Geophysical Coupling Before Three Earthquake Doublets Around the Arabian Plate
Abstract
1. Introduction
2. Materials and Methods
2.1. Data and Methods for Lithosphere
2.2. Data and Methods for Atmosphere
2.3. Data and Methods for Ionosphere
3. Results
3.1. Lithosphere
- M = 6.3, on 18 August 2014 at 32.643° N, 47.700° E
- M = 6.2 on 15 July 2018 at 13.956° N, 51.727° E
- M = 6.2 on 1 July 2022 at 26.897° N, 55.280° E
3.2. Atmosphere
3.3. Ionosphere
4. Discussion
5. Conclusions
- A possible lithosphere atmosphere ionosphere coupling three months before the Dehloran (Iran) 2014 earthquake doublet with a delay time of a few days between one geo-layer and the upper one.
- Two possible atmosphere-ionosphere couplings are depicted before the Kilmia (Yemen) 2018 earthquake with different coupling mechanisms due to the higher delay of the second one.
- A very interesting seismic acceleration preceded the last 20 days the occurrence of both Kilmia (Yemen) 2018 and Bandar-e Lengeh (Iran) 2022. In both cases, the atmosphere seems to show a response with an increase in anomaly, suggesting a possible lithosphere-atmosphere coupling.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Space Weather Conditions
References
- McClusky, S.; Reilinger, R.; Mahmoud, S.; Ben Sari, D.; Tealeb, A. GPS Constraints on Africa (Nubia) and Arabia Plate Motions. Geophys. J. Int. 2003, 155, 126–138. [Google Scholar] [CrossRef]
- Viltres, R.; Jónsson, S.; Alothman, A.O.; Liu, S.; Leroy, S.; Masson, F.; Doubre, C.; Reilinger, R. Present-Day Motion of the Arabian Plate. Tectonics 2022, 41, e2021TC007013. [Google Scholar] [CrossRef]
- Bellahsen, N.; Faccenna, C.; Funiciello, F.; Daniel, J.M.; Jolivet, L. Why Did Arabia Separate from Africa? Insights from 3-D Laboratory Experiments. Earth Planet. Sci. Lett. 2003, 216, 365–381. [Google Scholar] [CrossRef]
- Al-Husseini, M.I. Origin of the Arabian Plate Structures: Amar Collision and Najd Rift. GeoArabia 2000, 5, 527–542. [Google Scholar] [CrossRef]
- Naddaf, M. Turkey–Syria Earthquake: What Scientists Know. Nature 2023, 614, 398–399. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; Marchetti, D. Study of the Preparation Phase of Turkey’s Powerful Earthquake (6 February 2023) by a Geophysical Multi-Parametric Fuzzy Inference System. Remote Sens. 2023, 15, 2224. [Google Scholar] [CrossRef]
- Cianchini, G.; Calcara, M.; De Santis, A.; Piscini, A.; D’Arcangelo, S.; Fidani, C.; Sabbagh, D.; Orlando, M.; Perrone, L.; Campuzano, S.A.; et al. The Preparation Phase of the 2023 Kahramanmaraş (Turkey) Major Earthquakes from a Multidisciplinary and Comparative Perspective. Remote Sens. 2024, 16, 2766. [Google Scholar] [CrossRef]
- Ouzounov, D.; Khachikyan, G. On the Impact of Geospace Weather on the Occurrence of M7.8/M7.5 Earthquakes on 6 February 2023 (Turkey), Possibly Associated with the Geomagnetic Storm of 7 November 2022. Geosciences 2024, 14, 159. [Google Scholar] [CrossRef]
- Konrad, K.; Graham, D.W.; Thornber, C.R.; Duncan, R.A.; Kent, A.J.R.; Al-Amri, A.M. Asthenosphere–Lithosphere Interactions in Western Saudi Arabia: Inferences from 3He/4He in Xenoliths and Lava Flows from Harrat Hutaymah. Lithos 2016, 248–251, 339–352. [Google Scholar] [CrossRef]
- Sembroni, A.; Faccenna, C.; Becker, T.W.; Molin, P. The Uplift of the East Africa—Arabia Swell. Earth-Sci. Rev. 2024, 257, 104901. [Google Scholar] [CrossRef]
- Stern, R.J.; Johnson, P. Continental Lithosphere of the Arabian Plate: A Geologic, Petrologic, and Geophysical Synthesis. Earth-Sci. Rev. 2010, 101, 29–67. [Google Scholar] [CrossRef]
- Båth, M. Earthquake Energy and Magnitude. Phys. Chem. Earth 1966, 7, 115–165. [Google Scholar] [CrossRef]
- Geller, R.J. Earthquake Prediction: A Critical Review. Geophys. J. Int. 1997, 131, 425–450. [Google Scholar] [CrossRef]
- Zechar, J.D.; Jordan, T.H. Testing Alarm-Based Earthquake Predictions. Geophys. J. Int. 2008, 172, 715–724. [Google Scholar] [CrossRef]
- De Santis, A.; Marchetti, D.; Pavón-Carrasco, F.J.; Cianchini, G.; Perrone, L.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Campuzano, S.A.; Carbone, M.; et al. Precursory Worldwide Signatures of Earthquake Occurrences on Swarm Satellite Data. Sci. Rep. 2019, 9, 20287. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, D.; De Santis, A.; Campuzano, S.A.; Zhu, K.; Soldani, M.; D’Arcangelo, S.; Orlando, M.; Wang, T.; Cianchini, G.; Di Mauro, D.; et al. Worldwide Statistical Correlation of Eight Years of Swarm Satellite Data with M5.5+ Earthquakes: New Hints about the Preseismic Phenomena from Space. Remote Sens. 2022, 14, 2649. [Google Scholar] [CrossRef]
- Fraser-Smith, A.C.; Bernardi, A.; McGill, P.R.; Ladd, M.E.; Helliwell, R.A.; Villard, O.G. Low-Frequency Magnetic Field Measurements near the Epicenter of the Ms 7.1 Loma Prieta Earthquake. Geophys. Res. Lett. 1990, 17, 1465–1468. [Google Scholar] [CrossRef]
- Han, P.; Hattori, K.; Hirokawa, M.; Zhuang, J.; Chen, C.-H.; Febriani, F.; Yamaguchi, H.; Yoshino, C.; Liu, J.-Y.; Yoshida, S. Statistical Analysis of ULF Seismomagnetic Phenomena at Kakioka, Japan, during 2001–2010: ULF SEISMO-MAGNETIC PHENOMENA AT KAKIOKA. J. Geophys. Res. Space Phys. 2014, 119, 4998–5011. [Google Scholar] [CrossRef]
- Hattori, K.; Han, P.; Yoshino, C.; Febriani, F.; Yamaguchi, H.; Chen, C.-H. Investigation of ULF Seismo-Magnetic Phenomena in Kanto, Japan During 2000–2010: Case Studies and Statistical Studies. Surv. Geophys. 2013, 34, 293–316. [Google Scholar] [CrossRef]
- Zhuang, J.; Vere-Jones, D.; Guan, H.; Ogata, Y.; Ma, L. Preliminary Analysis of Observations on the Ultra-Low Frequency Electric Field in the Beijing Region. Pure Appl. Geophys. 2005, 162, 1367–1396. [Google Scholar] [CrossRef]
- Li, M.; Yao, L.; Wang, Y.; Parrot, M.; Hayakawa, M.; Lu, J.; Tan, H.; Xie, T. Anomalous Phenomena in DC–ULF Geomagnetic Daily Variation Registered Three Days before the 12 May 2008 Wenchuan MS 8.0 Earthquake. Earth Planet. Phys. 2019, 3, 330–341. [Google Scholar] [CrossRef]
- Yu, Z.; Jing, X.; Wang, X.; Chi, C.; Zheng, H. The Study on Anomalies of the Geomagnetic Topology Network Associated with the 2022 Ms6.8 Luding Earthquake. Remote Sens. 2024, 16, 1613. [Google Scholar] [CrossRef]
- Fidani, C.; Orsini, M.; Iezzi, G.; Vicentini, N.; Stoppa, F. Electric and Magnetic Recordings by Chieti CIEN Station During the Intense 2016–2017 Seismic Swarms in Central Italy. Front. Earth Sci. 2020, 8, 536332. [Google Scholar] [CrossRef]
- Cianchini, G.; De Santis, A.; Barraclough, D.R.; Wu, L.X.; Qin, K. Magnetic Transfer Function Entropy and the 2009 Mw = 6.3 L’Aquila Earthquake (Central Italy). Nonlin. Process. Geophys. 2012, 19, 401–409. [Google Scholar] [CrossRef]
- Piroddi, L.; Ranieri, G. Night Thermal Gradient: A New Potential Tool for Earthquake Precursors Studies. An Application to the Seismic Area of L’Aquila (Central Italy). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 307–312. [Google Scholar] [CrossRef]
- Piroddi, L.; Ranieri, G.; Freund, F.; Trogu, A. Geology, Tectonics and Topography Underlined by L’Aquila Earthquake TIR Precursors. Geophys. J. Int. 2014, 197, 1532–1536. [Google Scholar] [CrossRef]
- Di Luccio, F.; Ventura, G.; Di Giovambattista, R.; Piscini, A.; Cinti, F.R. Normal Faults and Thrusts Reactivated by Deep Fluids: The 6 April 2009 Mw 6.3 L’Aquila Earthquake, Central Italy. J. Geophys. Res. 2010, 115, B06315. [Google Scholar] [CrossRef]
- Tramutoli, V.; Bello, G.D.; Pergola, N.; Piscitelli, S. Robust Satellite Techniques for Remote Sensing of Seismically Active Areas. Ann. Geophys. 2001, 44, 295–312. [Google Scholar] [CrossRef]
- Filizzola, C.; Corrado, A.; Genzano, N.; Lisi, M.; Pergola, N.; Colonna, R.; Tramutoli, V. RST Analysis of Anomalous TIR Sequences in Relation with Earthquakes Occurred in Turkey in the Period 2004–2015. Remote Sens. 2022, 14, 381. [Google Scholar] [CrossRef]
- Genzano, N.; Filizzola, C.; Hattori, K.; Pergola, N.; Tramutoli, V. Statistical Correlation Analysis Between Thermal Infrared Anomalies Observed from MTSATs and Large Earthquakes Occurred in Japan (2005–2015). J. Geophys. Res. Solid. Earth 2021, 126, e2020JB020108. [Google Scholar] [CrossRef]
- Liu, S.; Cui, Y.; Wei, L.; Liu, W.; Ji, M. Pre-Earthquake MBT Anomalies in the Central and Eastern Qinghai-Tibet Plateau and Their Association to Earthquakes. Remote Sens. Environ. 2023, 298, 113815. [Google Scholar] [CrossRef]
- Ghosh, S.; Sasmal, S.; Naja, M.; Potirakis, S.; Hayakawa, M. Study of Aerosol Anomaly Associated with Large Earthquakes (M > 6). Adv. Space Res. 2023, 71, 129–143. [Google Scholar] [CrossRef]
- Korsunova, L.P.; Khegai, V.V. Medium-Term Ionospheric Precursors to Strong Earthquakes. Int. J. Geomagn. Aeron. 2006, 6, GI3005. [Google Scholar] [CrossRef]
- Perrone, L.; Korsunova, L.P.; Mikhailov, A.V. Ionospheric Precursors for Crustal Earthquakes in Italy. Ann. Geophys. 2010, 28, 941–950. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kasahara, Y.; Nakamura, T.; Muto, F.; Horie, T.; Maekawa, S.; Hobara, Y.; Rozhnoi, A.A.; Solovieva, M.; Molchanov, O.A. A Statistical Study on the Correlation between Lower Ionospheric Perturbations as Seen by Subionospheric VLF/LF Propagation and Earthquakes. J. Geophys. Res. 2010, 115, A09305. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Hayakawa, M.; Oudoh, T.; Kawai, E. Precursory Effects in the Subionospheric VLF Signals for the Kobe Earthquake. Phys. Earth Planet. Inter. 1998, 105, 239–248. [Google Scholar] [CrossRef]
- Ippolito, A.; Perrone, L.; De Santis, A.; Sabbagh, D. Ionosonde Data Analysis in Relation to the 2016 Central Italian Earthquakes. Geosciences 2020, 10, 354. [Google Scholar] [CrossRef]
- Mahmoudian, A.; Safari, M.; Rezapour, M. Earthquake Prediction Assessment Using VLF Radio Signal Sounding and Space-Based ULF Emission Observation. Acta Geophys. 2022, 70, 1269–1284. [Google Scholar] [CrossRef]
- Olsen, N.; Friis-Christensen, E.; Floberghagen, R.; Alken, P.; Beggan, C.D.; Chulliat, A.; Doornbos, E.; da Encarnação, J.T.; Hamilton, B.; Hulot, G.; et al. The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm Data Products. Earth Planet. Sp. 2013, 65, 1189–1200. [Google Scholar] [CrossRef]
- Shen, X.; Zong, Q.-G.; Zhang, X. Introduction to Special Section on the China Seismo-Electromagnetic Satellite and Initial Results. Earth Planet. Phys. 2018, 2, 439–443. [Google Scholar] [CrossRef]
- Zhima, Z.; Yang, Y.; Yan, R.; Zhang, Z.; Wang, J.; Huang, H.; Xu, S.; Lu, H.; Zhou, N.; Huang, J. The Representative Scientific Results of the China Seismo-Electromagnetic Satellite. Earthq. Res. Adv. 2024, 100314. [Google Scholar] [CrossRef]
- Christodoulou, V.; Bi, Y.; Wilkie, G. A Tool for Swarm Satellite Data Analysis and Anomaly Detection. PLoS ONE 2019, 14, e0212098. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.-Y.; Wang, Y.-F.; Zhang, X.-M.; Wang, Y.-L.; Wu, Y.-Y. A New Analysis Method for Magnetic Disturbances Possibly Related to Earthquakes Observed by Satellites. Remote Sens. 2022, 14, 2709. [Google Scholar] [CrossRef]
- De Santis, A.; Balasis, G.; Pavón-Carrasco, F.J.; Cianchini, G.; Mandea, M. Potential Earthquake Precursory Pattern from Space: The 2015 Nepal Event as Seen by Magnetic Swarm Satellites. Earth Planet. Sci. Lett. 2017, 461, 119–126. [Google Scholar] [CrossRef]
- He, Y.; Zhao, X.; Yang, D.; Wu, Y.; Li, Q. A Study to Investigate the Relationship between Ionospheric Disturbance and Seismic Activity Based on Swarm Satellite Data. Phys. Earth Planet. Inter. 2022, 323, 106826. [Google Scholar] [CrossRef]
- Wu, L.; Zheng, S.; De Santis, A.; Qin, K.; Di Mauro, R.; Liu, S.; Rainone, M.L. Geosphere Coupling and Hydrothermal Anomalies before the 2009 MW 6.3 L’Aquila Earthquake in Italy. Nat. Hazards Earth Syst. Sci. 2016, 16, 1859–1880. [Google Scholar] [CrossRef]
- Wu, L.; Qi, Y.; Mao, W.; Lu, J.; Ding, Y.; Peng, B.; Xie, B. Scrutinizing and Rooting the Multiple Anomalies of Nepal Earthquake Sequence in 2015 with the Deviation–Time–Space Criterion and Homologous Lithosphere–Coversphere–Atmosphere–Ionosphere Coupling Physics. Nat. Hazards Earth Syst. Sci. 2023, 23, 231–249. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Davidenko, D.; Rozhnoi, A.; Solovieva, M.; Fedun, V.; Dwivedi, B.N.; Rybin, A.; Kafatos, M.; Taylor, P. Transient Effects in Atmosphere and Ionosphere Preceding the 2015 M7.8 and M7.3 Gorkha–Nepal Earthquakes. Front. Earth Sci. 2021, 9, 757358. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Chen, W.; Zhu, K.; Marchetti, D.; Cheng, Y.; Fan, M.; Wang, S.; Wen, J.; Zhang, D.; et al. Are There One or More Geophysical Coupling Mechanisms before Earthquakes? The Case Study of Lushan (China) 2013. Remote Sens. 2023, 15, 1521. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; Shen, X.; Campuzano, S.A.; Perrone, L.; Piscini, A.; Di Giovambattista, R.; Jin, S.; Ippolito, A.; Cianchini, G.; et al. Possible Lithosphere-Atmosphere-Ionosphere Coupling Effects Prior to the 2018 Mw = 7.5 Indonesia Earthquake from Seismic, Atmospheric and Ionospheric Data. J. Asian Earth Sci. 2020, 188, 104097. [Google Scholar] [CrossRef]
- Marchetti, D.; Zhu, K.; Piscini, A.; Ghamry, E.; Shen, X.; Yan, R.; He, X.; Wang, T.; Chen, W.; Wen, J.; et al. Changes in the Lithosphere, Atmosphere, and Ionosphere before and during the Mw = 7.7 Jamaica 2020 Earthquake. Remote Sens. Environ. 2024, 307, 114146. [Google Scholar] [CrossRef]
- Marchetti, D. Observation of the Preparation Phase Associated with Mw = 7.2 Haiti Earthquake on 14 August 2021 from a Geophysical Data Point of View. Geosciences 2024, 14, 96. [Google Scholar] [CrossRef]
- Plastino, W.; Bella, F.; Catalano, P.G.; Di Giovambattista, R. Radon groundwater anomalies related to the Umbria-Marche, September 26, 1997, earthquakes. Geofísica Int. 2002, 41, 369–375. [Google Scholar]
- Fidani, C.; De Antoni, G.; Milan, T.; Siciliani, M. An Update of the Central Italy Electromagnetic Network with Radon Detectors. In Proceedings of the GNGTS, Conference Proceedings (ISBN 978-88-940442-9-4), Trieste, Italy, 27–29 June 2022. [Google Scholar]
- Deb, A.; Gazi, M.; Barman, C. Anomalous Soil Radon Fluctuations—Signal of Earthquakes in Nepal and Eastern India Regions. J. Earth Syst. Sci. 2016, 125, 1657–1665. [Google Scholar] [CrossRef]
- Vizzini, F.; Brai, M. In-Soil Radon Anomalies as Precursors of Earthquakes: A Case Study in the SE Slope of Mt. Etna in a Period of Quite Stable Weather Conditions. J. Environ. Radioact. 2012, 113, 131–141. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) Model—An Unified Concept for Earthquake Precursors Validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D.; Karelin, A.; Boyarchuk, K. Earthquake Precursors in the Atmosphere and Ionosphere: New Concepts; Springer: Dordrecht, The Netherlands, 2022; ISBN 978-94-024-2170-5. [Google Scholar]
- Ouzounov, D.; Liu, D.; Chunli, K.; Cervone, G.; Kafatos, M.; Taylor, P. Outgoing Long Wave Radiation Variability from IR Satellite Data Prior to Major Earthquakes. Tectonophysics 2007, 431, 211–220. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Hayakawa, M. Generation of ULF Electromagnetic Emissions by Microfracturing. Geophys. Res. Lett. 1995, 22, 3091–3094. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Hayakawa, M. On the Generation Mechanism of ULF Seismogenic Electromagnetic Emissions. Phys. Earth Planet. Inter. 1998, 105, 201–210. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kasahara, Y.; Nakamura, T.; Hobara, Y.; Rozhnoi, A.; Solovieva, M.; Molchanov, O.; Korepanov, V. Atmospheric Gravity Waves as a Possible Candidate for Seismo-Ionospheric Perturbations. JAE 2011, 31, 129–140. [Google Scholar] [CrossRef]
- Piersanti, M.; Materassi, M.; Battiston, R.; Carbone, V.; Cicone, A.; D’Angelo, G.; Diego, P.; Ubertini, P. Magnetospheric–Ionospheric–Lithospheric Coupling Model. 1: Observations during the 5 August 2018 Bayan Earthquake. Remote Sens. 2020, 12, 3299. [Google Scholar] [CrossRef]
- Etiope, G.; Martinelli, G. Migration of Carrier and Trace Gases in the Geosphere: An Overview. Phys. Earth Planet. Inter. 2002, 129, 185–204. [Google Scholar] [CrossRef]
- Rikitake, T. Earthquake Precursors in Japan: Precursor Time and Detectability. Tectonophysics 1987, 136, 265–282. [Google Scholar] [CrossRef]
- Scholz, C.H.; Sykes, L.R.; Aggarwal, Y.P. Earthquake Prediction: A Physical Basis. Science 1973, 181, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Kagan, Y.Y. Accuracy of Modern Global Earthquake Catalogs. Phys. Earth Planet. Inter. 2003, 135, 173–209. [Google Scholar] [CrossRef]
- Mignan, A. The Stress Accumulation Model: Accelerating Moment Release and Seismic Hazard. In Advances in Geophysics; Elsevier: Amsterdam, The Netherlands, 2008; Volume 49, pp. 67–201. ISBN 978-0-12-374231-5. [Google Scholar]
- Mignan, A. Retrospective on the Accelerating Seismic Release (ASR) Hypothesis: Controversy and New Horizons. Tectonophysics 2011, 505, 1–16. [Google Scholar] [CrossRef]
- Guilhem, A.; Bürgmann, R.; Freed, A.M.; Ali, S.T. Testing the Accelerating Moment Release (AMR) Hypothesis in Areas of High Stress. Geophys. J. Int. 2013, 195, 785–798. [Google Scholar] [CrossRef]
- De Santis, A.; Cianchini, G.; Di Giovambattista, R. Accelerating Moment Release Revisited: Examples of Application to Italian Seismic Sequences. Tectonophysics 2015, 639, 82–98. [Google Scholar] [CrossRef]
- Rundle, J.B.; Klein, W.; Turcotte, D.L.; Malamud, B.D. Precursory Seismic Activation and Critical-Point Phenomena. Pure Appl. Geophys. 2000, 157, 2165–2182. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Singh, R.P.; Senthil Kumar, J.; Zlotnicki, J.; Kafatos, M. Satellite Detection of Carbon Monoxide Emission Prior to the Gujarat Earthquake of 26 January 2001. Appl. Geochem. 2010, 25, 580–585. [Google Scholar] [CrossRef]
- Ghamry, E.; Mohamed, E.K.; Abdalzaher, M.S.; Elwekeil, M.; Marchetti, D.; De Santis, A.; Hegy, M.; Yoshikawa, A.; Fathy, A. Integrating Pre-Earthquake Signatures from Different Precursor Tools. IEEE Access 2021, 9, 33268–33283. [Google Scholar] [CrossRef]
- Friis-Christensen, E.; Lühr, H.; Hulot, G. Swarm: A Constellation to Study the Earth’s Magnetic Field. Earth Planet. Sp. 2006, 58, 351–358. [Google Scholar] [CrossRef]
- Friis-Christensen, E.; Lühr, H.; Knudsen, D.; Haagmans, R. Swarm—An Earth Observation Mission Investigating Geospace. Adv. Space Res. 2008, 41, 210–216. [Google Scholar] [CrossRef]
- Shah, M.; Inyurt, S.; Ehsan, M.; Ahmed, A.; Shakir, M.; Ullah, S.; Iqbal, M.S. Seismo Ionospheric Anomalies in Turkey Associated with Mw ≥ 6.0 Earthquakes Detected by GPS Stations and GIM TEC. Adv. Space Res. 2020, 65, 2540–2550. [Google Scholar] [CrossRef]
- Finlay, C.C.; Olsen, N.; Kotsiaros, S.; Gillet, N.; Tøffner-Clausen, L. Recent Geomagnetic Secular Variation from Swarm and Ground Observatories as Estimated in the CHAOS-6 Geomagnetic Field Model. Earth Planets Space 2016, 68, 112. [Google Scholar] [CrossRef]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the Size of Earthquake Preparation Zones. PAGEOPH 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Wiemer, S. A Software Package to Analyze Seismicity: ZMAP. Seismol. Res. Lett. 2001, 72, 373–382. [Google Scholar] [CrossRef]
- Marchetti, D.; Zhu, K.; Zhang, H.; Zhima, Z.; Yan, R.; Shen, X.; Chen, W.; Cheng, Y.; He, X.; Wang, T.; et al. Clues of Lithosphere, Atmosphere and Ionosphere Variations Possibly Related to the Preparation of La Palma 19 September 2021 Volcano Eruption. Remote Sens. 2022, 14, 5001. [Google Scholar] [CrossRef]
- De Santis, A.; Marchetti, D.; Spogli, L.; Cianchini, G.; Pavón-Carrasco, F.J.; Franceschi, G.D.; Di Giovambattista, R.; Perrone, L.; Qamili, E.; Cesaroni, C.; et al. Magnetic Field and Electron Density Data Analysis from Swarm Satellites Searching for Ionospheric Effects by Great Earthquakes: 12 Case Studies from 2014 to 2016. Atmosphere 2019, 10, 371. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; D’Arcangelo, S.; Poggio, F.; Jin, S.; Piscini, A.; Campuzano, S.A. Magnetic Field and Electron Density Anomalies from Swarm Satellites Preceding the Major Earthquakes of the 2016–2017 Amatrice-Norcia (Central Italy) Seismic Sequence. Pure Appl. Geophys. 2020, 177, 305–319. [Google Scholar] [CrossRef]
- Pinheiro, K.J.; Jackson, A.; Finlay, C.C. Measurements and Uncertainties of the Occurrence Time of the 1969, 1978, 1991, and 1999 Geomagnetic Jerks. Geochem. Geophys. Geosyst. 2011, 12, Q10015. [Google Scholar] [CrossRef]
- Pulinets, S.; Davidenko, D. Ionospheric Precursors of Earthquakes and Global Electric Circuit. Adv. Space Res. 2014, 53, 709–723. [Google Scholar] [CrossRef]
- Pulinets, S.; Khachikyan, G. The Global Electric Circuit and Global Seismicity. Geosciences 2021, 11, 491. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D. Multi-Instrument Observations and Validation of Laic. AGU Fall Meet. Abstr. 2014, 2014, NH21C-03. [Google Scholar]
- Qin, K.; Guo, G.; Wu, L. Surface Latent Heat Flux Anomalies Preceding Inland Earthquakes in China. Earthq. Sci. 2009, 22, 555–562. [Google Scholar] [CrossRef]
- Ghosh, S.; Chowdhury, S.; Kundu, S.; Sasmal, S.; Politis, D.Z.; Potirakis, S.M.; Hayakawa, M.; Chakraborty, S.; Chakrabarti, S.K. Unusual Surface Latent Heat Flux Variations and Their Critical Dynamics Revealed before Strong Earthquakes. Entropy 2021, 24, 23. [Google Scholar] [CrossRef]
- Talebi, M.; Zare, M.; Peresan, A. Quantifying the Features of Earthquake Clusters in North-Central Iran, Based on Nearest-Neighbor Distances and Network Analysis. Phys. Earth Planet. Inter. 2024, 353, 107215. [Google Scholar] [CrossRef]
- Bailo, D.; Paciello, R.; Michalek, J.; Cocco, M.; Freda, C.; Jeffery, K.; Atakan, K. The EPOS Multi-Disciplinary Data Portal for Integrated Access to Solid Earth Science Datasets. Sci. Data 2023, 10, 784. [Google Scholar] [CrossRef]
Closest Town | Origin Time [UT] | Epicentral Coordinates | Hypocentral Depth | Focal Mechanism | Magnitude | Equivalent Magnitude of the Doublet | Spatial Distance | Temporal Difference | |
---|---|---|---|---|---|---|---|---|---|
Latitude | Longitude | ||||||||
Dehloran (Iran) | 18 August 2014 02:32:05 | 32.703° N | 47.695° E | 10.2 km | reverse | 6.2 | 6.3 | 14 km | 16 h 40 m 27 s |
18 August 2014 18:08:22 | 32.583° N | 47.704° E | 5.0 km | Reverse/oblique | 6.0 | ||||
Kilmia, Yemen | 15 July 2018 01:57:19 | 14.063° N | 51.737° E | 10.0 km | Strike-slip | 6.0 | 6.2 | 24 km | 11 h 11 m 57 s |
15 July 2018 13:09:16 | 13.848° N | 51.717° E | 10.0 km | Strike-slip | 6.0 | ||||
Bandar-e Lengeh (Iran) | 1 July 2022 21:32:07 | 26.906° N | 55.239° E | 16.0 km | reverse | 6.0 | 6.2 | 11 km | 1 h 53 m 6 s |
1 July 2022 23:25:13 | 26.888° N | 55.321° E | 9.0 km | reverse | 6.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghamry, E.; Marchetti, D.; Metwaly, M. Geophysical Coupling Before Three Earthquake Doublets Around the Arabian Plate. Atmosphere 2024, 15, 1318. https://doi.org/10.3390/atmos15111318
Ghamry E, Marchetti D, Metwaly M. Geophysical Coupling Before Three Earthquake Doublets Around the Arabian Plate. Atmosphere. 2024; 15(11):1318. https://doi.org/10.3390/atmos15111318
Chicago/Turabian StyleGhamry, Essam, Dedalo Marchetti, and Mohamed Metwaly. 2024. "Geophysical Coupling Before Three Earthquake Doublets Around the Arabian Plate" Atmosphere 15, no. 11: 1318. https://doi.org/10.3390/atmos15111318
APA StyleGhamry, E., Marchetti, D., & Metwaly, M. (2024). Geophysical Coupling Before Three Earthquake Doublets Around the Arabian Plate. Atmosphere, 15(11), 1318. https://doi.org/10.3390/atmos15111318