Spatiotemporal Evolution of the Aridity Index and Its Latitudinal Patterns in the Lancang River Basin, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Method
2.2.1. Aridity Index
2.2.2. Linear Tendency Rate
2.2.3. Detection of Trends
2.2.4. Change Point Test
2.2.5. Multiple Regression Approach
3. Results
3.1. AI Spatial Patterns
3.2. Climatological Changes
3.2.1. Basin-Wide AI Trends
3.2.2. Regional AI Trends
3.3. Climate Jump
3.3.1. Basin-Wide Climate Jump
3.3.2. Regional Climate Jump
3.4. Relationship Between AI and Latitude
3.4.1. Characteristics of Annual AI Variation with Latitude
3.4.2. Characteristics of Seasonal AI Variation with Latitude
3.5. Relationship Between Long-Term AI Changes and Latitude
3.5.1. Relationship Between Annual AI Tendency Rate and Latitude
3.5.2. Relationship Between Seasonal AI Tendency Rate and Latitude
3.6. Sensitivity Analysis
4. Discussion
4.1. Long-Term Trends of AI
4.2. Influence of Latitude on AI Spatial Distribution
4.3. Influence of Latitude on AI Tendency Rate
4.4. Characteristics of Climate Jump in AI and Regional Trends
4.5. Consideration of Elevational Factors in Latitudinal Analysis
5. Conclusions
- (1)
- The significant increase in spring AI in the LRB, coupled with non-significant changes in summer, autumn, and winter, resulted in a non-significant increasing trend in annual AI, indicating that the basin is becoming more humid. The dry-wet variations in the basin exhibit distinct seasonal differences.
- (2)
- The AI-latitude relationship in the Lancang River Basin demonstrates pronounced seasonal and spatial heterogeneity. South of 24.75° N, the relationship between AI and latitude consistently showed a negative correlation, whereas a consistently positive relationship was observed north of 30.5° N. In the central basin region, spring–winter and summer–autumn seasons displayed contrasting relationships. During spring and winter, approximately 27.25° N served as a boundary where AI showed opposite north–south relationship patterns: a positive correlation south of 27.25° N and a negative correlation north of 27.25° N. During summer and autumn, AI in the central basin did not exhibit this transitional pattern, with summer and autumn showing consistently negative and positive correlations, respectively.
- (3)
- The AI trend changes in the Lancang River Basin exhibit significant spatial differentiation characteristics. Using 27.5° N as the boundary line, the northern region shows a humidification trend that intensifies with increasing latitude. In seasonal variations, spring shows humidification across the entire basin, while summer and autumn exhibit a gradient change from aridification to humidification from south to north, with winter displaying the most significant north–south differentiation. Overall, the basin demonstrates a general humidification trend, with faster humidification rates in high-latitude areas closer to the Tibetan Plateau, indicating that latitude is an important geographic factor affecting dry-wet changes in the Lancang River Basin.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuhn, M.; Olefs, M. Elevation-Dependent Climate Change in the European Alps; Oxford University Press: Oxford, UK, 2020. [Google Scholar] [CrossRef]
- Pepin, N.C.; Arnone, E.; Gobiet, A.; Haslinger, K.; Kotlarski, S.; Notarnicola, C.; Palazzi, E.; Seibert, P.; Serafin, S.; Schöner, W.; et al. Climate Changes and Their Elevational Patterns in the Mountains of the World. Rev. Geophys. 2022, 60, e2020RG000730. [Google Scholar] [CrossRef]
- Antúnez, P. Evidence of the Variation in the Rate of Change of Temperature and Precipitation. Ecol. Inform. 2023, 73, 101928. [Google Scholar] [CrossRef]
- Ferguglia, O.; Palazzi, E.; Arnone, E. Elevation Dependent Change in ERA5 Precipitation and Its Extremes. Clim. Dyn. 2024, 62, 8137–8153. [Google Scholar] [CrossRef]
- Yao, J.; Yang, Q.; Mao, W.; Zhao, Y.; Xu, X. Precipitation Trend–Elevation Relationship in Arid Regions of the China. Glob. Planet. Change 2016, 143, 1–9. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Guo, X.; Chen, D. Does Summer Precipitation Trend over and around the Tibetan Plateau Depend on Elevation? Int. J. Climatol. 2017, 37, 1278–1284. [Google Scholar] [CrossRef]
- Bell, B.A.; Hughes, P.D.; Fletcher, W.J.; Cornelissen, H.L.; Rhoujjati, A.; Hanich, L.; Braithwaite, R.J. Climate of the Marrakech High Atlas, Morocco: Temperature Lapse Rates and Precipitation Gradient from Piedmont to Summits. Arct. Antarct. Alp. Res. 2022, 54, 78–95. [Google Scholar] [CrossRef]
- Feki, H.; Slimani, M.; Cudennec, C. Incorporating Elevation in Rainfall Interpolation in Tunisia Using Geostatistical Methods. Hydrol. Sci. J. 2012, 57, 1294–1314. [Google Scholar] [CrossRef]
- Yadav, M.; Dimri, A.P.; Mal, S.; Maharana, P. Elevation-Dependent Precipitation in the Indian Himalayan Region. Theor. Appl. Climatol. 2024, 155, 815–828. [Google Scholar] [CrossRef]
- Luo, L.; Zhao, Y.; Duan, Y.; Dan, Z.; Acharya, S.; Jimi, G.; Bai, P.; Yan, J.; Chen, L.; Yang, B.; et al. Relationships between Precipitation and Elevation in the Southeastern Tibetan Plateau during the Active Phase of the Indian Monsoon. Water 2024, 16, 2700. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 2015, 5, 424–430. [Google Scholar] [CrossRef]
- Portner, H.O.; Roberts, D.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Weyer, N.M. IPCC 2019: Special Report on the Ocean and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019. [Google Scholar]
- Ohmura, A. Enhanced Temperature Variability in High-Altitude Climate Change. Theor. Appl. Climatol. 2012, 110, 499–508. [Google Scholar] [CrossRef]
- Ahamed, M.R.A.; Maharana, P.; Dimri, A.P. Elevation Dependency of Precipitation and Temperature over Northeast India. Theor. Appl. Climatol. 2024, 155, 6409–6426. [Google Scholar] [CrossRef]
- Yan, L.; Liu, X. Has Climatic Warming over the Tibetan Plateau Paused or Continued in Recent Years? J. Earth Sci. 2014, 25, 1054–1062. [Google Scholar]
- Gheysouri, M.; Sigaroodi, S.K.; Salajegheh, A.; Choubin, B.; Liu, B. Orographic Changes in Precipitation Using Gradient-Based IMERG Data Assessment in the Alborz Mountains, Iran. Adv. Space Res. 2025, 75, 7800–7816. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, M.; Tao, B.; Li, K.R. The Characteristics of Spatio-Temporal Patterns in Precipitation in China under the Background of Global Climate Change. Geogr. Res. 2006, 25, 1031–1040. [Google Scholar] [CrossRef]
- Barry, R.G. Mountain Weather and Climate, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Zarch, M.A.A.; Sivakumar, B.; Sharma, A. Assessment of Global Aridity Change. J. Hydrol. 2015, 520, 300–313. [Google Scholar] [CrossRef]
- Bjohn, T.; Tscott, M.M.; Wang, X.; Ding, Y.; He, L.; Shao, M.; Xie, W. Review of aridity index in geographical ecology and its applications. Chin. J. Plant Ecol. 2004, 28, 853–861. [Google Scholar] [CrossRef]
- Blanco, P.S.; Doyle, M.E. Temporal Variability of Aridity in Argentina during the Period 1961–2020. Atmos. Res. 2024, 310, 107613. [Google Scholar] [CrossRef]
- Maity, S.S.; Shaw, R.P.; Maity, R. Climate Change May Cause Oasification or Desertification Both: An Analysis Based on the Spatio-Temporal Change in Aridity across India. Theor. Appl. Climatol. 2024, 155, 1167–1184. [Google Scholar] [CrossRef]
- Köppen, W. Versuch Einer Klassifikation Der Klimate, Vorzugsweise Nach Ihren Beziehungen Zur Pflanzenwelt. Geogr. Z. 1900, 6, 593–611. Available online: https://www.jstor.org/stable/27803924 (accessed on 25 March 2025).
- Herben, T.E.O. Box Macroclimate and Plant Forms: An Introduction to Predictive Modeling in Phytogeography. Folia Geobot. Et Phytotaxon. 1983, 18, 28. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Huang, H.; Han, Y.; Cao, M.; Song, J.; Xiao, H. Spatial-Temporal Variation of Aridity Index of China during 1960–2013. Adv. Meteorol. 2016, 2016, 1536135. [Google Scholar] [CrossRef]
- Koppa, A.; Keune, J.; Schumacher, D.L.; Michaelides, K.; Singer, M.; Seneviratne, S.I.; Miralles, D.G. Dryland Self-Expansion Enabled by Land–Atmosphere Feedbacks. Science 2024, 385, 967–972. [Google Scholar] [CrossRef]
- Li, M.; Chu, R.; Islam, A.R.M.T.; Jiang, Y.; Shen, S. Attribution Analysis of Long-Term Trends of Aridity Index in the Huai River Basin, Eastern China. Sustainability 2020, 12, 1743. [Google Scholar] [CrossRef]
- Nastos, P.T.; Politi, N.; Kapsomenakis, J. Spatial and Temporal Variability of the Aridity Index in Greece. Atmos. Res. 2013, 119, 140–152. [Google Scholar] [CrossRef]
- Liu, J.; Chen, D.; Mao, G.; Irannezhad, M.; Pokhrel, Y. Past and Future Changes in Climate and Water Resources in the Lancang–Mekong River Basin: Current Understanding and Future Research Directions. Engineering 2022, 13, 144–152. [Google Scholar] [CrossRef]
- Yu, W.J.; Huang, Y.L.; Shao, M.Y. Characteristics and fluctuation trends of extreme weather disasters in the Lancang River basin. Acta Ecol. Sin. 2015, 35, 10. [Google Scholar] [CrossRef]
- Li, B.; Li, L.; Qin, Y.; Liang, L.; Li, J.; Liu, Y.; Zeng, H. Sensitivity analysis of potential evapotranspiration in the Lancang River Basin. Resour. Sci. 2011, 33, 1256–1263. [Google Scholar]
- Grantham, R.W.; Rudd, M.A. Household Susceptibility to Hydrological Change in the Lower Mekong Basin. Nat. Resour. Forum 2017, 41, 3–17. [Google Scholar] [CrossRef]
- Suo, M.Q.; You, W.H.; Ma, X.W.; Luo, Q.X.; Duan, H. Analysis of precipitation characteristics in the Lancang River Basin under the in-fluence of longitudinal ridges and valleys. In Proceedings of the Annual Conference of the Chinese Meteorological Society, Beijing, China, 8–9 January 2004. [Google Scholar]
- Fan, L.; Wang, Y.; Cao, C.; Chen, W. Teleconnections of Atmospheric Circulations to Meteorological Drought in the Lancang-Mekong River Basin. Atmosphere 2024, 15, 89. [Google Scholar] [CrossRef]
- Luo, X.; Luo, X.; Ji, X.; Ming, W.; Wang, L.; Xiao, X.; Xu, J.; Liu, Y.; Li, Y. Meteorological and Hydrological Droughts in the Lancang-Mekong River Basin: Spatiotemporal Patterns and Propagation. Atmos. Res. 2023, 293, 106913. [Google Scholar] [CrossRef]
- Chen, S.; Li, L.; Li, J.; Liu, J. Analysis of spatiotemporal variation characteristics of precipitation in the Lancang River Basin over the past 55 years. J. Geo-Inf. Sci. 2017, 3, 365–373. [Google Scholar] [CrossRef]
- Gao, H.; Xiao, Z.; Zhao, L. Abrupt change of summer precipitation in the Lancang River Basin in the early 21st century and the corresponding atmospheric circulation anomalies. Clim. Environ. Res. 2019, 24, 513–524. [Google Scholar] [CrossRef]
- Li, B.; Li, L.; Li, H.; Liang, L.; Li, J.; Liu, Y.; Zeng, H. Characteristics of extreme precipitation changes in the Lancang River basin from 1960 to 2005. Prog. Geogr. 2011, 30, 9. [Google Scholar] [CrossRef]
- Bo, H.; Baoshan, C.; Shikui, D.; Hongjuan, Z.; Zhaoyang, L. Ecological Water Requirement (EWR) Analysis of High Mountain and Steep Gorge (HMSG) River—Application to Upper Lancang–Mekong River. Water Resour. Manag. 2009, 23, 341–366. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, T.; Chen, Q.; Han, X.; Weng, X.; He, P.; Zhou, Z.; Du, Y. Spatio-Temporal Changes in Daily Extreme Precipitation for the Lancang–Mekong River Basin. Nat. Hazards 2023, 115, 641–672. [Google Scholar] [CrossRef]
- Lai, C.; Wang, X. Quantitative Analysis of Vegetation Changes and Driving Factors in the Lancang River Basin. Bull. Soil Water Conserv. 2025, 45, 382–391. [Google Scholar]
- Zhou, W.; Han, G.; Liu, M.; Zeng, J.; Liang, B.; Liu, J.; Qu, R. Determining the Distribution and Interaction of Soil Organic Carbon, Nitrogen, pH and Texture in Soil Profiles: A Case Study in the Lancangjiang River Basin, Southwest China. Ests 2020, 11, 532. [Google Scholar] [CrossRef]
- Yun, X.; Tang, Q.; Wang, J.; Liu, X.; Zhang, Y.; Lu, H.; Wang, Y.; Zhang, L.; Chen, D. Impacts of Climate Change and Reservoir Operation on Streamflow and Flood Characteristics in the Lancang-Mekong River Basin. J. Hydrol. 2020, 590, 125472. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Viswanadhapalli, Y.; Dasari, H.P.; Langodan, S.; Challa, V.S.; Hoteit, I. Climatic Features of the Red Sea from a Regional Assimilative Model. Int. J. Climatol. 2016, 37, 2563–2581. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Ndayisaba, F.; Liu, T.; Jiapaer, G.; El-Tantawi, A.M.; Maeyer, P.D. Space-Time Characterization of Drought Events and Their Impacts on Vegetation in Central Asia. J. Hydrol. 2018, 564, 1165–1178. [Google Scholar] [CrossRef]
- Pour, S.H.; Wahab, A.K.A.; Shahid, S. Spatiotemporal Changes in Aridity and the Shift of Drylands in Iran. Atmos. Res. 2020, 233, 104704. [Google Scholar] [CrossRef]
- Müller, G.V.; Lovino, M.A.; Sgroi, L.C. Observed and Projected Changes in Temperature and Precipitation in the Core Crop Region of the Humid Pampa, Argentina. Climate 2021, 9, 40. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1,km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Zhao, C.; Nan, Z.; Feng, Z. GIS-assisted spatially distributed modeling of the potential evapotranspiration in semi-arid climate of the Chinese Loess Plateau. J. Arid Environ. 2004, 58, 387–403. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- FAO-56; Crop Evapotranspiration–Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998.
- Mann, H.B. Non-Parametric Tests against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measures; Charles Griffin: London, UK, 1975. [Google Scholar]
- Goossens, C.H.; Berger, A. Annual and seasonal climatic variations over the northern hemisphere and Europe during the last century. Ann. Geophys. 1986, 4, 385–400. [Google Scholar] [CrossRef]
- Pettitt, A.N. A Non-Parametric Approach to the Change-Point Problem. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 126–135. [Google Scholar]
- Nathans, L.L.; Oswald, F.L.; Nimon, K. Interpreting Multiple Linear Regression: A Guidebook of Variable Importance. Pract. Assess. Res. Eval. 2012, 17, 1–19. [Google Scholar]
- Bao, Z.; Zhang, J.; Lian, Y.; Wang, G.; Jin, J.; Ning, Z.; Zhang, J.; Liu, Y.; Wang, X. Changes in Headwater Streamflow from Impacts of Climate Change in the Tibetan Plateau. Engineering 2024, 34, 133–142. [Google Scholar] [CrossRef]
- Fan, H.; He, D. Temperature and Precipitation Variability and Its Effects on Streamflow in the Upstream Regions of the Lancang–Mekong and Nu–Salween Rivers. J. Hydrometeorol. 2015, 16, 2248–2263. [Google Scholar] [CrossRef]
- Qin, N.; Chen, X.; Fu, G.; Zhai, J.; Xue, X. Precipitation and Temperature Trends for the Southwest China: 1960–2007. Hydrol. Process. 2010, 24, 3733–3744. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, M.; Zhang, M.; Zhang, L.; Gu, L.; Zhang, Y. Enhanced Atmospheric Water Cycle Processes Induced by Climate Warming over the Three Rivers Source Region. Atmos. Res. 2023, 295, 107040. [Google Scholar] [CrossRef]
- Zheng, J.; Zhu, H.; Ren, J.; Zhang, W. Climatic characteristics and causes of “spring flood” in the northern part of Yunnan’s longitudinal range-gorge region. Resour. Sci. 2010, 32, 1478–1485. [Google Scholar]
- Tan, X.S.; Wang, J.; Tang, X.P.; Yang, N.; Luo, X.; Li, Y.; Wang, G.Q. Climate Change Trends and Runoff Response in Different Intervals of the Lancang-Mekong River Basin from 1960-2012. J. Water Resour. Water Eng. 2020, 31, 1–8. [Google Scholar]
- Zhang, Y.; Li, Y.; Zhu, G. The effects of altitude on temperature, precipitation and climatic zone in the Qinghai-Tibet Plateau. J. Glaciol. Geocryol. 2019, 41, 505–515. [Google Scholar] [CrossRef]
- Wu, S.; Pan, T.; Cao, J.; He, D.; Xiao, Z. Barrier-corridor effect of longitudinal range-gorge terrain on monsoons in Southwest China. Geogr. Res. 2012, 31, 1–13. [Google Scholar]
- Hu, W.; Yao, J.; He, Q.; Chen, J. Elevation-Dependent Trends in Precipitation Observed over and around the Tibetan Plateau from 1971 to 2017. Water 2021, 13, 2848. [Google Scholar] [CrossRef]
- Li, L.; Yang, S.; Wang, Z.; Zhu, X.; Tang, H. Evidence of Warming and Wetting Climate over the Qinghai-Tibet Plateau. Arct. Antarct. Alp. Res. 2010, 42, 449–457. [Google Scholar] [CrossRef]
Aridity Index (mm/mm) | Category/Climate |
---|---|
<0.05 | Hyperarid |
0.05–0.2 | Arid |
0.2–0.5 | Semiarid |
0.5–0.65 | Dry subhumid |
0.65–1 | Wet subhumid |
>1 | Humid |
Spring | Summer | Autumn | Winter | Annual | |
---|---|---|---|---|---|
Max | 0.98 | 1.75 | 1.53 | 1.15 | 1.11 |
Min | 0.26 | 1.01 | 0.52 | 0.29 | 0.77 |
Std | 0.02 | 0.02 | 0.03 | 0.03 | 0.01 |
Mean | 0.60 | 1.36 | 0.93 | 0.62 | 0.95 |
Category | Dry subhumid | Humid | Wet subhumid | Dry subhumid | Wet subhumid |
Spring | Summer | Autumn | Winter | Annual | |
---|---|---|---|---|---|
Tendency rate | 0.015 | −0.007 | 0.002 | 0.005 | 0.003 |
Z-value | 2.39 * | −1.41 | 0.56 | 0.30 | 0.75 |
Annual | Spring | Summer | Autumn | Winter | |
---|---|---|---|---|---|
abrupt point | 1961 | 1988 | 1972 | 1972 | 1946 |
p-value | p > 0.05 | p < 0.05 | p > 0.05 | p > 0.05 | p > 0.05 |
Mean | Median | Variance | Std. Dev. | Min | Max | Max/Min | |
---|---|---|---|---|---|---|---|
Pre-1988 | 0.56 | 0.54 | 0.02 | 0.13 | 0.27 | 0.82 | 3.04 |
Post-1988 | 0.56 | 0.64 | 0.03 | 0.16 | 0.29 | 0.98 | 3.38 |
Latitude (°N) | Annual | Spring | Summer | Autumn | Winter | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ratio | Change Point | Ratio | Change Point | Ratio | Change Point | Ratio | Change Point | Ratio | Change Point | |
21.25 | 4.53 | 1963 | 16.3 | 1970 | 6.86 | 1951 | −9.92 | 1993 | 16.43 | 1958 |
21.75 | 4.89 | 1964 | 17.5 | 1970 | −4.86 | 1972 | −10.28 | 1993 | 16.68 | 1958 |
22.25 | 3.93 | 1964 | 18.35 | 1970 | −6.43 | 1972 | −12.02 | 1998 | 14.3 | 1958 |
22.75 | 2.92 | 1963 | 14.97 | 1988 | −6.93 | 1972 | −13.66 | 2002 | 5.81 | 1999 |
23.25 | −5.61 | 2009 | 17.26 | 1988 | −7.1 | 1972 | −13.82 | 2002 | −10.49 | 1969 |
23.75 | −5.68 | 2009 | 20.47 | 1996 | −7.44 | 1974 | 16.13 | 1967 | −9.07 | 1969 |
24.25 | 4.3 | 1965 | 24.13 | 1996 | −7.26 | 1987 | 19.75 | 1967 | 34.15 | 1946 |
24.75 | −5.99 | 2009 | 23.2 | 1996 | −6.86 | 1987 | 21.91 | 1970 | −8.32 | 1972 |
25.25 | 3.52 | 1965 | 19.79 | 1996 | −7.07 | 1975 | 22.11 | 1970 | 42.08 | 1946 |
25.75 | −7.62 | 2009 | 18.81 | 1974 | −7.29 | 1975 | 20.47 | 1970 | 43.4 | 1946 |
26.25 | −8.68 | 2009 | 16.22 | 1974 | −7.86 | 1975 | 18.18 | 1970 | −15.02 | 1994 |
26.75 | −9.61 | 2009 | 14.03 | 1974 | −8.45 | 1975 | 15.35 | 1976 | −17.58 | 1994 |
27.25 | −10.4 | 2009 | 13.67 | 1974 | −8.58 | 1975 | 15.65 | 1976 | −18.49 | 1994 |
27.75 | −11.67 | 2009 | 15.93 | 1974 | −8.36 | 1975 | 15.52 | 1976 | −17.38 | 1994 |
28.25 | −11.74 | 2009 | 17.95 | 1974 | −7.83 | 1975 | 14.75 | 1976 | −16.34 | 1994 |
28.75 | −10.37 | 2009 | 20.24 | 1974 | −11.47 | 2005 | 15.15 | 1976 | −20.94 | 2007 |
29.25 | 4.78 | 1984 | 20.75 | 1988 | −12.3 | 2006 | 13.79 | 1976 | −18.35 | 2007 |
29.75 | −7.19 | 2006 | 20.98 * | 1988 | −12.29 | 2006 | 12.35 | 1976 | 34.27 | 1947 |
30.25 | 4.98 | 1985 | 22.09 * | 1988 | −12.39 | 2006 | 10.62 | 1985 | 8.7 | 1989 |
30.75 | 5.45 | 1985 | 23.84 * | 1988 | −12.3 | 2006 | 10.2 | 1985 | 14.39 | 1989 |
31.25 | 5.36 | 1985 | 26.22 * | 1988 | −10.93 | 2006 | 10.04 | 1978 | 19.34 | 1989 |
31.75 | 5.15 | 1985 | 25.79 * | 1988 | −8.9 | 2006 | 12.13 | 1963 | 20.52 | 1989 |
32.25 | 5.22 | 1974 | 25.82 * | 1988 | −3.9 | 1971 | 12.58 | 1963 | 19.11 | 1989 |
32.75 | 5.08 | 1980 | 26.04 * | 1988 | −2.82 | 1971 | 13.09 | 1963 | 19.61 | 1995 |
33.25 | 7.08 | 1998 | 26.27 * | 1974 | 5.16 | 2003 | 13.55 | 1963 | 17.95 | 1995 |
33.75 | 9.06 | 1998 | 28.26 * | 1974 | 7.76 | 2003 | 13.88 | 1963 | 19.64 | 1995 |
Legend | ||||||||||
AI change | Slight→Substantial (Decrease) | Slight→Substantial (increase) |
Pre | Pet | R2 | p-Value | |
---|---|---|---|---|
Spring | 2.03 | 0.06 | 0.95 | <0.01 |
Summer | 1.19 | −0.84 | 0.94 | <0.01 |
Autumn | 2.65 | 0.06 | 0.91 | <0.01 |
Winter | 2.06 | −0.57 | 0.80 | <0.01 |
Annual | 0.87 | −0.24 | 0.99 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, L.; Zhang, H.; Lei, J.; Ji, X.; Zhu, X.; Yu, H.; Wang, L. Spatiotemporal Evolution of the Aridity Index and Its Latitudinal Patterns in the Lancang River Basin, China. Atmosphere 2025, 16, 1115. https://doi.org/10.3390/atmos16101115
Shan L, Zhang H, Lei J, Ji X, Zhu X, Yu H, Wang L. Spatiotemporal Evolution of the Aridity Index and Its Latitudinal Patterns in the Lancang River Basin, China. Atmosphere. 2025; 16(10):1115. https://doi.org/10.3390/atmos16101115
Chicago/Turabian StyleShan, Liping, Hangrui Zhang, Jingsheng Lei, Xiaojuan Ji, Xingji Zhu, Hang Yu, and Long Wang. 2025. "Spatiotemporal Evolution of the Aridity Index and Its Latitudinal Patterns in the Lancang River Basin, China" Atmosphere 16, no. 10: 1115. https://doi.org/10.3390/atmos16101115
APA StyleShan, L., Zhang, H., Lei, J., Ji, X., Zhu, X., Yu, H., & Wang, L. (2025). Spatiotemporal Evolution of the Aridity Index and Its Latitudinal Patterns in the Lancang River Basin, China. Atmosphere, 16(10), 1115. https://doi.org/10.3390/atmos16101115