Red-Hot Portugal: Mapping the Increasing Severity of Exceptional Maximum Temperature Events (1980–2024)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background and Context of the Portuguese Setting
2.2. ERA5-Land Daily Temperature Data
2.3. Temporal Phases
2.4. Exceptional Tmax Identification and Thresholds Selection
2.5. Variables
- 1.
- Occurrence of Exceptional Tmax Events, OTE, expressed in days, representing the annual number of days when Tmax exceeds the specified threshold.
- 2.
- Relative Temperature Excess, RTE, expressed in %, defined as:
2.6. Statistical Significance Testing: Student’s t-Test
2.7. Severity Heatmap Colour Scale
- Case 0 (white) → No comparison: No occurrences in either phase.
- Case 1 (red) → More & More: Higher number of occurrences (days) and higher temperature excess (%) in the contemporary phase compared to the historical phase.
- Case 2 (orange) → More & Less: Higher number of occurrences (days) but lower temperature excess (%) in the contemporary phase compared to the historical phase.
- Case 3 (yellow) → Less & More: Lower number of occurrences (days) but higher temperature excess (%) in the contemporary phase compared to the historical phase.
- Case 4 (green) → Less & Less: Lower number of occurrences (days) and lower temperature excess (%) in the contemporary phase compared to the historical phase.
3. Results
3.1. Spatial Distribution Across Portugal of Occurrence of Exceptional Tmax Events
3.2. Spatial Distribution of Relative Temperature Excess in Portugal
3.3. Comparative Analysis of Exceptional Temperature: Contemporary vs. Historical Phases
3.4. Severity Heatmap of Exceptional Tmax Events
4. Discussion
Long-Term Trends in Exceptional Tmax Events: Frequency (OTE) and Intensity (RTE)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, J.; Sato, M.; Ruedy, R. Perceptions of climate change. Proc. Natl. Acad. Sci. USA 2012, 109, E2415–E2423. [Google Scholar] [CrossRef] [PubMed]
- Diffenbaugh, N.S.; Singh, D.; Mankin, J.S.; Horton, D.E.; Swain, D.L.; Touma, D.; Charland, A.; Liu, Y.; Haugen, M.; Tsiang, M.; et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. USA 2017, 114, 4881–4886. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Tong, S.; Prior, J.; McGregor, G.; Shi, X.; Kinney, P. Urban heat: An increasing threat to global health. BMJ 2021, 375, n2467. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, N.; Wang, Y.; Chen, M. Variations in summertime compound heat extremes and their connections to urbanization in China during 1980–2020. Environ. Res. Lett. 2022, 17, 064024. [Google Scholar] [CrossRef]
- Ramos, A.M.; Trigo, R.M.; Santo, F.E. Evolution of extreme temperatures over Portugal: Recent changes and future scenarios. Clim. Res. 2011, 48, 177–192. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Lima, D.C.; Soares, P.M. How persistent and hazardous will extreme temperature events become in a warming Portugal? Weather. Clim. Extrem. 2023, 41, 100600. [Google Scholar] [CrossRef]
- Thirumalai, K.; DiNezio, P.N.; Okumura, Y.; Deser, C. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nat. Commun. 2017, 8, 15531. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Espinosa, L.A.; Portela, M.M.; Gharbia, S. Assessing Changes in Exceptional Rainfall in Portugal Using ERA5-Land Reanalysis Data (1981/1982–2022/2023). Water 2024, 16, 628. [Google Scholar] [CrossRef]
- Giorgi, F. Climate Change Hot-Spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Davis, R.E.; Hayden, B.P.; Gay, D.A.; Phillips, W.L.; Jones, G.V. The North Atlantic Subtropical Anticyclone. J. Clim. 1997, 10, 728–744. [Google Scholar] [CrossRef]
- Mora, C.; Vieira, G. The Climate of Portugal. In Landscapes and Landforms of Portugal; World Geomorphological Landscapes (WGLC); Springer: Berlin/Heidelberg, Germany, 2020; pp. 33–46. [Google Scholar] [CrossRef]
- Agency, I.E. Portugal Climate Resilience Policy Indicator. 2021. Available online: https://www.iea.org/articles/portugal-climate-resilience-policy-indicator (accessed on 5 February 2025).
- Instituto Português do Mar e da Atmosfera (IPMA). Boletim Climatológico—Agosto 2018. Climatological Bulletin ISSN 2183-1076, Instituto Português do Mar e da Atmosfera (IPMA), Lisbon, Portugal. 2018. Available online: https://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20180924/QyzZvZwgxxBnLFiHkSkX/cli_20180801_20180831_pcl_mm_co_pt.pdf (accessed on 5 February 2025).
- Espinosa, L.A.; Portela, M.M.; Freitas, L.M.M.; Gharbia, S. Addressing the Spatiotemporal Patterns of Heatwaves in Portugal with a Validated ERA5-Land Dataset (1980–2021). Water 2023, 15, 3102. [Google Scholar] [CrossRef]
- Garcia-Herrera, R.; Díaz, J.; Trigo, R.; Luterbacher, J.; Fischer, E. A Review of the European Summer Heat Wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–306. [Google Scholar] [CrossRef]
- Dupuy, J.; Fargeon, H.; Martin-StPaul, N.; Pimont, F.; Ruffault, J.; Guijarro, M.; Hernando, C.; Madrigal, J.; Fernandes, P. Climate change impact on future wildfire danger and activity in southern Europe: A review. Ann. For. Sci. 2020, 77. [Google Scholar] [CrossRef]
- Trigo, R.M.; Osborn, T.J.; Corte-Real, J.M. The North Atlantic Oscillation influence on Europe: Climate impacts and associated physical mechanisms. Clim. Res. 2002, 20, 9–17. [Google Scholar] [CrossRef]
- Jabbar, H.K.; Hamoodi, M.N.; Al-Hameedawi, A.N. Urban heat islands: A review of contributing factors, effects and data. Proc. IOP Conf. Ser. Earth Environ. Sci. 2023, 1129, 012038. [Google Scholar] [CrossRef]
- Silva, R.; Carvalho, A.C.; Pereira, S.C.; Carvalho, D.; Rocha, A. Lisbon urban heat island in future urban and climate scenarios. Urban Clim. 2022, 44, 101218. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service. Copernicus Climate Data Store. 2024. Available online: https://cds.climate.copernicus.eu/ (accessed on 15 December 2024).
- U.S. Geological Survey. Explanations for the National Water Conditions: What is a Water Year? Available online: https://water.usgs.gov/nwc/explain_data.html (accessed on 5 February 2025).
- Randall, D.A.; Wood, R.A.; Bony, S.; Colman, R.; Fichefet, T.; Fyfe, J.; Kattsov, V.; Pitman, A.; Shukla, J.; Srinivasan, J.; et al. Climate Models and Their Evaluation. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 589–662. [Google Scholar]
- Khan, F.; Ali, S.; Mayer, C.; Ullah, H.; Muhammad, S. Climate change and spatio-temporal trend analysis of climate extremes in the homogeneous climatic zones of Pakistan during 1962–2019. PLoS ONE 2022, 17, e0271626. [Google Scholar] [CrossRef]
- Expert Team on Climate Change Detection and Indices (ETCCDI). Climate Change Indices: Definitions of the 27 Core Indices. Available online: https://etccdi.pacificclimate.org/list_27_indices.shtml (accessed on 5 February 2025).
- National Oceanic and Atmospheric Administration (NOAA). Extreme Exceedance Probability Levels. Available online: https://tidesandcurrents.noaa.gov/est/northatlantic.html (accessed on 5 February 2025).
- Student. The Probable Error of a Mean. Biometrika 1908, 6, 1–25. [Google Scholar] [CrossRef]
- Linnet, K. Limitations of the Paired t-Test for Evaluation of Method Comparison Data. Clin. Chem. 1999, 45, 314–315. [Google Scholar] [CrossRef]
- Imam, A.; Mohammed, U.; Abanyam, M.C. On Consistency and Limitation of Paired t-Test, Sign and Wilcoxon Sign Rank Test. IOSR J. Math. (IOSR-JM) 2014, 10, 1–6. [Google Scholar] [CrossRef]
- Espinosa, L.A.; Portela, M.M.; Ocampo-Guerrero, N. Beyond Temperature Peaks: The Growing Persistence and Intensity of Tmin and Tmax Heatwaves in Portugal’s Changing Climate (1980/1981–2022/2023). Atmosphere 2024, 15, 1485. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. (Eds.) The North Atlantic Oscillation: Climatic Significance and Environmental Impact; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2003; Volume 134. [Google Scholar] [CrossRef]
- OECD. OECD Environmental Performance Reviews: Portugal 2023; OECD Environmental Performance Reviews; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Zêzere, J.L. Geohazards in Portugal: A State of the Art. Finisterra 2023, LVIII, 7–27. [Google Scholar] [CrossRef]
- Perkins, S.E. A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res. 2015, 164, 242–267. [Google Scholar] [CrossRef]
- Lange, M.A. Climate Change in the Mediterranean: Environmental Impacts and Extreme Events. In IEMed Mediterranean Yearbook; European Institute of the Mediterranean (IEMed). 2020, pp. 30–55. Available online: https://www.iemed.org/publication/climate-change-in-the-mediterranean-environmental-impacts-and-extreme-events/ (accessed on 5 February 2025).
- Bolle, H.J. (Ed.) Mediterranean Climate: Variability and Trends; Regional Climate Studies; Springer-Verlag: Berlin, Germany, 2003; Volume 1, pp. 1–320. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 12–500. [Google Scholar] [CrossRef]
- Russo, E.; Domeisen, D.I. Increasing intensity of extreme heatwaves: The crucial role of metrics. Geophys. Res. Lett. 2023, 50, e2023GL103540. [Google Scholar] [CrossRef]
- López-Bueno, J.A.; Alonso, P.; Navas-Martín, M.Á.; Mirón, I.; Belda, F.; Díaz, J.; Linares, C. Determination of heat wave definition temperatures in Spain at an isoclimatic level: Time trend of heat wave duration and intensity across the decade 2009–2018. Environ. Sci. Eur. 2024, 36, 83. [Google Scholar] [CrossRef]
- Settanta, G.; Fraschetti, P.; Lena, F.; Perconti, W.; Piervitali, E. Recent tendencies of extreme heat events in Italy. Theor. Appl. Climatol. 2024, 155, 7335–7348. [Google Scholar] [CrossRef]
- Di Bernardino, A.; Falasca, S.; Iannarelli, A.M.; Casadio, S.; Siani, A.M. Effect of heatwaves on urban sea breeze, heat island intensity, and outdoor thermo-hygrometric comfort in Rome (Italy). Urban Clim. 2023, 52, 101735. [Google Scholar] [CrossRef]
- Founda, D.; Pierros, F.; Petrakis, M.; Zerefos, C. Interdecadal variations and trends of the Urban Heat Island in Athens (Greece) and its response to heat waves. Atmos. Res. 2015, 161, 1–13. [Google Scholar] [CrossRef]
- Oukawa, G.Y.; Krecl, P.; Targino, A.C. Fine-scale modeling of the urban heat island: A comparison of multiple linear regression and random forest approaches. Sci. Total Environ. 2022, 815, 152836. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, M.; Hurduc, A.; Ermida, S.; Lima, D.C.; Soares, P.M.; Johannsen, F.; Dutra, E. Assessment of the Paris urban heat island in ERA5 and offline SURFEX-TEB (v8.1) simulations using the METEOSAT land surface temperature product. Geosci. Model Dev. 2022, 15, 5949–5965. [Google Scholar] [CrossRef]
- Błażejczyk, K.; Jendritzky, G.; Bröde, P.; Fiala, D. An Introduction to the Universal Thermal Climate Index (UTCI). Geogr. Pol. 2013, 86, 5–10. [Google Scholar] [CrossRef]
- Anders, J.; Schubert, S.; Maronga, B.; Salim, M. Simplifying heat stress assessment: Evaluating meteorological variables as single indicators of outdoor thermal comfort in urban environments. Build. Environ. 2025, 274, 112658. [Google Scholar] [CrossRef]
- Nastos, P.; Saaroni, H. Living in Mediterranean cities in the context of climate change: A review. Int. J. Climatol. 2024. [Google Scholar] [CrossRef]
- Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2016, 46, 1131–1150. [Google Scholar] [CrossRef]
- Drobinski, P.; Da Silva, N.; Bastin, S.; Mailler, S.; Muller, C.; Ahrens, B.; Christensen, O.B.; Lionello, P. How warmer and drier will the Mediterranean region be at the end of the twenty-first century? Reg. Environ. Change 2020, 20, 1–12. [Google Scholar] [CrossRef]
- Yuan, T. The Role of Green Infrastructure in Mitigating the Urban Heat Island Effect. Open J. Appl. Sci. 2024, 14, 3155–3164. [Google Scholar] [CrossRef]
- Oliveira, A.; Lopes, A.; Correia, E.; Niza, S.; Soares, A. Heatwaves and Summer Urban Heat Islands: A Daily Cycle Approach to Unveil the Urban Thermal Signal Changes in Lisbon, Portugal. Atmosphere 2021, 12, 292. [Google Scholar] [CrossRef]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Caesar, J. Global land-based datasets for monitoring climatic extremes. Bull. Am. Meteorol. Soc. 2013, 94, 997–1006. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Luca, A.D.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Weather and climate extreme events in a changing climate. In Climate Change 2021: The Physical Science Basis; Masson-Delmotte, V., Zhai, A., Pirani, S.L., Connors, C., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 1513–1766. [Google Scholar] [CrossRef]
- Ouzeau, G.; Soubeyroux, J.M.; Schneider, M.; Vautard, R.; Planton, S. Heat waves analysis over France in present and future climate: Application of a new method on the EURO-CORDEX ensemble. Clim. Serv. 2016, 4, 1–12. [Google Scholar] [CrossRef]
- Richter, M. Urban climate change-related effects on extreme heat events in Rostock, Germany. Urban Ecosyst. 2016, 19, 849–866. [Google Scholar] [CrossRef]
- Kabisch, N.; Remahne, F.; Ilsemann, C.; Fricke, L. The urban heat island under extreme heat conditions: A case study of Hannover, Germany. Sci. Rep. 2023, 13, 23017. [Google Scholar] [CrossRef] [PubMed]
- European Commission. State of the Energy Union 2023: Further Action Needed to Accelerate Climate Action. 2023. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_23_5188 (accessed on 5 February 2025).
- Ren, D.; Hu, A. Persistent trends and geographic traits of heat waves in a changing climate. Environ. Res. Commun. 2024, 6, 115025. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Weatherhead, E.C.; Reinsel, G.C.; Tiao, G.C.; Meng, X.L.; Choi, D.; Cheang, W.K.; Keller, T.; DeLuisi, J.; Wuebbles, D.J.; Kerr, J.B.; et al. Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res. Atmos. 1998, 103, 17149–17161. [Google Scholar] [CrossRef]
- Stahel, W.A. New relevance and significance measures to replace p-values. PLoS ONE 2021, 16, e0252991. [Google Scholar] [CrossRef]
- European Environment Agency. High UTCI Days. 2025. Available online: https://climate-adapt.eea.europa.eu/en/metadata/indicators/high-utci-days (accessed on 5 February 2025).
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Hot weather and heat extremes: Health risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A review. Glob. Change Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef] [PubMed]
- Serpa, D.; Nunes, J.P.; Santos, J.; Sampaio, E.; Jacinto, R.; Veiga, S.; Lima, J.C.; Moreira, M.; Corte-Real, J.; Keizer, J.J.; et al. Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Sci. Total Environ. 2015, 538, 64–77. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa, L.A.; Portela, M.M. Red-Hot Portugal: Mapping the Increasing Severity of Exceptional Maximum Temperature Events (1980–2024). Atmosphere 2025, 16, 514. https://doi.org/10.3390/atmos16050514
Espinosa LA, Portela MM. Red-Hot Portugal: Mapping the Increasing Severity of Exceptional Maximum Temperature Events (1980–2024). Atmosphere. 2025; 16(5):514. https://doi.org/10.3390/atmos16050514
Chicago/Turabian StyleEspinosa, Luis Angel, and Maria Manuela Portela. 2025. "Red-Hot Portugal: Mapping the Increasing Severity of Exceptional Maximum Temperature Events (1980–2024)" Atmosphere 16, no. 5: 514. https://doi.org/10.3390/atmos16050514
APA StyleEspinosa, L. A., & Portela, M. M. (2025). Red-Hot Portugal: Mapping the Increasing Severity of Exceptional Maximum Temperature Events (1980–2024). Atmosphere, 16(5), 514. https://doi.org/10.3390/atmos16050514