Evaluating the Present and Future Heat Stress Conditions in the Grand Duchy of Luxembourg
Abstract
:1. Introduction
2. Materials and Methods
2.1. Station Data
2.2. Regional Climate Projections
2.3. Bias Correction of Model Data
2.4. RayMan Pro 3.1 and Physiologically Equivalent Temperature
2.5. Climate Indices
3. Results
3.1. Thermal Stress Assessment Based on the Measured Data
3.2. Results of the Regional Multi-Model Ensemble
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CCI | Commission for Climatology |
CDDs | Cooling Degree Days |
CDF | Cumulative Distribution Function |
CDOs | Climate Data Operators |
clo | Insulation effect of clothes |
CORDEX | Coordinated Regional Climate Downscaling Experiment |
ESGF | Earth System Grid Federation |
ET-SCIs | Expert Team on Sector-Specific Climate Indices |
FF | Far Future |
GCM | Global Climate Model |
HWD | Length of the longest heat wave |
HWFs | Days that contribute to heat waves |
HWM | Heat wave magnitude |
HWN | Heat Wave Number |
MEMI model | Munich energy balance model |
NF | Near Future |
PET | Physiologically Equivalent Temperature |
RCM | Regional Climate Model |
RCPs | Representative Concentration Pathways |
RF | Reference Period |
SYNOP | Synoptic Observation |
WMO | World Meteorological Organization |
WSDI | Warm-Spell Duration Indicator |
References
- Romanello, M.; Napoli, C.D.; Green, C.; Kennard, H.; Lampard, P.; Scamman, D.; Walawender, M.; Ali, Z.; Ameli, N.; Ayeb-Karlsson, S.; et al. The 2023 report of the Lancet Countdown on health and climate change: The imperative for a health-centred response in a world facing irreversible harms. Lancet 2023, 402, 2346–2394. [Google Scholar] [CrossRef] [PubMed]
- Tollefson, J. IPCC says limiting global warming to 1.5 °C will require drastic action. Nature 2018, 562, 172–173. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Matzarakis, A.; Rammelberg, J.; Junk, J. Assessment of thermal bioclimate and tourism climate potential for central Europe—The example of Luxembourg. Theor. Appl. Climatol. 2013, 4, 193–202. [Google Scholar] [CrossRef]
- Matzarakis, A.; Graw, K. Human Bioclimate Analysis for the Paris Olympic Games. Atmosphere 2022, 13, 269. [Google Scholar] [CrossRef]
- Ahan, M.M.; Nouri, A.S.; Matzarakis, A. Investigating the Relationship of Outdoor Heat Stress upon Indoor Thermal Comfort and Qualitative Sleep Evaluation: The Case of Ankara. Atmosphere 2023, 14, 1407. [Google Scholar] [CrossRef]
- Santos Nouri, A.; Charalampopoulos, I.; Afacan, Y.; Matzarakis, A. Detection and quantification of seasonal human heat and cold stress frequencies in representative existing and future urban canyons: The case of Ankara. Theor. Appl. Climatol. 2023, 153, 593–620. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Matzarakis, A. Characteristic of bioclimatic conditions in Poland based on Physiologically Equivalent Temperature. Int. J. Biometeorol. 2023, 67, 1991–2009. [Google Scholar] [CrossRef] [PubMed]
- Oudin Åström, D.; Bertil, F.; Joacim, R. Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies. Maturitas 2011, 69, 99–105. [Google Scholar] [CrossRef]
- Kenney, W.L.; Munce, T.A. Invited Review: Aging and human temperature regulation. J. Appl. Physiol. 2003, 95, 2598–2603. [Google Scholar] [CrossRef]
- Ballester, J.; Quijal-Zamorano, M.; Méndez Turrubiates, R.F.; Pegenaute, F.; Herrmann, F.R.; Robine, J.M.; Basagaña, X.; Tonne, C.; Antó, J.M.; Achebak, H. Heat-related mortality in Europe during the summer of 2022. Nat. Med. 2023, 29, 1857–1866. [Google Scholar] [CrossRef]
- Perčič, S.; Kukec, A.; Cegnar, T.; Hojs, A. Number of heat wave deaths by diagnosis, sex, age groups, and area, in Slovenia, 2015 vs. 2003. Int. J. Environ. Res. Public Health 2018, 15, 173. [Google Scholar] [CrossRef] [PubMed]
- Vargas Zeppetello, L.R.; Raftery, A.E.; Battisti, D.S. Probabilistic projections of increased heat stress driven by climate change. Commun. Earth Environ. 2022, 3, 183. [Google Scholar] [CrossRef]
- Spector, J.T.; Sheffield, P.E. Re-evaluating Occupational Heat Stress in a Changing Climate. Ann. Occup. Hyg. 2014, 58, 936–942. [Google Scholar] [CrossRef]
- Junk, J.; Goergen, K.; Krein, A. Future Heat Waves in Different European Capitals Based on Climate Change Indicators. Int. J. Environ. Res. Public Health 2019, 16, 3959. [Google Scholar] [CrossRef] [PubMed]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, L20714. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Zwiers, F.W.; Zhang, X. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation; 72; WMO: Geneva, Switzerland, 2009; p. 53. [Google Scholar]
- Insaf, T.Z.; Lin, S.; Sheridan, S.C. Climate trends in indices for temperature and precipitation across New York State, 1948–2008. Air Qual. Atmos. Health 2012, 6, 247–257. [Google Scholar] [CrossRef]
- Busuioc, A.; Dumitrescu, A.; Iriza-Burca, A.; Chitu, Z.; Dumitrache, R.; Dima, A. Projection of future changes in the summer thermal stress index in Romania using statistical downscaling and associated uncertainties. Clim. Res. 2022, 87, 39–66. [Google Scholar] [CrossRef]
- Cardoso, R.M.; Lima, D.C.A.; Soares, P.M.M. How persistent and hazardous will extreme temperature events become in a warming Portugal? Weather Clim. Extrem. 2023, 41, 100600. [Google Scholar] [CrossRef]
- Kim, Y.H.; Ahn, J.B.; Suh, M.S.; Cha, D.H.; Chang, E.C.; Min, S.K.; Byun, Y.H.; Kim, J.U. Concurrent daytime and nighttime heatwaves in the late 21st century over the CORDEX-East Asia phase 2 domain using multi-GCM and multi-RCM chains. Int. J. Climatol. 2023, 43, 4687–4701. [Google Scholar] [CrossRef]
- Zhang, J.; You, Q.; Ren, G.; Ullah, S. Substantial increase in human-perceived heatwaves in eastern China in a warmer future. Atmos. Res. 2023, 283, 106554. [Google Scholar] [CrossRef]
- Wallenberg, N.; Rayner, D.; Lindberg, F.; Thorsson, S. Present and future heat stress of preschoolers in five Swedish cities. Clim. Risk Manag. 2023, 40, 100508. [Google Scholar] [CrossRef]
- Wedler, M.; Pinto, J.G.; Hochman, A. More frequent, persistent, and deadly heat waves in the 21st century over the Eastern Mediterranean. Sci. Total Environ. 2023, 870, 161883. [Google Scholar] [CrossRef] [PubMed]
- Cinquini, L.; Crichton, D.; Mattmann, C.; Harney, J.; Shipman, G.; Wang, F.; Ananthakrishnan, R.; Miller, N.; Denvil, S.; Morgan, M.; et al. The Earth System Grid Federation: An open infrastructure for access to distributed geospatial data. Future Gener. Comput. Syst. 2014, 36, 400–417. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747. [Google Scholar] [CrossRef]
- Rajczak, J.; Pall, P.; Schär, C. Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. J. Geophys. Res. Atmos. 2013, 118, 3610–3626. [Google Scholar] [CrossRef]
- Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. A trend-preserving bias correction—The ISI-MIP approach. Earth Syst. Dyn. 2013, 4, 219–236. [Google Scholar] [CrossRef]
- Cannon, A.J. Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Clim. Dyn. 2017, 50, 31–49. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Gudmundsson, L. qmap: Statistical Transformations for Post-Processing Climate Model Output, R Package Version 1.0-4; CRAN Repository: Vienna, Austria, 2016. Available online: https://rdrr.io/cran/qmap/(accessed on 12 January 2022).
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments--application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Ripamonti, R.E.M.; Junk, J. The role of climate change on Bemisia tabaci as a vector for ToLCNDV. Jul.-Kühn-Arc 2023, 475, 648. [Google Scholar]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- VDI. Methods for the Human Biometeorological Evaluation of Climate and Air Quality for the Urban and Regional Planning; VDI: Berlin, Germany, 1998. [Google Scholar]
- Wang, B.-J.; Dong, S.-Y.; Hu, T.; Sun, Y. Changes of extreme cold events in China over the last century based on reanalysis data. Adv. Clim. Chang. Res. 2023, 19, 403–417. [Google Scholar] [CrossRef]
- Van der Walt, A.J.; Kruger, J.A.; Roffe, S.J. Fine-resolution analysis of the spatiotemporal characteristics of heatwaves in the Maloti-Drakensberg region, southern Africa: 1979–2021. Trans. R. Soc. S. Afr. 2023, 78, 5–15. [Google Scholar] [CrossRef]
- Nishant, N.; Di Virgilio, G.; Ji, F.; Tam, E.; Beyer, K.; Riley, M.L. Evaluation of Present-Day CMIP6 Model Simulations of Extreme Precipitation and Temperature over the Australian Continent. Atmosphere 2022, 13, 1478. [Google Scholar] [CrossRef]
- Zare, M.; Azam, S.; Sauchyn, D.; Basu, S. Assessment of Meteorological and Agricultural Drought Indices under Climate Change Scenarios in the South Saskatchewan River Basin, Canada. Sustainability 2023, 15, 5907. [Google Scholar] [CrossRef]
- Isa, Z.; Sawa, B.A.; Abdussalam, A.F.; Ibrahim, M.; Babati, A.H.; Baba, B.M.; Ugya, A.Y. Impact of climate change on climate extreme indices in Kaduna River basin, Nigeria. Env. Sci. Pollut. Res. Int. 2023, 30, 77689–77712. [Google Scholar] [CrossRef]
- Espín-Sánchez, D.; Conesa-García, C. Spatio-temporal Changes in the Heatwaves and Coldwaves in Spain (1950–2018): Influence of the East Atlantic Pattern. Geogr. Pannonica 2021, 25, 168–183. [Google Scholar] [CrossRef]
- Oliveira, A.; Lopes, A.; Soares, A. Excess Heat Factor climatology, trends, and exposure across European Functional Urban Areas. Weather Clim. Extrem. 2022, 36, 100455. [Google Scholar] [CrossRef]
- Perkins, S.E.; Alexander, L.V. On the Measurement of Heat Waves. J. Clim. 2013, 26, 4500–4517. [Google Scholar] [CrossRef]
- Matzarakis, A.; Amelung, B. Physiological Equivalent Temperature as Indicator for Impacts of Climate Change on Thermal Comfort of Humans. In Seasonal Forecasts, Climatic Change and Human Health; Thomson, M., Garcia-Herrera, R., Beniston, M., Eds.; Advances in Global Change Research; Springer: Dordrecht, The Netherlands, 2008; Volume 30, pp. 161–172. [Google Scholar]
- Matzarakis, A.; Endler, C. Climate change and thermal bioclimate in cities: Impacts and options for adaptation in Freiburg, Germany. Int. J. Biometeorol. 2010, 54, 479–483. [Google Scholar] [CrossRef]
- Kenney, W.L. A review of comparatve responses of woman and men to heat tress. Environ. Res. 1983, 37, 1–11. [Google Scholar] [CrossRef]
- Alele, F.; Malau-Aduli, B.; Malau-Aduli, A.; Crowe, M. Systematic review of gender differences in the epidemiology and risk factors of exertional heat illness and heat tolerance in the armed forces. BMJ Open 2020, 10, e031825. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, D.; Kenny, G.P. Sex modulates whole-body sudomotor thermosensitivity during exercise. J. Physiol. 2011, 589, 6205–6217. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, D.; Crandall, C.G.; Kenny, G.P. Sex differences in postsynaptic sweating and cutaneous vasodilation. J. Appl. Physiol. 2013, 114, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Gronlund, C.J. Racial and socioeconomic disparities in heat-related health effects and their mechanisms: A review. Curr. Epidemiol. Rep. 2014, 1, 165–173. [Google Scholar] [CrossRef]
- Mayrhuber, E.A.-S.; Dückers, M.L.A.; Wallner, P.; Arnberger, A.; Allex, B.; Wiesböck, L.; Wanka, A.; Kolland, F.; Eder, R.; Hutter, H.-P.; et al. Vulnerability to heatwaves and implications for public health interventions—A scoping review. Environ. Res. 2018, 166, 42–54. [Google Scholar] [CrossRef]
- Junk, J.; Ulber, B.; Vidal, S.; Eickermann, M. Assessing climate change impacts on the rape stem weevil, Ceutorhynchus napi Gyll., based on bias- and non-bias-corrected regional climate change projections. Int. J. Biometeorol. 2015, 59, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Piani, C.; Haerter, J.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 4. [Google Scholar] [CrossRef] [PubMed]
- Goergen, K.; Beersma, J.; Hoffmann, L.; Junk, J. ENSEMBLES-based assessment of regional climate effects in Luxembourg and their impact on vegetation. Clim. Chang. 2013, 119, 761–773. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Webb, M.J.; Annan, J.D.; Armour, K.C.; Forster, P.M.; Hargreaves, J.C.; Hegerl, G.; Klein, S.A.; Marvel, K.D.; Rohling, E.J.; et al. An Assessment of Earth’s Climate Sensitivity Using Multiple Lines of Evidence. Rev. Geophys. 2020, 58, e2019RG000678. [Google Scholar] [CrossRef]
- Laaidi, K.; Zeghnoun, A.; Dousset, B.; Bretin, P.; Vandentorren, S.; Giraudet, E.; Beaudeau, P. The Impact of Heat Islands on Mortality in Paris during the August 2003 Heat Wave. Environ. Health Perspect. 2012, 120, 254–259. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Ahmed, I.; Ishtiaque, S.; Zahan, T.; Rashed, M.S.U.; Sen, R.; Hossain, M.F.; Brahma, S.; Ahmed, I.M.; Hossain, M.A.; Ali, M.A.; et al. Climate change vulnerability in Bangladesh based on trend analysis of some extreme temperature indices. Theor. Appl. Climatol. 2022, 149, 831–842. [Google Scholar] [CrossRef]
- Sensoy, S.; Demicran, M.; Alan, I. Trends in Turkey Climate Extreme Indices from 1971 to 2004. In Proceedings of the BALWOIS 2008, Ohrid, North Macedonia, 27–31 May 2008; p. 9. [Google Scholar]
- Viguié, V.; Lemonsu, A.; Hallegatte, S.; Beaulant, A.-L.; Marchadier, C.; Masson, V.; Pigeon, G.; Salagnac, J.-L. Early adaptation to heat waves and future reduction of air-conditioning energy use in Paris. Environ. Res. Lett. 2020, 15, 075006. [Google Scholar] [CrossRef]
- Biagini, B.; Bierbaum, R.; Stults, M.; Dobardzic, S.; McNeeley, S.M. A typology of adaptation actions: A global look at climate adaptation actions financed through the Global Environment Facility. Glob. Environ. Chang. 2014, 25, 97–108. [Google Scholar] [CrossRef]
- Fenner, D.; Holtmann, A.; Krug, A.; Scherer, D. Heat waves in Berlin and Potsdam, Germany—Long-term trends and comparison of heat wave definitions from 1893 to 2017. Int. J. Climatol. 2018, 39, 2422–2437. [Google Scholar] [CrossRef]
- Schoetter, R.; Cattiaux, J.; Douville, H. Changes of western European heat wave characteristics projected by the CMIP5 ensemble. Clim. Dyn. 2014, 45, 1601–1616. [Google Scholar] [CrossRef]
- Nolan, R.H.; Anderson, L.O.; Poulter, B.; Varner, J.M. Increasing threat of wildfires: The year 2020 in perspective: A Global Ecology and Biogeography special issue. Glob. Ecol. Biogeogr. 2022, 31, 1898–1905. [Google Scholar] [CrossRef]
- Dupuy, J.-L.; Fargeon, H.; Martin-StPaul, N.; Pimont, F.; Ruffault, J.; Guijarro, M.; Hernando, C.; Madrigal, J.; Fernandes, P. Climate change impact on future wildfire danger and activity in southern Europe: A review. Ann. For. Sci. 2020, 77, 35. [Google Scholar] [CrossRef]
- Turco, M.; Llasat, M.-C.; von Hardenberg, J.; Provenzale, A. Climate change impacts on wildfires in a Mediterranean environment. Clim. Chang. 2014, 125, 369–380. [Google Scholar] [CrossRef]
- Lin, C.; Kjellström, E.; Wilcke, R.A.I.; Chen, D. Present and future European heat wave magnitudes: Climatologies, trends, and their associated uncertainties in GCM-RCM model chains. EGUsphere 2022, 13, 1197–1214. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 12500–12512. [Google Scholar] [CrossRef]
- Lyon, B.; Barnston, A.G.; Coffel, E.; Horton, R.M. Projected increase in the spatial extent of contiguous US summer heat waves and associated attributes. Environ. Res. Lett. 2019, 14, 114029. [Google Scholar] [CrossRef]
- Singh, S.; Mall, R.K.; Dadich, J.; Verma, S.; Singh, J.V.; Gupta, A. Evaluation of CORDEX-South Asia regional climate models for heat wave simulations over India. Atmos. Res. 2021, 248, 105228. [Google Scholar] [CrossRef]
Model Abbreviation | Global Climate Model (GCM) | Regional Climate Model (RCM) | RCP26 | RCP45 | RCP85 | Time Span |
---|---|---|---|---|---|---|
M1 | CNRM-CERFACS-CNRM-CM5 | CNRM-ALADIN53_v1 | x | x | x | 1950–2100 |
M2 | CNRM-CERFACS-CNRM-CM5 | RMIB-UGent-ALARO-0_v1 | x | x | x | 1950–2100 |
M3 | MOHC-HadGEM2-ES | KNMI-RACMO22E_v2 | x | x | x | 1950–2099 |
M4 | MOHC-HadGEM2-ES | SMHI-RCA4_v1 | x | x | x | 1970–2099 |
M5 | MPI-M-MPI-ESM-LR | MPI-CSC-REMO2009_v1 | x | x | x | 1950–2100 |
M6 | MPI-M-MPI-ESM-LR | SMHI-RCA4_v1a | x | x | x | 1970–2100 |
M7 | NCC-NorESM1-M | DMI-HIRHAM5_v2 | x | x | 1951–2100 | |
M8 | MOHC-HadGEM2-ES | CLMcom-CCLM4-8-17_v1 | x | x | 1949–2099 | |
M9 | CNRM-CERFACS-CNRM-CM5 | SMHI-RCA4_v1 | x | x | 1970–2100 | |
M10 | IPSL-IPSL-CM5A-MR | IPSL-INERIS-WRF331F_v1 | x | x | 1951–2100 | |
M11 | CNRM-CERFACS-CNRM-CM5 | CLMcom-CCLM4-8-17_v1 | x | x | 1950–2100 | |
M12 | ICHEC-EC-EARTH | KNMI-RACMO22E_v1 | x | x | 1950–2100 | |
M13 | IPSL-IPSL-CM5A | SMHI-RCA4_v1 | x | x | 1970–2100 | |
M14 | MPI-M-MPI-ESM-LR | CLMcom-CCLM4-8-17_v1 | x | x | 1949–2100 |
Short Name | Long Name | Description | Units |
---|---|---|---|
SU | Summer days | Days when maximum air temperature exceeds 25 °C | days |
TR | Tropical nights | Days when minimum air temperature exceeds 20 °C | days |
TXx | Max TX | Hottest day | °C |
WSDI | Warm-spell duration indicator | Annual number of days contributing to events where 6 or more consecutive days experience a TX > 90th percentile | days |
TXge30 | TX of at least 30 °C | Days when maximum air temperature is at least 30 °C | days |
TXge35 | TX of at least 35 °C | Days when maximum air temperature is at least 35 °C | days |
TXdTNd | User-defined consecutive number of hot days and nights | Annual count of d consecutive days where both the TX > 95th percentile and TN > 95th percentile, and where 10 ≥ d ≥ 2 | Events |
CDDcoldn | Cooling degree days | Annual sum of TM − n (where n is a user-defined location-specific base air temperature and TM > n) | Degree-days |
TNx | Max TN | Hottest night | °C |
TXm | Mean TX | Average daily maximum air temperature | °C |
TX90p | Number of hot days | Percentage of days when TX > 90th percentile | % |
TN90p | Number of warm nights | Percentage of days when TN > 90th percentile | % |
HWN (EHF/Tx90/Tn90) | Heat Wave Number (HWN) as defined by either the Excess Heat Factor (EHF), 90th percentile of TX, or the 90th percentile of TN | The number of individual heat waves that occur each summer (May–Sep). A heat wave is defined as 3 or more days where either the EHF is positive, TX > 90th percentile of TX, or where TN > 90th percentile of TN. Percentiles are calculated from the base period | events |
HWF (EHF/Tx90/Tn90 | Heat Wave Frequency (HWF) as defined by either the Excess Heat Factor (EHF), 90th percentile of TX, or the 90th percentile of TN | The number of days that contribute to heat waves as identified by the HWN | days |
HWD (EHF/Tx90/Tn90) | Heat Wave Duration (HWD) as defined by either the Excess Heat Factor (EHF), 90th percentile of TX, or the 90th percentile of TN | The length of the longest heat wave identified by the HWN | days |
HWM (EHF/Tx90/Tn90) | Heat Wave Magnitude (HWM) as defined by either the Excess Heat Factor (EHF), 90th percentile of TX, or the 90th percentile of TN | The mean air temperature of all heat waves identified by the HWN [45] | °C (°C2 for EHF) |
Index Name | RCP26 Ref. Period | RCP26 NF | RCP26 FF | RCP45 Ref. Period | RCP45 NF | RC45 FF | RCP85 Ref. Period | RCP85 NF | RCP85 FF |
---|---|---|---|---|---|---|---|---|---|
Summer days, days | 28 | 38 p < 0.001 | 39 p < 0.001 | 28 | 40 p < 0.001 | 48 p < 0.001 | 28 | 39 p < 0.001 | 69 p < 0.001 |
Tropical nights, days | 0.26 | 0.92 p < 0.001 | 1.90 p < 0.001 | 0.34 | 1.66 p < 0.001 | 3.8 p < 0.001 | 0.34 | 1.84 p < 0.001 | 13.22 p < 0.001 |
Max TX, °C | 31.5 | 33.0 p < 0.001 | 33.2 p < 0.001 | 31.5 | 32.9 p < 0.001 | 33.9 p < 0.001 | 31.5 | 33.0 p < 0.001 | 36.5 p < 0.001 |
Warm-spell duration indicator, days | 6 | 17 p < 0.001 | 21 p < 0.001 | 6 | 18 p < 0.001 | 32 p < 0.001 | 6 | 19 p < 0.001 | 65 p < 0.001 |
TX of at least 30 °C, days | 4 | 8 p < 0.001 | 10 p < 0.001 | 4 | 9 p < 0.001 | 12 p < 0.001 | 4 | 9 p < 0.001 | 24 p < 0.001 |
TX of at least 35 °C, days | 0.13 | 0.52 | 0.85 | 0.14 | 0.64 p < 0.001 | 1.25 p < 0.001 | 0.14 | 0.68 p < 0.001 | 4.62 p < 0.001 |
Consecutive hot days and nights (d = 2) | 0 | 2 p < 0.001 | 2 p < 0.001 | 0 | 2 p < 0.001 | 4 p < 0.001 | 0 | 2 p < 0.001 | 7 p < 0.00 |
Cooling degree days, degree days | 100 | 162 p < 0.001 | 179 p < 0.001 | 102 | 174 p < 0.001 | 234 p < 0.001 | 102 | 176 p < 0.001 | 407 p < 0.001 |
Max TN, °C | 18.6 | 19.8 p < 0.001 | 20.0 p < 0.001 | 18.7 | 19.9 p < 0.001 | 20.9 p < 0.001 | 18.7 | 20.1 p < 0.001 | 23.1 p < 0.001 |
Mean TX, °C | 12.7 | 13.9 p < 0.001 | 14.0 p < 0.001 | 12.7 | 13.9 p < 0.001 | 14.8 p < 0.001 | 12.7 | 13.9 p < 0.001 | 16.5 p < 0.001 |
Number of hot days, % (TX90p) | 10.6 | 16.3 p < 0.001 | 17.2 p < 0.001 | 10.6 | 17.2 p < 0.001 | 22.8 p < 0.001 | 10.6 | 17.2 p < 0.001 | 34.8 p < 0.001 |
Number of warm nights, % (TN90p) | 10.6 | 18.5 p < 0.001 | 18.9 p < 0.001 | 10.6 | 18.4 p < 0.001 | 26.0 p < 0.001 | 10.6 | 19.4 p < 0.001 | 41.9 p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junk, J.; Sulis, M.; Trebs, I.; Torres-Matallana, J.A. Evaluating the Present and Future Heat Stress Conditions in the Grand Duchy of Luxembourg. Atmosphere 2024, 15, 112. https://doi.org/10.3390/atmos15010112
Junk J, Sulis M, Trebs I, Torres-Matallana JA. Evaluating the Present and Future Heat Stress Conditions in the Grand Duchy of Luxembourg. Atmosphere. 2024; 15(1):112. https://doi.org/10.3390/atmos15010112
Chicago/Turabian StyleJunk, Juergen, Mauro Sulis, Ivonne Trebs, and Jairo Arturo Torres-Matallana. 2024. "Evaluating the Present and Future Heat Stress Conditions in the Grand Duchy of Luxembourg" Atmosphere 15, no. 1: 112. https://doi.org/10.3390/atmos15010112
APA StyleJunk, J., Sulis, M., Trebs, I., & Torres-Matallana, J. A. (2024). Evaluating the Present and Future Heat Stress Conditions in the Grand Duchy of Luxembourg. Atmosphere, 15(1), 112. https://doi.org/10.3390/atmos15010112