere, 16(5), 538. https://doi.org/10.3390/atmos16050538