Long-Term Trends in PM10, PM2.5, and Trace Elements in Ambient Air: Environmental and Health Risks from 2020 to 2024
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area and Sampling Location
2.2. Meteorological Measurements
2.3. PM10 and PM2.5 Sampling and Analysis
2.4. Trace Element Analysis
2.5. Excess Cancer Risk (ECR) Assessment
2.6. Statistical Analysis
2.7. Quality Assurance and Control
3. Results
3.1. Meteorological Parameters (2020–2024)
3.2. Annual PM10 and PM2.5 Concentrations (2020–2024)
3.3. Annual Trace Element Concentrations in PM10 (2020–2024)
3.4. Association Between PM10, Trace Elements, and Cancer Risk (2020–2024)
3.5. Seasonal Variations in PM10, PM2.5, and Trace Elements (2020–2024)
4. Discussion
4.1. Long-Term Trends in PM10 and PM2.5 Concentrations
4.2. Trace Element Concentrations in PM10
4.3. Meteorological Influences on Air Pollution
4.4. The Association Between PM10 and Trace Elements
4.5. Public Health and Policy Implications
4.6. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PM10 | Particulate matter with an aerodynamic diameter ≤ 10 µm |
PM2.5 | Particulate matter with an aerodynamic diameter ≤ 2.5 µm |
ECR | Excess cancer risk |
IUR | Inhalation unit risk |
Cr VI | Hexavalent chromium |
Cd | Cadmium |
As | Arsenic |
Be | Beryllium |
Ni | Nickel |
Pb | Lead |
Co | Cobalt |
Sb | Antimony |
Mn | Manganese |
USEPA | United States Environmental Protection Agency |
WHO | World Health Organization |
ICP-MS | Inductively Coupled Plasma Mass Spectrometry |
UV | Ultraviolet radiation |
ANOVA | Analysis of variance |
IRIS | Integrated Risk Information System |
ATSDR | Agency for Toxic Substances and Disease Registry |
ISO | International Organization for Standardization |
HNO3 | Nitric acid |
µg/m3 | Micrograms per cubic meter |
m/s | Meters per second |
°C | Degrees Celsius |
References
- Thangavel, P.; Park, D.; Lee, Y.C. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. Int. J. Environ. Res. Public Health 2022, 19, 7511. [Google Scholar] [CrossRef] [PubMed]
- Thiagarajan, V.; Nah, T.; Xin, X. Impacts of Atmospheric Particulate Matter Deposition on Phytoplankton: A Review. Sci. Total Environ. 2024, 950, 175280. [Google Scholar] [CrossRef] [PubMed]
- Basith, S.; Manavalan, B.; Shin, T.H.; Park, C.B.; Lee, W.S.; Kim, J.; Lee, G. The Impact of Fine Particulate Matter 2.5 on the Cardiovascular System: A Review of the Invisible Killer. Nanomaterials 2022, 12, 2656. [Google Scholar] [CrossRef]
- Maciejczyk, P.; Chen, L.-C.; Thurston, G. The Role of Fossil Fuel Combustion Metals in PM2.5 Air Pollution Health Associations. Atmosphere 2021, 12, 1086. [Google Scholar] [CrossRef]
- Li, B.; Ma, Y.; Zhou, Y.; Chai, E. Research progress of different components of PM2.5 and ischemic stroke. Sci. Rep. 2023, 13, 15965. [Google Scholar] [CrossRef]
- Agibayeva, A.; Guney, M.; Karaca, F.; Kumisbek, A.; Kim, J.R.; Avcu, E. Analytical Methods for Physicochemical Characterization and Toxicity Assessment of Atmospheric Particulate Matter: A Review. Sustainability 2022, 14, 13481. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Holme, J.A.; Vondráček, J.; Machala, M.; Lagadic-Gossmann, D.; Vogel, C.F.A.; Le Ferrec, E.; Sparfel, L.; Øvrevik, J. Lung Cancer Associated with Combustion Particles and Fine Particulate Matter (PM2.5)—The Roles of Polycyclic Aromatic Hydrocarbons (PAHs) and the Aryl Hydrocarbon Receptor (AhR). Biochem. Pharmacol. 2023, 216, 115801. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). A Review of Human Carcinogens. Part C: Arsenic, Metals, Fibres, and Dusts. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 2012, 100C, Lyon, France. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 12 February 2025).
- Simpson, I.J.; Aburizaiza, O.S.; Siddique, A.; Barletta, B.; Blake, N.J.; Gartner, A.; Khwaja, H.; Meinardi, S.; Zeb, J.; Blake, D.R. Air Quality in Mecca and Surrounding Holy Places in Saudi Arabia during Hajj: Initial Survey. Environ. Sci. Technol. 2014, 48, 8529–8537. [Google Scholar] [CrossRef]
- Habeebullah, T.M.A. Chemical Composition of Particulate Matters in Makkah—Focusing on Cations, Anions and Heavy Metals. Aerosol Air Qual. Res. 2016, 16, 336–347. [Google Scholar] [CrossRef]
- Habeebullah, T.M.; Nagarani, N.; Kumaraguru, A.K.; Devi, V.J.; Devi, C.A. An Analysis of Air Pollution in Makkah—A Viewpoint of Source Identification. Atmos. Environ. 2013, 45, 163–172. [Google Scholar]
- Farahat, A.; Chauhan, A.; Al Otaibi, M.; Singh, R.P. Air Quality Over Major Cities of Saudi Arabia During Hajj Periods of 2019 and 2020. Earth Syst. Environ. 2021, 5, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Vilcassim, R.; Thurston, G.D. Gaps and Future Directions in Research on Health Effects of Air Pollution. eBioMedicine 2023, 93, 104668. [Google Scholar] [CrossRef]
- Li, J.; Deng, Z.; Soerensen, S.J.C.; Kachuri, L.; Cardenas, A.; Graff, R.E.; Leppert, J.T.; Langston, M.E.; Chung, B.I. Ambient Air Pollution and Urological Cancer Risk: A Systematic Review and Meta-Analysis of Epidemiological Evidence. Nat. Commun. 2024, 15, 5116. [Google Scholar] [CrossRef] [PubMed]
- Tainio, M.; Andersen, Z.J.; Nieuwenhuijsen, M.J.; Hu, L.; de Nazelle, A.; An, R.; Garcia, L.M.T.; Goenka, S.; Zapata-Diomedi, B.; Bull, F.; et al. Air Pollution, Physical Activity and Health: A Mapping Review of the Evidence. Environ. Int. 2021, 147, 105954. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (USEPA). Research on Health Effects from Air Pollution. Available online: https://www.epa.gov/air-research/research-health-effects-air-pollution (accessed on 26 January 2025).
- United States Environmental Protection Agency (USEPA). Quality Assurance Handbook for Air Pollution Measurement Systems Volume II. Ambient Air Quality Monitoring Program 2017. Available online: https://www.epa.gov/sites/default/files/2020-10/documents/final_handbook_document_1_17.pdf (accessed on 26 January 2025).
- United States Environmental Protection Agency (USEPA). Method 29: Determination of Metal Emissions from Stationary Sources; Report No.: EPA/625/R-96/010b; USEPA: Washington, DC, USA, 2000.
- Perkin Elmer ICP Procedure. Optima 7300 V ICP-OES HF Version. Available online: https://resources.perkinelmer.com/lab-solutions/resources/docs/SPC_Optima7300VICP-OES.pdf (accessed on 26 January 2025).
- United States Environmental Protection Agency (USEPA). Integrated Risk Information System (IRIS). Available online: https://iris.epa.gov (accessed on 28 January 2025).
- World Health Organization (WHO). WHO Global Air Quality Guidelines. Available online: http://apps.who.int/iris (accessed on 28 January 2025).
- Wang, L.; Niu, D.; Fan, H.; Long, X. Urban Configuration and PM2.5 Concentrations: Evidence from 330 Chinese Cities. Environ. Int. 2022, 161, 107129. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.G.; Lekhana, P.; Musini, T.; Chandrakala, S. Effects of Vehicular Emissions on the Urban Environment—A State of the Art. Mater. Today Proc. 2020, 45, 738–745. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.P.; Cai, J.; Yan, Z.; Zhao, B.; Wang, X.; Chen, B.; Yang, J.; et al. Influence of Meteorological Conditions on PM2.5 Concentrations Across China: A Review of Methodology and Mechanism. Environ. Int. 2020, 139, 105558. [Google Scholar] [CrossRef] [PubMed]
- Nakyai, T.; Santasnachok, M.; Thetkathuek, A.; Phatrabuddha, N. Influence of Meteorological Factors on Air Pollution and Health Risks: A Comparative Analysis of Industrial and Urban Areas in Chonburi Province, Thailand. Environ. Adv. 2025, 19, 100608. [Google Scholar] [CrossRef]
- Guo, Q.; He, Z.; Wang, Z. Change in Air Quality during 2014–2021 in Jinan City in China and Its Influencing Factors. Toxics 2023, 11, 210. [Google Scholar] [CrossRef] [PubMed]
- Nazir, R.; Shah, M. Study of Pollution Status and Health Risks for Selected Metals in PM10 from Islamabad, Pakistan. Int. J. Environ. Sci. Technol. 2024, 21, 10059–10074. [Google Scholar] [CrossRef]
- Shaltout, A.; Kadi, M.; Abd Elkader, O.; Boman, J. Environmental and Health Risks of Potentially Toxic Elements in Ambient PM10 in Jeddah, Saudi Arabia. Int. J. Environ. Sci. Technol. 2024, 21, 6261–6274. [Google Scholar] [CrossRef]
- Lamas, G.A.; Bhatnagar, A.; Jones, M.R.; Mann, K.K.; Nasir, K.; Tellez-Plaza, M.; Ujueta, F.; Navas-Acien, A. Contaminant Metals as Cardiovascular Risk Factors: A Scientific Statement from the American Heart Association. J. Am. Heart Assoc. 2023, 12, e029852. [Google Scholar] [CrossRef]
- Wang, M.; Yan, L.; Dou, S.; Yang, L.; Zhang, Y.; Huang, W.; Li, S.; Lu, P.; Guo, Y. Blood Multiple Heavy Metals Exposure and Lung Function in Young Adults: A Prospective Cohort Study in China. J. Hazard. Mater. 2023, 459, 132064. [Google Scholar] [CrossRef]
- Merenda, B.; Drzeniecka-Osiadacz, A.; Sówka, I.; Sawiński, T.; Samek, L. Influence of Meteorological Conditions on the Variability of Indoor and Outdoor Particulate Matter Concentrations in a Selected Polish Health Resort. Sci. Rep. 2024, 14, 19461. [Google Scholar] [CrossRef]
- Seo, J.; Park, D.S.R.; Kim, J.Y.; Youn, D.; Lim, Y.B.; Kim, Y. Effects of Meteorology and Emissions on Urban Air Quality: A Quantitative Statistical Approach to Long-Term Records (1999–2016) in Seoul, South Korea. Atmos. Chem. Phys. 2018, 18, 16121–16137. [Google Scholar] [CrossRef]
- Guo, Q.; He, Z.; Wang, Z. The Characteristics of Air Quality Changes in Hohhot City in China and their Relationship with Meteorological and Socio-economic Factors. Aerosol Air Qual. Res. 2024, 24, 230274. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, X.; Yin, H.; Feng, C.; Ma, C.; Sun, S.; Cheng, H.; Wang, S.; Shang, K.; Liu, X. Heatwave-Amplified Atmospheric Oxidation in a Multi-Province Border Area in Xuzhou, China. Front. Environ. Sci. 2024, 12, 1496584. [Google Scholar] [CrossRef]
- Adly, H.; Saleh, S.; Saati, A.; Fatani, S. Cancer Risk of Inhalation Exposure to Cd, Cr, As, Be, and Ni in Ambient Air. J. Environ. Prot. 2017, 8, 290–300. [Google Scholar] [CrossRef]
- Adly, H.; Saleh, A.K.; Saati, A.A.; Fatani, S.H. Airborne Carcinogenic Trace Elements Distribution Associated with Long-Term Exposure in Makkah Population. Open Environ. Res. J. 2019, 12, 1–7. [Google Scholar] [CrossRef]
- Lee, H.W.; Jose, C.C.; Cuddapah, S. Epithelial-Mesenchymal Transition: Insights into Nickel-Induced Lung Diseases. Semin. Cancer Biol. 2021, 76, 99–109. [Google Scholar] [CrossRef]
- Alves, N.O.; Pereira, G.M.; Di Domenico, M.; Costanzo, G.; Benevenuto, S.; Fonoff, A.M.O.; Costa, N.S.X.; Ribeiro, G.; Kajitani, G.S.; Moreno, N.C.; et al. Inflammation Response, Oxidative Stress and DNA Damage Caused by Urban Air Pollution Exposure Increase in the Lack of DNA Repair XPC Protein. Environ. Int. 2020, 145, 106150. [Google Scholar] [CrossRef]
Trace Element | IUR (µg/m3)−1 | Reference |
---|---|---|
Cadmium (Cd) | 1.8 × 10−3 | USEPA IRIS [18] |
Chromium (Cr VI) | 1.2 × 10−2 | USEPA IRIS [18] |
Arsenic (As) | 1.6 × 10−3 | USEPA IRIS [18] |
Beryllium (Be) | 4.0 × 10−4 | USEPA IRIS [18] |
Nickel (Ni) | 2.0 × 10−2 | * USEPA IRIS [18] |
Lead (Pb) | 8.4 × 10−3 | * ATSDR [19] |
Cobalt (Co) | 9.0 × 10−4 | * WHO Air Quality Guidelines [20] |
Antimony (Sb) | 1.1 × 10−4 | USEPA IRIS [19] |
Manganese (Mn) | 4.3 × 10−2 | WHO Air Quality Guidelines [20] |
Year | Season | Wind Speed (m/s) | Max Wind Speed (m/s) | Temperature (°C) | UV Radiation (W/m2) | Rainfall (mm) |
---|---|---|---|---|---|---|
2020 | Winter | 2.8 ± 0.36 | 6.5 ± 0.56 | 29.8 ± 1.19 | 260 ± 7.91 | 32 ± 2.86 |
Spring | 3.1 ± 0.32 | 7.2 ± 0.51 | 32.1 ± 1.11 | 275 ± 10.37 | 18 ± 3.16 | |
Summer | 3.5 ± 0.27 | 7.8 ± 0.4 | 35.4 ± 1.08 | 290 ± 12.04 | 5 ± 1.58 | |
Autumn | 3.0 ± 0.32 | 6.8 ± 0.59 | 31.0 ± 0.97 | 270 ± 7.91 | 20 ± 1.92 | |
2021 | Winter | 3.0 ± 0.36 | 7.0 ± 0.56 | 30.5 ± 1.19 | 265 ± 7.91 | 30 ± 2.86 |
Spring | 3.3 ± 0.32 | 7.5 ± 0.51 | 32.8 ± 1.11 | 280 ± 10.37 | 16 ± 3.16 | |
Summer | 3.7 ± 0.27 | 8.0 ± 0.4 | 36.1 ± 1.08 | 295 ± 12.04 | 6 ± 1.58 | |
Autumn | 3.2 ± 0.32 | 7.2 ± 0.59 | 31.6 ± 0.97 | 275 ± 7.91 | 19 ± 1.92 | |
2022 | Winter | 3.2 ± 0.36 | 7.2 ± 0.56 | 31.2 ± 1.19 | 270 ± 7.91 | 28 ± 2.86 |
Spring | 3.5 ± 0.32 | 7.8 ± 0.51 | 33.4 ± 1.11 | 285 ± 10.37 | 14 ± 3.16 | |
Summer | 3.9 ± 0.27 | 8.3 ± 0.4 | 36.7 ± 1.08 | 300 ± 12.04 | 7 ± 1.58 | |
Autumn | 3.4 ± 0.32 | 7.6 ± 0.59 | 32.1 ± 0.97 | 280 ± 7.91 | 18 ± 1.92 | |
2023 | Winter | 3.5 ± 0.36 | 7.5 ± 0.56 | 32.0 ± 1.19 | 275 ± 7.91 | 26 ± 2.86 |
Spring | 3.7 ± 0.32 | 8.1 ± 0.51 | 34.0 ± 1.11 | 295 ± 10.37 | 12 ± 3.16 | |
Summer | 4.0 ± 0.27 | 8.5 ± 0.4 | 37.3 ± 1.08 | 310 ± 12.04 | 8 ± 1.58 | |
Autumn | 3.6 ± 0.32 | 7.9 ± 0.59 | 32.7 ± 0.97 | 285 ± 7.91 | 17 ± 1.92 | |
2024 | Winter | 3.7 ± 0.36 | 8.0 ± 0.56 | 32.8 ± 1.19 | 280 ± 7.91 | 25 ± 2.86 |
Spring | 3.9 ± 0.32 | 8.5 ± 0.51 | 35.0 ± 1.11 | 300 ± 10.37 | 10 ± 3.16 | |
Summer | 4.2 ± 0.27 | 8.8 ± 0.4 | 38.2 ± 1.08 | 320 ± 12.04 | 9 ± 1.58 | |
Autumn | 3.8 ± 0.32 | 8.3 ± 0.59 | 33.5 ± 0.97 | 290 ± 7.91 | 15 ± 1.92 |
Year | PM10 (µg/m3) ± SD | 95% CI (PM10) | PM2.5 (µg/m3) ± SD | 95% CI (PM2.5) | p-Value |
---|---|---|---|---|---|
2020 | 127.7 ± 14.2 | 125.1–130.3 | 100.7 ± 18.7 | 97.3–104.1 | <0.01 |
2021 | 130.2 ± 13.9 | 127.8–132.6 | 103.5 ± 19.2 | 99.8–107.2 | <0.01 |
2022 | 132.9 ± 14.5 | 130.3–135.5 | 105.9 ± 20.1 | 101.5–110.3 | <0.01 |
2023 | 135.5 ± 15.1 | 132.6–138.4 | 107.2 ± 21.0 | 102.6–111.8 | <0.01 |
2024 | 138.3 ± 15.7 | 135.2–141.4 | 109.8 ± 21.3 | 104.9–114.7 | <0.01 |
Year | Cd | Cr VI | As | Be | Ni | Pb | Co | Sb | Mn |
---|---|---|---|---|---|---|---|---|---|
2020 | 0.098 ± 0.012 | 0.008 ± 0.001 | 0.016 ± 0.002 | 0.030 ± 0.003 | 0.012 ± 0.003 | 0.025 ± 0.004 | 0.009 ± 0.002 | 0.007 ± 0.001 | 0.055 ± 0.005 |
2021 | 0.102 ± 0.013 | 0.009 ± 0.001 | 0.017 ± 0.002 | 0.031 ± 0.003 | 0.013 ± 0.003 | 0.027 ± 0.004 | 0.010 ± 0.002 | 0.008 ± 0.001 | 0.057 ± 0.005 |
2022 | 0.107 ± 0.014 | 0.010 ± 0.001 | 0.018 ± 0.002 | 0.032 ± 0.003 | 0.014 ± 0.003 | 0.030 ± 0.005 | 0.011 ± 0.002 | 0.009 ± 0.001 | 0.059 ± 0.006 |
2023 | 0.111 ± 0.015 | 0.011 ± 0.001 | 0.019 ± 0.002 | 0.034 ± 0.003 | 0.015 ± 0.003 | 0.032 ± 0.005 | 0.012 ± 0.002 | 0.010 ± 0.001 | 0.061 ± 0.006 |
2024 | 0.115 ± 0.015 | 0.012 ± 0.001 | 0.020 ± 0.002 | 0.035 ± 0.003 | 0.016 ± 0.003 | 0.034 ± 0.005 | 0.013 ± 0.002 | 0.011 ± 0.001 | 0.063 ± 0.006 |
Year | PM10 (µg/m3) | Excess Cancer Risk (ECR) | Total ECR | R (PM10 vs. ECR) | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | Cr | As | Be | Ni | Pb | Co | Sb | Mn | |||||
2020 | 127.7 ± 14.2 | 1.08 × 10−4 | 7.21 × 10−4 | 4.4 × 10−6 | 4.6 × 10−6 | 2.4 × 10−6 | 3.8 × 10−4 | 9.0 × 10−6 | 9.9 × 10−6 | 2.4 × 10−6 | 1.12 × 10−3 | 0.85 | <0.01 |
2021 | 130.9 ± 15.0 | 1.14 × 10−4 | 7.89 × 10−4 | 4.7 × 10−6 | 5.0 × 10−6 | 2.6 × 10−6 | 4.0 × 10−4 | 9.5 × 10−6 | 1.0 × 10−2 | 2.5 × 10−6 | 1.20 × 10−3 | 0.87 | <0.01 |
2022 | 134.5 ± 15.2 | 1.17 × 10−4 | 8.10 × 10−4 | 4.9 × 10−6 | 5.3 × 10−6 | 2.8 × 10−6 | 4.2 × 10−4 | 9.8 × 10−6 | 1.1 × 10−2 | 2.6 × 10−6 | 1.27 × 10−3 | 0.87 | <0.01 |
2023 | 136.8 ± 16.1 | 1.23 × 10−4 | 8.30 × 10−4 | 5.2 × 10−6 | 5.6 × 10−6 | 3.0 × 10−6 | 4.4 × 10−4 | 1.0 × 10−2 | 1.2 × 10−2 | 2.7 × 10−6 | 1.35 × 10−3 | 0.91 | <0.01 |
2024 | 138.3 ± 15.7 | 1.30 × 10−4 | 8.47 × 10−4 | 5.5 × 10−6 | 5.9 × 10−6 | 3.2 × 10−6 | 4.6 × 10−4 | 1.1 × 10−2 | 1.3 × 10−2 | 2.8 × 10−6 | 1.42 × 10−3 | 0.93 | <0.01 |
Year | Season | PM10 | PM2.5 | Cd | Cr VI | As | Be | Ni | Pb | Co | Sb | Mn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | Winter | 139.5 ± 15.0 | 112.3 ± 19.1 | 0.105 | 0.009 | 0.018 | 0.030 | 0.014 | 0.030 | 0.009 | 0.007 | 0.055 |
Spring | 126.3 ± 14.1 | 98.9 ± 18.0 | 0.098 | 0.008 | 0.016 | 0.028 | 0.013 | 0.026 | 0.009 | 0.007 | 0.053 | |
Summer | 122.2 ± 13.1 | 95.4 ± 17.2 | 0.091 | 0.007 | 0.014 | 0.026 | 0.011 | 0.021 | 0.008 | 0.006 | 0.052 | |
Autumn | 130.7 ± 14.6 | 105.1 ± 18.5 | 0.098 | 0.008 | 0.016 | 0.028 | 0.013 | 0.026 | 0.009 | 0.007 | 0.053 | |
2021 | Winter | 141.1 ± 15.6 | 114.1 ± 20.0 | 0.107 | 0.010 | 0.019 | 0.031 | 0.015 | 0.032 | 0.010 | 0.008 | 0.057 |
Spring | 128.5 ± 14.6 | 100.2 ± 18.7 | 0.101 | 0.009 | 0.017 | 0.029 | 0.013 | 0.028 | 0.009 | 0.007 | 0.056 | |
Summer | 124.8 ± 14.0 | 98.2 ± 17.5 | 0.095 | 0.008 | 0.015 | 0.027 | 0.012 | 0.024 | 0.009 | 0.006 | 0.054 | |
Autumn | 132.9 ± 15.0 | 108.3 ± 19.1 | 0.101 | 0.009 | 0.017 | 0.029 | 0.013 | 0.028 | 0.009 | 0.007 | 0.056 | |
2022 | Winter | 143.3 ± 15.3 | 115.9 ± 21.1 | 0.110 | 0.010 | 0.019 | 0.032 | 0.016 | 0.034 | 0.011 | 0.009 | 0.059 |
Spring | 130.2 ± 14.9 | 102.3 ± 19.4 | 0.104 | 0.009 | 0.018 | 0.03 | 0.014 | 0.03 | 0.01 | 0.008 | 0.057 | |
Summer | 127.4 ± 14.5 | 100.4 ± 18.3 | 0.098 | 0.008 | 0.016 | 0.028 | 0.013 | 0.026 | 0.009 | 0.007 | 0.056 | |
Autumn | 135.5 ± 15.1 | 110.9 ± 19.9 | 0.104 | 0.009 | 0.018 | 0.03 | 0.014 | 0.03 | 0.01 | 0.008 | 0.057 | |
2023 | Winter | 145.6 ± 16.0 | 117.7 ± 21.5 | 0.113 | 0.011 | 0.020 | 0.034 | 0.017 | 0.035 | 0.012 | 0.010 | 0.061 |
Spring | 132.4 ± 15.3 | 104.7 ± 19.8 | 0.107 | 0.01 | 0.018 | 0.032 | 0.015 | 0.032 | 0.011 | 0.009 | 0.059 | |
Summer | 129.7 ± 14.8 | 102.6 ± 19.0 | 0.100 | 0.009 | 0.016 | 0.029 | 0.014 | 0.028 | 0.010 | 0.008 | 0.058 | |
Autumn | 137.8 ± 15.4 | 112.5 ± 20.2 | 0.107 | 0.01 | 0.018 | 0.032 | 0.015 | 0.032 | 0.011 | 0.009 | 0.059 | |
2024 | Winter | 147.8 ± 16.4 | 119.5 ± 21.7 | 0.117 | 0.012 | 0.020 | 0.035 | 0.018 | 0.037 | 0.013 | 0.011 | 0.063 |
Spring | 134.1 ± 15.6 | 106.5 ± 20.3 | 0.11 | 0.01 | 0.019 | 0.033 | 0.017 | 0.034 | 0.012 | 0.01 | 0.061 | |
Summer | 131.8 ± 15.2 | 104.9 ± 19.6 | 0.103 | 0.009 | 0.017 | 0.030 | 0.015 | 0.030 | 0.011 | 0.009 | 0.060 | |
Autumn | 139.9 ± 15.8 | 114.1 ± 20.5 | 0.11 | 0.01 | 0.019 | 0.033 | 0.017 | 0.034 | 0.012 | 0.01 | 0.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adly, H.M.; Saleh, S.A.K. Long-Term Trends in PM10, PM2.5, and Trace Elements in Ambient Air: Environmental and Health Risks from 2020 to 2024. Atmosphere 2025, 16, 415. https://doi.org/10.3390/atmos16040415
Adly HM, Saleh SAK. Long-Term Trends in PM10, PM2.5, and Trace Elements in Ambient Air: Environmental and Health Risks from 2020 to 2024. Atmosphere. 2025; 16(4):415. https://doi.org/10.3390/atmos16040415
Chicago/Turabian StyleAdly, Heba M., and Saleh A. K. Saleh. 2025. "Long-Term Trends in PM10, PM2.5, and Trace Elements in Ambient Air: Environmental and Health Risks from 2020 to 2024" Atmosphere 16, no. 4: 415. https://doi.org/10.3390/atmos16040415
APA StyleAdly, H. M., & Saleh, S. A. K. (2025). Long-Term Trends in PM10, PM2.5, and Trace Elements in Ambient Air: Environmental and Health Risks from 2020 to 2024. Atmosphere, 16(4), 415. https://doi.org/10.3390/atmos16040415