Response of Vegetation Net Primary Productivity to Extreme Climate in a Climate Transition Zone: Evidence from the Qinling Mountains
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Study Methods
2.3.1. Trend Analysis
2.3.2. Attribution Analysis
2.3.3. Pearson Correlation Analysis
2.3.4. Spatial Autocorrelation Analysis
3. Results
3.1. Spatial and Temporal Variation in NPP
3.2. Spatial and Temporal Variation in Extreme Climate Indexes
3.3. Spatio-Temporal Correlation and Hot Spot Analysis of Extreme Climate Index
3.4. Relative Contribution of Extreme Climate Indices
3.5. Absolute Contribution of Extreme Climate Indices
4. Discussion
4.1. Changes in NPP and Driving Background
4.2. Mechanisms of the Influence of Extreme Temperature Indices on NPP
4.3. Regional Differential Responses to Extreme Precipitation Indices
4.4. The Spatial Autocorrelation Characteristics of Extreme Climate Events
4.5. Limitation and Prospect
5. Conclusions
- (1)
- From 2001 to 2023, the multi-year average NPP in the Qinling region was 558.43 ± 134.27 gC·m−2·year−1, with a statistically significant upward trend at a rate of 5.44 gC·m−2·year−1. Among the subregions, the order of NPP performance was QL_Sx > QL_Gs > QL_Hn, indicating notable differences in vegetation productivity trends across the region.
- (2)
- During the period 1960–2023, all temperature-related extreme indices (ID, TN10p, TR, and CSDI) showed significant downward trends (ranging from −0.49 to −1.19 days/decade, p < 0.05), while the extreme precipitation index R20 exhibited a significant upward trend (+0.28 days/decade, p < 0.05). Other precipitation indices showed no statistically significant trends, suggesting that changes in temperature extremes have been more pronounced than those in precipitation.
- (3)
- Pearson correlation analysis indicated strong positive correlations among temperature-related indices (e.g., TR and TN10p, r = 0.636, p < 0.001), with even stronger correlations among precipitation indices (e.g., R10 and R20, r = 0.880, p < 0.001). CDD showed negative correlations with precipitation intensity indices. Spatial autocorrelation analysis revealed that the Moran’s I values for precipitation indices generally remained above 0.60, reflecting consistent spatial clustering. In contrast, the spatial patterns of temperature indices exhibited greater temporal variability.
- (4)
- The relative contributions of individual extreme climate indices to NPP variation across the region were ranked as follows: TN10p (29.43%) > R10 (17.64%) > R20 (13.12%) > TR (11.71%) > CDD (10.41%) > CSDI (7.98%) > Rx5day (7.52%) > ID (2.19%). Spatial analysis showed that TN10p had the highest average positive absolute contribution to NPP (3.53 gC·m−2·year−1), while R10 contributed notably in the QL_Gs and QL_Sx subregions (2.27 and 2.44 gC·m−2·year−1, respectively). In contrast, Rx5day exhibited a negative contribution to NPP (–0.77 gC·m−2·year−1). Temperature-related indices played a more dominant role in NPP variation in QL_Sx and QL_Hn, whereas precipitation-related indices were the primary drivers in QL_Gs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiao, K.; Liu, Z.; Wang, W.; Yu, K.; Mcgrath, M.J.; Xu, W. Carbon Cycle Responses to Climate Change across China’s Terrestrial Ecosystem: Sensitivity and Driving Process. Sci. Total Environ. 2024, 915, 170053. [Google Scholar] [CrossRef]
- La Sorte, F.A.; Johnston, A.; Ault, T.R. Global Trends in the Frequency and Duration of Temperature Extremes. Clim. Change 2021, 166, 1. [Google Scholar] [CrossRef]
- Abunyewah, M.; Gajendran, T.; Erdiaw-Kwasie, M.O.; Baah, C.; Okyere, S.A.; Kankanamge, A.K.S.U. The Multidimensional Impacts of Heatwaves on Human Ecosystems: A Systematic Literature Review and Future Research Direction. Environ. Sci. Policy 2025, 165, 104024. [Google Scholar] [CrossRef]
- Luo, M.; Zhang, S.; Li, R.; Lin, X.; Wang, S.; Yang, L.; Fang, K. Global Vegetation Productivity Has Become Less Sensitive to Drought in the First Two Decades of the 21st Century. Int. J. Appl. Earth Obs. Geoinf. 2024, 135, 104297. [Google Scholar] [CrossRef]
- Deng, S.; Zhao, D.; Chen, Z.; Liu, L.; Zhu, Y.; Wang, K.; Gao, X.; Wu, H.; Zheng, D. Global Distribution and Projected Variations of Compound Drought-Extreme Precipitation Events. Earth’s Future 2024, 12, e2024EF004809. [Google Scholar] [CrossRef]
- van der Woude, A.M.; Peters, W.; Joetzjer, E.; Lafont, S.; Koren, G.; Ciais, P.; Ramonet, M.; Xu, Y.; Bastos, A.; Botía, S.; et al. Temperature Extremes of 2022 Reduced Carbon Uptake by Forests in Europe. Nat. Commun. 2023, 14, 6218. [Google Scholar] [CrossRef]
- Duan, A.; Zhong, Y.; Xu, G.; Yang, K.; Tian, B.; Wu, Y.; Bai, H.; Hu, E. Quantifying the 2022 Extreme Drought in the Yangtze River Basin Using GRACE-FO. J. Hydrol. 2024, 630, 130680. [Google Scholar] [CrossRef]
- Qu, Q.; Xu, H.; Ai, Z.; Wang, M.; Wang, G.; Liu, G.; Geissen, V.; Ritsema, C.J.; Xue, S. Impacts of Extreme Weather Events on Terrestrial Carbon and Nitrogen Cycling: A Global Meta-Analysis. Environ. Pollut. 2023, 319, 120996. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Zhang, Q.; Zhang, S.; Tan, J.; Zhang, Y.; Ren, Z.; Yang, Y.; Che, T. Effects of Extreme Temperature Events on Carbon Fluxes in Different Ecosystems in the Heihe River Basin, China. Agric. For. Meteorol. 2025, 362, 110380. [Google Scholar] [CrossRef]
- Yin, H.; Sun, Y. Characteristics of Extreme Temperature and Precipitation in China in 2017 Based on ETCCDI Indices. Adv. Clim. Change Res. 2018, 9, 218–226. [Google Scholar] [CrossRef]
- Li, H.; Hu, Y. Batunacun Responses of Vegetation Low-Growth to Extreme Climate Events on the Mongolian Plateau. Glob. Ecol. Conserv. 2024, 56, e03292. [Google Scholar] [CrossRef]
- Wang, X.; Wu, L.; Liu, H. Extreme Temperature Index in China from a Statistical Perspective: Change Characteristics and Trend Analysis from 1961 to 2021. Atmosphere 2024, 15, 1398. [Google Scholar] [CrossRef]
- Zahra, N.; Hafeez, M.B.; Ghaffar, A.; Kausar, A.; Zeidi, M.A.; Siddique, K.H.M.; Farooq, M. Plant Photosynthesis under Heat Stress: Effects and Management. Environ. Exp. Bot. 2023, 206, 105178. [Google Scholar] [CrossRef]
- Qi, G.; Cong, N.; Qiu, T.; Rong, L.; Ren, P.; Xiao, J. Evaluation of Impact of Climate Extremes on Vegetation Change in Southwest China Considering Time-Lag Effect. Glob. Ecol. Conserv. 2025, 58, e03497. [Google Scholar] [CrossRef]
- Guo, W.; Huang, S.; Huang, Q.; She, D.; Shi, H.; Leng, G.; Li, J.; Cheng, L.; Gao, Y.; Peng, J. Precipitation and Vegetation Transpiration Variations Dominate the Dynamics of Agricultural Drought Characteristics in China. Sci. Total Environ. 2023, 898, 165480. [Google Scholar] [CrossRef]
- Xu, C.; McDowell, N.G.; Fisher, R.A.; Wei, L.; Sevanto, S.; Christoffersen, B.O.; Weng, E.; Middleton, R.S. Increasing Impacts of Extreme Droughts on Vegetation Productivity under Climate Change. Nat. Clim. Change 2019, 9, 948–953. [Google Scholar] [CrossRef]
- He, Y.; Yan, W.; Cai, Y.; Deng, F.; Qu, X.; Cui, X. How Does the Net Primary Productivity Respond to the Extreme Climate under Elevation Constraints in Mountainous Areas of Yunnan, China? Ecol. Indic. 2022, 138, 108817. [Google Scholar] [CrossRef]
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate Extremes and the Carbon Cycle. Nature 2013, 500, 287–295. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Z.; Yang, M.; Hao, T.; Yu, G.; Zhu, X.; Zhang, W.; Ma, L.; Dou, X.; Lin, Y.; et al. Precipitation Consistently Promotes, but Temperature Oppositely Drives Carbon Fluxes in Temperate and Alpine Grasslands in China. Agric. For. Meteorol. 2024, 344, 109811. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, H. Climate Change-Driven Spatiotemporal Dynamics of Landscape Ecological in the Qinling Mountains (1980–2023). Land 2025, 14, 1008. [Google Scholar] [CrossRef]
- Dong, Y.; Shi, X.; Sun, S.; Sun, J.; Hui, B.; He, D.; Chong, F.; Yang, Z. Co-Evolution of the Cenozoic Tectonics, Geomorphology, Environment and Ecosystem in the Qinling Mountains and Adjacent Areas, Central China. Geosyst. Geoenviron. 2022, 1, 100032. [Google Scholar] [CrossRef]
- Chen, L.; Li, Z.; Zhang, C.; Fu, X.; Ma, J.; Zhou, M.; Peng, J. Spatiotemporal Changes of Vegetation in the Northern Foothills of Qinling Mountains Based on kNDVI Considering Climate Time-Lag Effects and Human Activities. Environ. Res. 2025, 270, 120959. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Singh, V.P.; Xiao, M. Spatio-Temporal Relations between Temperature and Precipitation Regimes: Implications for Temperature-Induced Changes in the Hydrological Cycle. Glob. Planet. Change 2013, 111, 57–76. [Google Scholar] [CrossRef]
- Guo, Z.; Shi, Y.; Liu, T.; Zhang, Y.; Yan, Y. Analysis of Spatiotemporal Patterns and Driving Factors of NPP on the Northern Slope of the Qinling Mountains from 2001 to 2020. Ecol. Environ. Sci. 2025, 34, 401. [Google Scholar] [CrossRef]
- Wang, J.; Zhuo, J.; He, H.; Dong, J. 2000–2013 Spatial and Temporal Distribution Characteristics of Net Primary Productivity of Vegetation in Qinling Mountains Forest Area and Its Driving Factors. J. Northwest For. Univ. 2024, 31, 238–245. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; Meehl, G.A. Extreme Weather and Climate Events with Ecological Relevance: A Review. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160135. [Google Scholar] [CrossRef]
- Cheng, C.; Zhou, C.; Li, B.; Shen, Y. Geomorphological Regionalization Theory System and Division Methodology of China. Acta Geogr. Sin. 2019, 74, 839–856. [Google Scholar] [CrossRef]
- Deng, C.; Bai, H.; Zhai, D.; Gao, S.; Huang, X.; Meng, Q.; He, Y. Variation in plant phenology in the QinLing Mountains from 1964-2015 in the context of climate change. Acta Ecol. Sin. 2017, 37, 7882–7893. [Google Scholar] [CrossRef]
- Zhang, B. Ten major scientific issues concerning the study of China’s north- south transitional zone. Prog. Geogr. 2019, 38, 305–311. [Google Scholar] [CrossRef]
- Aryal, A.; Pandey, V.P.; Talchabhadel, R.; Thapa, B.R. Hydro-Climatic Extremes in a Medium Range River Basin in Western Nepal: Learning from Analysis of Observed Data. Stoch. Environ. Res. Risk Assess. 2024, 38, 85–105. [Google Scholar] [CrossRef]
- Dike, V.N.; Lin, Z.-H.; Ibe, C.C. Intensification of Summer Rainfall Extremes over Nigeria during Recent Decades. Atmosphere 2020, 11, 1084. [Google Scholar] [CrossRef]
- Ren, J.; Tong, S.; Bao, Y.; Guo, X. Changes of Extreme Climate and Its Effect on Net Primary Productivity in Inner Mongolia. Chin. J. Ecol. 2021, 40, 2410. [Google Scholar] [CrossRef]
- Xia, B.; Ma, P.; Xu, C.; Zhang, L. Spatiotemporal Variation of NPP and Its Response to Extreme Climate Indices in Yellow River Basin in Recent 20 Years. Res. Soil Water Conserv. 2023, 30, 256–266. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Biometrika 1957, 44, 298. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Y.; Wu, C.; Li, G.; Ma, M.; Fan, L.; Zheng, H.; Song, L.; Tang, X. Exploring the Contribution of Environmental Factors to Evapotranspiration Dynamics in the Three-River-Source Region, China. J. Hydrol. 2023, 626, 130222. [Google Scholar] [CrossRef]
- Walker, E.; Birch, J.B. Influence Measures in Ridge Regression. Technometrics 1988, 30, 221–227. [Google Scholar] [CrossRef]
- Zhang, M.; Li, W.; Zhang, L.; Jin, H.; Mu, Y.; Wang, L. A Pearson Correlation-Based Adaptive Variable Grouping Method for Large-Scale Multi-Objective Optimization. Inf. Sci. 2023, 639, 118737. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Z.; Niu, L.; Dong, W.; Xiao, S.; Chen, S.; Zhao, J.; Wu, D.; Zhou, A. GDGTs-Based Quantitative Reconstruction of Water Level Changes and Precipitation at Daye Lake, Qinling Mountains (Central-East China), over the Past 2000 Years. Quat. Sci. Rev. 2021, 267, 107099. [Google Scholar] [CrossRef]
- Qi, G.; Song, J.; Li, Q.; Bai, H.; Sun, H.; Zhang, S.; Cheng, D. Response of Vegetation to Multi-Timescales Drought in the Qinling Mountains of China. Ecol. Indic. 2022, 135, 108539. [Google Scholar] [CrossRef]
- Shen, M.; Tang, Y.; Chen, J.; Zhu, X.; Zheng, Y. Influences of Temperature and Precipitation before the Growing Season on Spring Phenology in Grasslands of the Central and Eastern Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2011, 151, 1711–1722. [Google Scholar] [CrossRef]
- Yang, F.; Wang, N.; Shi, F.; Ljungqvist, F.C.; Zhao, S.; Liu, T. The Spatial Distribution of Precipitation over the West Qinling Region, China, AD 1470–2000. Palaeogeogr. Palaeoclim. Palaeoecol. 2016, 443, 278–285. [Google Scholar] [CrossRef]
- Boretti, A. Evaluating Water Use Efficiency and CO2 Absorption in Plants under Rising Atmospheric Carbon Dioxide Levels. J. Atmos. Sol. Terr. Phys. 2025, 266, 106409. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Jiang, Q.; Wang, Z. Sensitivity of Gross Primary Production to Precipitation and the Driving Factors in China’s Agricultural Ecosystems. Sci. Total Environ. 2024, 948, 174938. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, W.; Wang, L.; Schurgers, G.; Ciais, P.; Peñuelas, J.; Brandt, M.; Yang, H.; Huang, K.; Shen, Q.; et al. Global Increase in the Optimal Temperature for the Productivity of Terrestrial Ecosystems. Commun. Earth Environ. 2024, 5, 466. [Google Scholar] [CrossRef]
- Liu, M.; Zhai, H.; Zhang, X.; Dong, X.; Hu, J.; Ma, J.; Sun, W. Time-Lag and Accumulation Responses of Vegetation Growth to Average and Extreme Precipitation and Temperature Events in China between 2001 and 2020. Sci. Total Environ. 2024, 945, 174084. [Google Scholar] [CrossRef] [PubMed]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of Extreme Precipitation Increases Extensively with Event Rareness under Global Warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef] [PubMed]
- Yuxi, W.; Li, P.; Yuemin, Y.; Tiantian, C. Global Vegetation-Temperature Sensitivity and Its Driving Forces in the 21st Century. Earth’s Future 2024, 12, e2022EF003395. [Google Scholar] [CrossRef]
- Yu, M.; Luobu, Z.; Zhuoga, D.; Wei, X.; Tang, Y. Advances in Plant Response to Low-Temperature Stress. Plant Growth Regul. 2025, 105, 167–185. [Google Scholar] [CrossRef]
- Bernacchi, C.J.; Ruiz-Vera, U.M.; Siebers, M.H.; DeLucia, N.J.; Ort, D.R. Short- and Long-Term Warming Events on Photosynthetic Physiology, Growth, and Yields of Field Grown Crops. Biochem. J. 2023, 480, 999–1014. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, F.; Lettenmaier, D.P.; Xu, J.; Xiao, L.; Li, X. Does Elevation-Dependent Warming Hold True above 5000 m Elevation? Lessons from the Tibetan Plateau. Npj Clim. Atmos. Sci. 2018, 1, 19. [Google Scholar] [CrossRef]
- Yang, T.; Qin, J.; Li, X.; Zhou, X.; Lu, Y. Ecological and Vegetation Responses in a Humid Region in Southern China during a Historic Drought. J. Environ. Manag. 2024, 371, 122986. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Ballantyne, A.P.; Smith, W.K.; Majkut, J.; Rabin, S.; Beaulieu, C.; Birdsey, R.; Dunne, J.P.; Houghton, R.A.; Myneni, R.B.; et al. Tropical Nighttime Warming as a Dominant Driver of Variability in the Terrestrial Carbon Sink. Proc. Natl. Acad. Sci. USA 2015, 112, 15591–15596. [Google Scholar] [CrossRef]
- López, R.; Ramírez-Valiente, J.A.; Pita, P. How Plants Cope with Heatwaves in a Drier Environment. Flora 2022, 295, 152148. [Google Scholar] [CrossRef]
- Ahluwalia, O.; Singh, P.C.; Bhatia, R. A Review on Drought Stress in Plants: Implications, Mitigation and the Role of Plant Growth Promoting Rhizobacteria. Resour. Environ. Sustain. 2021, 5, 100032. [Google Scholar] [CrossRef]
- Zhong, R.; Yan, K.; Gao, S.; Yang, K.; Zhao, S.; Ma, X.; Zhu, P.; Fan, L.; Yin, G. Response of Grassland Growing Season Length to Extreme Climatic Events on the Qinghai-Tibetan Plateau. Sci. Total Environ. 2024, 909, 168488. [Google Scholar] [CrossRef]
- Li, S.; Chen, Y.; Wei, W.; Fang, G.; Duan, W. The Increase in Extreme Precipitation and Its Proportion over Global Land. J. Hydrol. 2024, 628, 130456. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Y.-G.; Zou, B.; Xu, M.; Feng, Y.-X. Unraveling the Enigma of NPP Variation in Chinese Vegetation Ecosystems: The Interplay of Climate Change and Land Use Change. Sci. Total Environ. 2024, 912, 169023. [Google Scholar] [CrossRef]
- Guo, Q.; Hu, Z.; Li, S.; Yu, G.; Sun, X.; Zhang, L.; Mu, S.; Zhu, X.; Wang, Y.; Li, Y.; et al. Contrasting Responses of Gross Primary Productivity to Precipitation Events in a Water-Limited and a Temperature-Limited Grassland Ecosystem. Agric. For. Meteorol. 2015, 214–215, 169–177. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, J.; Meng, X.; Xu, T.; Song, Y. Long-Term Spatio-Temporal Precipitation Variations in China with Precipitation Surface Interpolated by ANUSPLIN. Sci. Rep. 2020, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhang, Y.; Wang, Y.; Luo, X.; Liang, X.; Huang, X.; Zhao, Y.; Zhou, X.; Li, J. Ecosystem Photosynthesis Depends on Increased Water Availability to Enhance Carbon Assimilation in Semiarid Desert Steppe in Northern China. Glob. Ecol. Conserv. 2022, 38, e02202. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, H.; Wang, T.; Xu, Y.; Huang, C.; Dan, S. Spatiotemporal Variations of Global Precipitation Concentration and Potential Links to Flood-Drought Events in Past 70 Years. Atmos. Res. 2025, 321, 108086. [Google Scholar] [CrossRef]
- Smith, T.; Bookhagen, B. Climatic and Biotic Controls on Topographic Asymmetry at the Global Scale. J. Geophys. Res. Earth Surf. 2021, 126, e2020JF005692. [Google Scholar] [CrossRef]
- Liang, Q.; Chen, Y.; Duan, W.; Wang, C.; Li, Y.; Zhu, J.; He, G.; Wei, W.; Yuan, M. Temporal and Spatial Changes of Extreme Precipitation and Its Related Large-Scale Climate Mechanisms in the Arid Region of Northwest China during 1961–2022. J. Hydrol. 2025, 658, 133182. [Google Scholar] [CrossRef]
- Velpuri, M.; Das, J.; Umamahesh, N.V. Spatio-Temporal Compounding of Connected Extreme Events: Projection and Hotspot Identification. Environ. Res. 2023, 235, 116615. [Google Scholar] [CrossRef]
- Liu, Y.; Chu, C.; Zhang, R.; Chen, S.; Xu, C.; Zhao, D.; Meng, C.; Ju, M.; Cao, Z. Impacts of High-Albedo Urban Surfaces on Outdoor Thermal Environment across Morphological Contexts: A Case of Tianjin, China. Sustain. Cities Soc. 2024, 100, 105038. [Google Scholar] [CrossRef]
- Tam, B.Y.; Gough, W.A.; Mohsin, T. The Impact of Urbanization and the Urban Heat Island Effect on Day to Day Temperature Variation. Urban Clim. 2015, 12, 1–10. [Google Scholar] [CrossRef]
- Lehner, S.; Enigl, K.; Schlögl, M. Derivation of Characteristic Physioclimatic Regions through Density-Based Spatial Clustering of High-Dimensional Data. Environ. Model. Softw. 2025, 186, 106324. [Google Scholar] [CrossRef]
- Guo, W.; Huang, S.; Huang, Q.; Leng, G.; Mu, Z.; Han, Z.; Wei, X.; She, D.; Wang, H.; Wang, Z.; et al. Drought Trigger Thresholds for Different Levels of Vegetation Loss in China and Their Dynamics. Agric. For. Meteorol. 2023, 331, 109349. [Google Scholar] [CrossRef]
- Gao, T.; Wang, H.J.; Zhou, T. Changes of Extreme Precipitation and Nonlinear Influence of Climate Variables over Monsoon Region in China. Atmos. Res. 2017, 197, 379–389. [Google Scholar] [CrossRef]
- Gong, H.; Cao, L.; Duan, Y.; Jiao, F.; Xu, X.; Zhang, M.; Wang, K.; Liu, H. Multiple Effects of Climate Changes and Human Activities on NPP Increase in the Three-North Shelter Forest Program Area. For. Ecol. Manag. 2023, 529, 120732. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, Z.; Liu, J.; Yan, Z.; Xu, C.-Y.; Jiang, Y.; Jia, Y.; Wang, H. A Novel Framework for Investigating the Mechanisms of Climate Change and Anthropogenic Activities on the Evolution of Hydrological Drought. Sci. Total Environ. 2023, 900, 165685. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Zhang, Y.; Wei, X.; Sun, M.; Ge, Z.-A. Anthropogenic Influence on the Occurrence of Extreme Drought like That in Eastern China in 2019. Atmos. Ocean. Sci. Lett. 2023, 16, 100296. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, G.; Wu, X.; Wang, L.; Xu, H.; Yang, S.; Wu, T.; Abakumov, E.; Zhao, J.; Cui, X.; et al. Spatiotemporal Variations in Compound Extreme Events and Their Cumulative and Lagged Effects on Vegetation in the Northern Permafrost Regions from 1982 to 2022. Remote Sens. 2025, 17, 169. [Google Scholar] [CrossRef]
- Zong, X.; Liu, Y.; Yin, Y. Identifying the Dominant Compound Events and Their Impacts on Vegetation Growth in China. Weather Clim. Extrem. 2024, 45, 100715. [Google Scholar] [CrossRef]















| Data | Data Source | Time Resolution | Spatial Resolution |
|---|---|---|---|
| Meteorological | https://data.cma.cn/ URL (accessed on 2 August 2024) | day | / |
| NPP | https://earthdata.nasa.gov/ URL (accessed on 17 August 2024) | year | 500 m |
| DEM | http://www.gscloud.cn/ URL (accessed on 17 August 2024) | / | 30 m |
| ID/Units | Indicator Name | Definitions |
|---|---|---|
| CSDI/d | Cold-spell duration indicator | Annual count of days with at least 6 consecutive days when TN < 10th percentile |
| ID/d | Ice days | Annual count when TX (daily maximum) < 0 °C |
| TN10p/d | Cool nights | Percentage of days when TN < 10th percentile |
| TR/d | Tropical nights | Annual count when TN (daily minimum) > 20 °C |
| CDD/d | Consecutive dry days | Maximum number of consecutive days with RR < 1 mm |
| R10/d | Number of heavy precipitation days | Annual count of days when precipitation ≥ 10 mm |
| R20/d | Number of very heavy precipitation days | Annual count of days when precipitation ≥ 20 mm |
| Rx5day/mm | Max 5-day precipitation amount | Monthly maximum consecutive 5-day precipitation |
| Indices | Units | Average Regional Trends | Units | p |
|---|---|---|---|---|
| CSDI | d | −0.56 | days/decade | p < 0.05 |
| ID | d | −0.86 | days/decade | p < 0.05 |
| TR | d | −0.49 | days/decade | p < 0.05 |
| TN10p | d | −1.19 | days/decade | p < 0.05 |
| CDD | d | −0.28 | days/decade | p = 0.724 |
| R10 | d | 0.32 | days/decade | p = 0.179 |
| R20 | d | 0.28 | days/decade | p < 0.05 |
| Rx5day | mm | −0.04 | mm/decades | p = 0.946 |
| Regions | CSDI (%) | ID (%) | TR (%) | TN10p (%) | CDD (%) | R10 (%) | R20 (%) | Rx5day (%) |
|---|---|---|---|---|---|---|---|---|
| QL | 7.98 | 2.19 | 11.71 | 29.43 | 10.41 | 17.64 | 13.12 | 7.52 |
| QL_Gs | 6.70 | 2.33 | 5.10 | 23.56 | 15.62 | 21.89 | 16.23 | 8.57 |
| QL_Sx | 7.41 | 1.36 | 15.48 | 28.50 | 7.63 | 20.39 | 13.06 | 6.17 |
| QL_Hn | 10.96 | 3.26 | 16.85 | 40.61 | 6.07 | 6.30 | 8.05 | 7.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Hao, C. Response of Vegetation Net Primary Productivity to Extreme Climate in a Climate Transition Zone: Evidence from the Qinling Mountains. Atmosphere 2025, 16, 1208. https://doi.org/10.3390/atmos16101208
Zeng Q, Hao C. Response of Vegetation Net Primary Productivity to Extreme Climate in a Climate Transition Zone: Evidence from the Qinling Mountains. Atmosphere. 2025; 16(10):1208. https://doi.org/10.3390/atmos16101208
Chicago/Turabian StyleZeng, Qiuqiang, and Chengyuan Hao. 2025. "Response of Vegetation Net Primary Productivity to Extreme Climate in a Climate Transition Zone: Evidence from the Qinling Mountains" Atmosphere 16, no. 10: 1208. https://doi.org/10.3390/atmos16101208
APA StyleZeng, Q., & Hao, C. (2025). Response of Vegetation Net Primary Productivity to Extreme Climate in a Climate Transition Zone: Evidence from the Qinling Mountains. Atmosphere, 16(10), 1208. https://doi.org/10.3390/atmos16101208
