El Niño-Induced Drought Impacts on Reservoir Water Resources in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Datasets
2.3. Data Analysis Methods
2.3.1. Standardised Indices
2.3.2. Drought Characterisation
2.3.3. Trend Analysis
2.3.4. Wavelet Analysis
3. Results
3.1. Drought Assessment
3.2. Historical Drought Characterisation
3.3. Drought Trends and Their Significance
3.4. Correlation of Drought Events and Reservoir Water Levels
3.5. Wavelet Coherence Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Govender, R.L.; Grab, S.W. Assessing the impact of El Niño-Southern Oscillation on South African temperatures during Austral summer. Int. J. Climatol. 2018, 39, 143–156. [Google Scholar] [CrossRef]
- World Meteorological Organisation. El Niño/Southern Oscillation; WMO: Geneva, Switzerland, 2014; Volume 1145, pp. 2–4. Available online: http://www.wmo.int/pages/prog/wcp/wcasp/documents/JN142122_WMO1145_EN_web.pdf (accessed on 27 June 2016).
- Bartholomew, H.; Jin, S. ENSO effects on land skin temperature variations; A global study from satellite remote sensing and NCEP/NCAR reanalysis. Climate 2013, 1, 53–73. [Google Scholar] [CrossRef]
- Davey, M.K.; Brookshaw, A.; Ineson, S. The probability of the impact of ENSO on precipitation and near-surface temperature. Clim. Risk Manag. 2014, 1, 5–24. [Google Scholar] [CrossRef]
- Ibebuchi, C.C. Revisiting the 1992 severe drought episode in South Africa: The role of El Niño in the anomalies of atmospheric circulation types in Africa south of the equator. Theor. Appl. Climatol. 2021, 146, 723–740. [Google Scholar] [CrossRef]
- Mahlalela, P.T.; Blamey, R.C.; Hart, N.C.G.; Reason, C.J.C. Drought in the Eastern Cape region of South Africa and trends in rainfall characteristics. Clim. Dyn. 2020, 55, 2743–2759. [Google Scholar] [CrossRef] [PubMed]
- Mukheibir, P.; Sparks, D. Water Resources Management Strategies in Response to Climate Change in South Africa, Drawing on the Analysis of Coping Strategies Adopted by Vulnerable Communities in the Northern Cape Province of South. Africa in Times of Climate Variability; WRC Report No. 1500/1/06, 398; Water Research Commission: Pretoria, South Africa, 2006. [Google Scholar]
- Banholzersand, D.S. The Influence of different El Niño types on global average temperature. Geophys. Res. Lett. 2014, 41, 2093–2099. [Google Scholar] [CrossRef]
- Cai, W.; Borlace, S.; Lengaigne, M.; van Rensch, P.; Collins, M.; Vecchi, G.; Timmermann, A.; Santoso, A.; McPhaden, M.J.; Wu, L.; et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Chang. 2014, 4, 111–116. [Google Scholar] [CrossRef]
- Chowdary, J.S.; John, N.; Gnanaseelan, C. Interannual variability of surface air-temperature over India: Impact of ENSO and Indian Ocean Sea surface temperature. Int. J. Climatol. 2014, 34, 416–429. [Google Scholar] [CrossRef]
- Halpert, M.S.; Ropelewski, C.F. Surface temperature pattern associated with Southern Oscillation. J. Clim. 1992, 5, 577–593. [Google Scholar] [CrossRef]
- Gray, W.M.; Sheaffer, J.D. El Niño and QBO influences on tropical cyclone activity, In Teleconnections Linking Worldwide Climate Anomalies: Scientific Basis and Social Impacts; Glantz, M.H., Katz, R.W., Nicholls, N., Eds.; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Pinault, J.L. The anticipation of the ENSO: What resonantly forced baroclinic waves can teach us (Part II). J. Mar. Sci. Eng. 2018, 6, 63. [Google Scholar] [CrossRef]
- Reason, C.J.C.; Jagadheesha, D. A model investigation of recent ENSO impacts over southern Africa. Meteorol. Atmos. Phys. 2005, 89, 181–205. [Google Scholar] [CrossRef]
- Basson, M.S. Water development in South Africa. In Proceedings of the UN-Water International Conference, Zaragoza, Spain, 3–5 October 2011; Available online: http://www.un.org/waterforlifedecade/green_economy_2011/pdf/session_1_economic_instruments_south_africa.pdf (accessed on 20 June 2022).
- Basson, M.; Van Rooyen, J. Practical application of probabilistic approaches to the management of water resource systems. J. Hydrol. 2001, 241, 53–61. [Google Scholar] [CrossRef]
- International Water Management Institute (IWMI); Agricultural Research Council (ARC). Limpopo Basin Profile; CGIAR Challenge Program on Water and Food: Pretoria, South Africa, 2003; p. 132. [Google Scholar]
- Mazibuko, S.M.; Mukwada, G.; Moeletsi, M.E. Assessing the frequency of drought/flood severity in the Luvuvhu River catchment, Limpopo Province, South Africa. Water SA 2021, 47, 172–184. [Google Scholar] [CrossRef]
- Mathivha, F.I.; Sigauke, C.; Chikoore, H.; Odiyo, J.O. Short-term and medium-term drought forecasting using generalised additive models. Sustainability 2020, 12, 6. [Google Scholar] [CrossRef]
- Masupha, T.E.; Moeletsi, M.E. Analysis of potential future droughts limiting maize production, in the Luvuvhu River catchment area, South Africa. Phys. Chem. Earth 2018, 105, 44–51. [Google Scholar] [CrossRef]
- Mpandeli, N.S.; Maponya, P.I. Coping with climate variability in Limpopo Province, South Africa. Peak J. Agric. Sci. 2013, 1, 54–64. [Google Scholar]
- Kabanda, T.A. Climatology of Long-Term Drought in the Northern Region of the Limpopo Province of South Africa. Ph.D. Thesis, University of Venda, Thohoyandou, South Africa, 2004. [Google Scholar]
- Tilahun, S.; Demeke, K. The influence of El Niño-induced drought on cyanobacterial community structure in a shallow tropical reservoir (Koka Reservoir, Ethiopia). Aquat. Ecol. 2019, 53, 61–77. [Google Scholar] [CrossRef]
- Ainembabazi, J.H. The 2015-16 El Niño-Induced Drought Crisis in Southern Africa: What Do We Learn from Historical Data? In Proceedings of the 2018 Conference, Vancouver, BC, Canada, 28 July–2 August 2018; International Association of Agricultural Economists: Vancouver, BC, Canada, 2018. [Google Scholar]
- Sprouse, T.W.; Vaughan, L.F. Water Resource Management in Response to El Niño/Southern Oscillation (ENSO) Droughts and Floods. In Climate and Water. Advances in Global Change Research; Diaz, H.F., Morehouse, B.J., Eds.; Springer: Dordrecht, The Netherlands, 2003. [Google Scholar] [CrossRef]
- Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R.A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L. Global changes in drought conditions under different levels of warming. Geophys. Res. Lett. 2018, 45, 3285–3296. [Google Scholar] [CrossRef]
- Gizaw, M.S.; Gan, T.Y. Impact of climate change and El Niño episodes on droughts in sub-Saharan Africa. Clim. Dyn. 2017, 49, 665–682. [Google Scholar] [CrossRef]
- Dagada, K. Influence of Climate Change on Flood and Drought Cycles and Implications on Rainy Season Characteristics in Luvuvhu River Catchment, South Africa. Master’s Thesis, University of Venda, Thohoyandou, South Africa, 2016. [Google Scholar]
- Mokgoebo, J.M.; Kabanda, T.A.; Gumbo, J.R. Assessment of the Raparian Vegetation Changes Downstream of Selected Dams in Vhembe District, Limpopo Province Base on Historical Aerial Photography. In Environmental Risks; Mihai, F., Grozavu, A., Eds.; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef]
- WMO. Standardized Precipitation Index: User Guide; WMO: Geneva, Switzerland, 2012. [Google Scholar]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 17–22. [Google Scholar]
- Aksoy, H. Use of gamma distribution in hydrological analysis. Turk. J. Eng. Environ. Sci. 2000, 24, 419–428. [Google Scholar]
- Tsakiris, G.; Loukas, A.; Pangalou, D.; Vangelis, H.; Tigkas, D.; Rossi, G.; Cancelliere, A. Drought characterization [Part 1. Components of drought planning. 1.3. Methodological component]. In Drought Management Guidelines Technical Annex; CIHEAM: Zaragoza, Spain, 2007; pp. 85–102. [Google Scholar]
- Shamshirbad, S.; Hashemi, S.; Salimi, H.; Samadianfard, S.; Asadi, E.; Shadkani, S.; Kargar, K.; Mosavi, A.; Nabipour, N.; Chau, K.-W. Predicting Standardised Streamflow Index for Hydrological Drought using machine learning Models. Eng. Appl. Comput. Fluid Mech. 2020, 14, 342–343. [Google Scholar] [CrossRef]
- Tan, C.; Yang, J.; Li, M. Temporal-Spatial variation of drought indicated by SPI and SPEI in Ningxia Hui Autonomous Region, China. Atmosphere 2015, 6, 1399–1421. [Google Scholar] [CrossRef]
- Shah, R.; Bharadiya, N.; Manekar, V. Drought Index Computation Using Standardised Precipitation Index (SPI) method for Surat District, Gujarat. Aquat. Procedia 2015, 4, 1243–1249. [Google Scholar] [CrossRef]
- Guttman, N.B. Accepting the Standardized Precipitation Index: A Calculation Algorithm. J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.A.; Stuart, A. The Advanced Theory of Statistics, 2nd ed.; Charles Griffin: London, UK, 1967. [Google Scholar]
- Zhang, X.; Lucie, A.V.; Hogg, W.D.; Niitsoo, A. Temperature and precipitation trends in Canada during the 20th century. Atmosphere 2000, 38, 395–429. [Google Scholar] [CrossRef]
- Sneyers, S. On the Statistical Analysis of Series of Observations; Technical note no. 143, WMO No. 725 415; Secretariat of the World Meteorological Organization: Geneva, Switzerland, 1990; p. 192. [Google Scholar]
- Jain, V.K.; Rivera, L.; Zaman, K.; Espos, R.A.; Sirivichayakul, C.; Quiambao, B.P.; Rivera-Medina, D.M.; Kerdpanich, P.; Ceyhan, M.; Ener, C.; et al. Vaccine for prevention of mild and moderate-to-severe influenza in children. N. Engl. J. Med. 2013, 369, 2481–2491. [Google Scholar] [CrossRef]
- Aladwani, J. Wavelet Coherence and Continuous Wavelet Transform-Implementation and Application to the Relationship between Exchange Rate and Oil Price for Importing and Exporting Countries. Int. J. Energy Econ. Policy 2023, 13, 531–541. [Google Scholar] [CrossRef]
- Peng, J.; Qiao, R.; Liu, Y.; Blaschke, T.; Li, S.; Wu, J.; Xu, Z.; Liu, Q. A wavelet coherence approach to prioritizing influencing factors of land surface temperature and associated research scales. Remote Sens. Environ. 2020, 246, 111866. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis: With Significance and Confidence Testing. University of Colorado at Boulder, Program in Atmospheric and Oceanic Sciences. 2011. Available online: https://atoc.colorado.edu/research/wavelets/ (accessed on 29 September 2022).
- Restrepo, J.C.; Higgins, A.; Escobar, J.; Ospino, S.; Hoyos, N. Contribution of low-frequency climatic–oceanic oscillations to streamflow variability in small, coastal rivers of the Sierra Nevada de Santa Marta (Colombia). Hydrol. Earth Syst. Sci. 2019, 23, 2379–2400. [Google Scholar] [CrossRef]
- Baghanam, A.H.; Nourani, V.; Norouzi, E.; Vakili, A.T.; Gökçekuş, H. Application of Wavelet Transform for Bias Correction and Predictor Screening of Climate Data. Sustainability 2023, 15, 15209. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin. Processes Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Kumar, R.; Musuuza, J.L.; Van Loon, A.F.; Teuling, A.J.; Barthel, R.; Ten Broek, J.; Mai, J.; Samaniego, L.; Attinger, S. Multiscale evaluation of the standardized precipitation index as a groundwater drought indicator. Hydrol. Earth Syst. Sci. 2015, 12, 7405–7436. [Google Scholar] [CrossRef]
- Archer, E.R.M.; Landman, W.A.; Tadross, M.A.; Marumbwa, F.M. Understanding the evolution of 2014–2016 summer rainfall seasons in Southern Africa. Clim. Risk Manag. 2017, 16, 22–28. [Google Scholar] [CrossRef]
- Rojas, O.; Li, Y.; Cumani, R. Understanding the Drought Impact of El Niño on Global Agricultural Areas: An Assessment Using FAO’s Agricultural Stress Index (ASI); FAO: Rome, Italy, 2014; pp. 9–23. [Google Scholar]
- Schober, P.; Boer, C. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1764–1765. [Google Scholar] [CrossRef]
- Loua, R.T.; Bencherif, H.; Mbatha, N.; Bègue, N.; Hauchecorne, A.; Bamba, Z.; Sivakumar, V. Study on Temporal Variations of Surface Temperature and Rainfall at Conakry Airport, Guinea: 1960–2016. Climate 2019, 7, 93. [Google Scholar] [CrossRef]
- Chang, C.; Glover, G.H. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 2010, 50, 81–98. [Google Scholar] [CrossRef]
- Tijdeman, E.; Hannaford, J.; Stahl, K. Human influences on streamflow drought characteristics in England and Wales. Hydrol. Earth Syst. Sci. 2018, 22, 1051–1064. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Stahl, K.; Di Baldassarre, G.; Clark, J.; Rangecroft, S.; Wanders, N.; Gleeson, T.; Van Dijk, A.I.J.M.; Tallaksen, L.M.; Hannaford, J.; et al. Drought in a humanmodified world: Reframing drought definitions, understanding, and analysis approaches. Hydrol. Earth Syst. Sci. 2016, 20, 3631–3650. [Google Scholar] [CrossRef]
- Haslinger, K.; Koffler, D.; Schöner, W.; Laaha, G. Exploring the link between meteorological drought and streamflow: Effects of climate-catchment interaction. Water Resour. Res. 2014, 50, 2468–2487. [Google Scholar] [CrossRef]
- Barker, L.J.; Hannaford, J.; Chiverton, A.; Svensson, C. From meteorological to hydrological drought using standardised indicators, Hydrol. Earth Syst. Sci. 2016, 20, 2483–2505. [Google Scholar] [CrossRef]
- Pascale, S.; Kapnick, S.B.; Delworth, T.L.; Cooke, W.F. Increasing risk of another Cape Town “Day Zero” drought in the 21st century. Proc. Natl. Acad. Sci. USA 2020, 117, 29495–29503. [Google Scholar] [CrossRef]
- Saase, R.; Schütt, B.; Bebermeier, W. Analyzing the Dependence of Major Tanks in the Headwaters of the Aruvi Aru Catchment on Precipitation. Applying Drought Indices to Meteorological and Hydrological Data. Water 2020, 12, 2941. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Mirchi, A.; Madani, K.; Di Baldassarre, G.; Nazemi, A.; Alborzi, A.; Anjileli, H.; Azarderakhsh, M.; Chiang, F.; Hassanzadeh, E.; et al. Anthropogenic Drought: Definition, Challenges and Opportunities. Rev. Geophys. 2021, 59, e2019RG000683. [Google Scholar] [CrossRef]
Station | Drought Indicator | Longest | Strongest | Highest | ||||
---|---|---|---|---|---|---|---|---|
Year | Duration | Year | Severity | Year | Intensity | |||
A9E002 | SPI | 6 | 2002–2003 | 19 | 2004–2005 | −18.36 | 2016 | −1.18 |
12 | 2002–2006 | 36 | 2002–2006 | −39.21 | 1992–1993 | −1.18 | ||
A9H023 | SSI | 6 | 2010–2014 | 50 | 1992–1993 | −20.34 | 2005 | −1.35 |
12 | 2010–2020 | 150 | 2010–2020 | −89.36 | 2010–2020 | −3.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathivha, F.I.; Mabala, L.; Matimolane, S.; Mbatha, N. El Niño-Induced Drought Impacts on Reservoir Water Resources in South Africa. Atmosphere 2024, 15, 249. https://doi.org/10.3390/atmos15030249
Mathivha FI, Mabala L, Matimolane S, Mbatha N. El Niño-Induced Drought Impacts on Reservoir Water Resources in South Africa. Atmosphere. 2024; 15(3):249. https://doi.org/10.3390/atmos15030249
Chicago/Turabian StyleMathivha, Fhumulani I., Lufuno Mabala, Selelo Matimolane, and Nkanyiso Mbatha. 2024. "El Niño-Induced Drought Impacts on Reservoir Water Resources in South Africa" Atmosphere 15, no. 3: 249. https://doi.org/10.3390/atmos15030249
APA StyleMathivha, F. I., Mabala, L., Matimolane, S., & Mbatha, N. (2024). El Niño-Induced Drought Impacts on Reservoir Water Resources in South Africa. Atmosphere, 15(3), 249. https://doi.org/10.3390/atmos15030249