Bedrooms and the Vulnerability of Sleepers to Extreme Heat Events
Abstract
:1. Introduction
2. Method
3. Sleep Quality
4. Bedrooms
4.1. Bedroom Size and Psychological Factors
4.2. Indoor Environmental Quality (IEQ)
4.3. Sleeper Behaviour and Adaptability
5. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2022: Impacts, Adaption, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Berger, S.E.; Ordway, M.R.; Schoneveld, E.; Lucchini, M.; Thakur, S.; Anders, T.; Natale, L.; Barnett, N. The impact of extreme summer temperatures in the United Kingdom on infant sleep: Implications for learning and development. Sci. Rep. 2023, 13, 10061. [Google Scholar] [CrossRef] [PubMed]
- Hagen, M.; Weihs, P. Mortality during Heatwaves and Tropical Nights in Vienna between 1998 and 2022. Atmosphere 2023, 14, 1498. [Google Scholar] [CrossRef]
- Laaidi, K.; Zeghnoun, A.; Dousset, B.; Bretin, P.; Vandentorren, S.; Giraudet, E.; Beaudeau, P. The Impact of Heat Islands on Mortality in Paris during the August 2003 Heat Wave. Environ. Health Perspect. 2012, 120, 254–259. [Google Scholar] [CrossRef]
- Rifkin, D.I.; Long, M.W.; Perry, M.J. Climate change and sleep: A systematic review of the literature and conceptual framework. Sleep Med. Rev. 2018, 42, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Lomas, K.J. Summertime overheating in dwellings in temperate climates. Build. Cities 2021, 2, 487–494. [Google Scholar] [CrossRef]
- Altena, E.; Baglioni, C.; Sanz-Arigita, E.; Cajochen, C.; Riemann, D. How to deal with sleep problems during heatwaves: Practical recommendations from the European Insomnia Network. J. Sleep Res. 2022, 32, e13704. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.; Carmichael, C.; Murray, V.; Dengel, A.; Swainson, M. Defining indoor heat thresholds for health in the UK. Perspect. Public Health 2012, 133, 158–164. [Google Scholar] [CrossRef]
- Drury, P.; Watson, S.; Lomas, K.J. Summertime overheating in UK homes: Is there a safe haven? Budlings Cities 2021, 2, 970–990. [Google Scholar] [CrossRef]
- Zhao, Q.; Lian, Z.; Lai, D. Thermal comfort models and their developments: A review. Energy Built Environ. 2020, 2, 21–33. [Google Scholar] [CrossRef]
- Farahani, A.V.; Kravchenko, I.; Jokisalo, J.; Korhonen, N.; Jylhä, K.; Kosonen, R. Overheating assessment for apartments during average and hot summers in the Nordic climate. Build. Res. Inf. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Ahan, M.M.; Nouri, A.S.; Matzarakis, A. Investigating the relationship of outdoor heat stress upon indoor thermal comfort and qualitative sleep evaluation: The case of Ankara. Atmosphere 2023, 14, 1407. [Google Scholar] [CrossRef]
- Kearns, A. Housing space and occupancy standards: Developing evidence for policy from a health and wellbeing perspective in the UK context. Build. Res. Inf. 2022, 50, 722–737. [Google Scholar] [CrossRef]
- Baumeister, R.F.; Leary, M.R. Writing Narrative Literature Reviews. Rev. Gen. Psychol. 1997, 1, 311–320. [Google Scholar] [CrossRef]
- Malterud, K. The art and science of clinical knowledge: Evidence beyond measures and numbers. Lancet 2001, 358, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, T.; Thorne, S.; Malterud, K. Time to challenge the spurious hierarchy of systematic over narrative reviews? Eur. J. Clin. Investig. 2018, 48, e12931. [Google Scholar] [CrossRef] [PubMed]
- Binks, H.; Vincent, G.E.; Gupta, C.; Irwin, C.; Khalesi, S. Effects of Diet on Sleep: A Narrative Review. Nutrients 2020, 12, 936. [Google Scholar] [CrossRef]
- Morin, C.M.; Bootzin, R.R.; Buysse, D.J.; Edinger, J.D.; Espie, C.A.; Lichstein, K.L. Psychological and behavioral treatment of insomnia: Update of the recent evidence (1998–2004). Sleep 2006, 29, 1398–1414. [Google Scholar] [CrossRef]
- Wilson, K.; St-Onge, M.-P.; Tasali, E. Diet composition and objectively assessed sleep quality: A narrative review. J. Acad. Nutr. Diet. 2022, 122, 1182–1195. [Google Scholar] [CrossRef]
- Gregory, P.; Morgan, K.; Lynall, A. Improving sleep management in people with Parkinson’s. Br. J. Community Nurs. 2012, 17, 14–20. [Google Scholar] [CrossRef]
- Espie, C.A. The ‘5 principles’ of good sleep health. J. Sleep Res. 2021, 31, e13502. [Google Scholar] [CrossRef]
- Caddick, Z.A.; Gregory, K.; Arsintescu, L.; Flynn-Evans, E.E. A review of the environmental parameters necessary for an optimal sleep environment. J. Affect. Disord. 2018, 132, 11–20. [Google Scholar] [CrossRef]
- Alhola, P.; Polo-Kantola, P. Sleep deprivation: Impact on cognitive performance. Neuropsychiatr. Dis. Treat. 2007, 3, 553–567. [Google Scholar] [PubMed]
- Gorgoni, M.; Scarpelli, S.; Mangiaruga, A.; Alfonsi, V.; Bonsignore, M.R.; Fanfulla, F.; Ferini-Strambi, L.; Nobili, L.; Plazzi, G.; De Gennaro, L.; et al. Pre-sleep arousal and sleep quality during the COVID-19 lockdown in Italy. Sleep Med. 2021, 88, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Richter, K.; Adam, S.; Geiss, L.; Peter, L.; Niklewski, G. Two in a bed: The influence of couple sleeping and chronotypes on relationship and sleep. An overview. Chrono-Int. 2016, 33, 1464–1472. [Google Scholar] [CrossRef] [PubMed]
- Obradovich, N.; Migliorini, R.; Mednick, S.C.; Fowler, J.H. Nighttime temperature and human sleep loss in a changing climate. Sci. Adv. 2017, 3, e1601555. [Google Scholar] [CrossRef] [PubMed]
- Åström, D.O.; Bertil Forsberg, B.; Rocklöv, J. Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies. Maturitas 2011, 69, 99–105. [Google Scholar] [CrossRef]
- Yang, J.; Nam, I.; Sohn, J.-R. The influence of seasonal characteristics in elderly thermal comfort in Korea. Energy Build. 2016, 128, 583–591. [Google Scholar] [CrossRef]
- Ravindra, N.G.; Espinosa, C.; Berson, E.; Phongpreecha, T.; Zhao, P.; Becker, M.; Chang, A.L.; Shome, S.; Marić, I.; De Francesco, D.; et al. Deep representation learning identifies associations between physical activity and sleep patterns during pregnancy and prematurity. NPJ Digit. Med. 2023, 6, 171. [Google Scholar] [CrossRef]
- Krystal, A.D.; Edinger, J.D. Measuring sleep quality. Sleep Med. 2008, 9 (Suppl. S1), S10–S17. [Google Scholar] [CrossRef]
- Patterson, M.R.; Nunes, A.A.S.; Gerstel, D.; Pilkar, R.; Guthrie, T.; Neishabouri, A.; Guo, C.C. 40 years of actigraphy in sleep medicine and current state of the art algorithms. NPJ Digit. Med. 2023, 6, 51. [Google Scholar] [CrossRef]
- Ibáñez, V.; Silva, J.; Cauli, O. A survey on sleep questionnaires and diaries. Sleep Med. 2018, 42, 90–96. [Google Scholar] [CrossRef]
- Perez-Pozuelo, I.; Zhai, B.; Palotti, J.; Mall, R.; Aupetit, M.; Garcia-Gomez, J.M.; Taheri, S.; Guan, Y.; Fernandez-Luque, L. The future of sleep health: A data-driven revolution in sleep science and medicine. NPJ Digit. Med. 2020, 3, 42. [Google Scholar] [CrossRef]
- Adeyeye, K. From product to service—Strategies for upscaling smart home performance monitoring. Build. Res. Inf. 2023. [Google Scholar] [CrossRef]
- Xu, X.; Lan, L.; Shen, J.; Sun, Y.; Lian, Z. Five hypotheses concerned with bedroom environment and sleep quality: A questionnaire survey in Shanghai city, China. Build. Environ. 2021, 205, 108252. [Google Scholar] [CrossRef]
- Dincer, D.; Tietz, C.; Dalci, K. An Investigation into Sleep Environment as a Multi-Functional Space. Buildings 2023, 13, 406. [Google Scholar] [CrossRef]
- Emmitt, S. Exploring the nexus between bedroom design and sleep quality in a warming climate. Urban Clim. 2023, 51, 101635. [Google Scholar] [CrossRef]
- Chartered Institute of Building Services Engineers. TM59 Design Methodology for the Assessment of Overheating Risk in Homes; CIBSE: London, UK, 2017. [Google Scholar]
- Shi, X.; Si, B.; Zhao, J.; Tian, Z.; Wang, C.; Jin, X.; Zhou, X. Magnitude, Causes, and Solutions of the Performance Gap of Buildings: A Review. Sustainability 2019, 11, 937. [Google Scholar] [CrossRef]
- McLeod, R.S.; Swainson, M. Chronic overheating in low carbon urban developments in a temperate climate. Renew. Sustain. Energy Rev. 2017, 74, 201–220. [Google Scholar] [CrossRef]
- American Society of Heating, Refrigerating, and Air-Conditioning Engineers. ASHRAE/ANSI Standard 55-2010—Thermal Environmental Conditions for Human Occupancy; ASHRAE: Peachtree Corners, GA, USA, 2020. [Google Scholar]
- Imagawa, H.; Rijal, H.B. Field survey of the thermal comfort, quality of sleep and typical occupant behaviour in the bedrooms of Japanese houses during the hot and humid season. Arch. Sci. Rev. 2015, 58, 11–23. [Google Scholar] [CrossRef]
- Wargocki, P.; Lan, L.; Lian, Z.; Wyon, D.P. Thermal environment, IAQ and sleep. ASHRAE J. 2018, 60, 60–63. [Google Scholar]
- Gupta, R.; Kapsali, M. Empirical assessment of indoor air quality and overheating in low-carbon social housing dwellings in England, UK. Adv. Build. Energy Res. 2015, 10, 46–68. [Google Scholar] [CrossRef]
- Ade, R.; Rehm, M. A summertime thermal analysis of New Zealand Homestar certified apartments for older people. Build. Res. Inf. 2022, 50, 681–693. [Google Scholar] [CrossRef]
- Lozoya-Peral, A.; Pérez-Carramiñana, C.; Galiano-Garrigós, A.; González-Avilés, B.; Emmitt, S. Exploring Energy Retrofitting Strategies and Their Effect on Comfort in a Vernacular Building in a Dry Mediterranean Climate. Buildings 2023, 13, 1381. [Google Scholar] [CrossRef]
- Pathan, A.; Mavrogianni, A.; Summerfield, A.; Oreszczyn, T.; Davies, M. Monitoring summer indoor overheating in London housing stock. Energy Build. 2017, 141, 361–378. [Google Scholar] [CrossRef]
- Zinzi, M.; Agnoli, S.; Burattini, C.; Mattoni, B. On the thermal response of buildings under the synergic effect of heat waves and urban heat island. Sol. Energy 2020, 211, 1270–1282. [Google Scholar] [CrossRef]
- West, B.N.; Emmitt, S. Functional design? An analysis of new speculative house plans in the UK. Des. Stud. 2004, 25, 275–299. [Google Scholar] [CrossRef]
- Özer, S.; Jacoby, S. Dwelling size and usability in London: A study of floor plan data using machine learning. Build. Res. Inf. 2022, 50, 694–708. [Google Scholar] [CrossRef]
- Banaei, M.; Hekmatmanesh, A.; Haghighi, K.S.; Najafi, A. Bedroom design orientation and sleep electroencephalography signals. Acta Med. Int. 2019, 6, 33–37. [Google Scholar] [CrossRef]
- Spörrle, M.; Stich, J. Sleeping in Safe Places: An Experimental Investigation of Human Sleeping Place Preferences from an Evolutionary Perspective. Evol. Psychol. 2010, 8, 405–419. [Google Scholar] [CrossRef]
- Kim, M.; Chun, C.; Han, J. A Study on Bedroom Environment and Sleep Quality in Korea. Indoor Built Environ. 2010, 19, 123–128. [Google Scholar] [CrossRef]
- Sutcliffe, J.F.; Yin, S. Effects of indoor air movement and ambient temperature on mosquito (Anopheles gambiae) behaviour around bed nets: Implications for malaria prevention initiatives. Malar. J. 2021, 20, 427. [Google Scholar] [CrossRef]
- Lan, L.; Lian, Z. Ten questions concerning thermal environment and sleep quality. J. Affect. Disord. 2016, 99, 252–259. [Google Scholar] [CrossRef]
- Canha, N.; Teixeira, C.; Figueira, M.; Correia, C. How Is Indoor Air Quality during Sleep? A Review of Field Studies. Atmosphere 2021, 12, 110. [Google Scholar] [CrossRef]
- Fan, X.; Liao, C.; Bivolarova, M.P.; Sekhar, C.; Laverge, J.; Lan, L.; Mainka, A.; Akimoto, M.; Wargocki, P. A field intervention study of the effects of window and door opening on bedroom IAQ, sleep quality, and next-day cognitive performance. J. Affect. Disord. 2022, 225, 109630. [Google Scholar] [CrossRef]
- Wang, R.; Li, W.; Gao, J.; Zhao, C.; Zhang, J.; Bie, Q.; Zhang, M.; Chen, X. The Influence of Bedroom CO2 Concentration on Sleep Quality. Buildings 2023, 13, 2768. [Google Scholar] [CrossRef]
- Lan, L.; Tsuzuki, K.; Liu, Y.; Lian, Z. Thermal environment and sleep quality: A review. Energy Build. 2017, 149, 101–113. [Google Scholar] [CrossRef]
- Xu, X.; Lian, Z. Optimizing bedroom thermal environment: A review of human body temperature, sleeping thermal comfort and sleep quality. Energy Built Environ. 2023. [Google Scholar] [CrossRef]
- Muzet, A. Environmental noise, sleep and health. Sleep Med. Rev. 2007, 11, 135–142. [Google Scholar] [CrossRef]
- Dümen, A.; Bayazıt, N.T. Enforcement of acoustic performance assessment in residential buildings and occupant satisfaction. Build. Res. Inf. 2020, 48, 866–885. [Google Scholar] [CrossRef]
- Cooper, E.; Wang, Y.; Stamp, S.; Nijsen, T.; de Graaf, P.; Hofman, J.; Inki, T.; Driessen, R.; Liebmann, J.; Geven, I.T.M.; et al. Why do people use portable air purifiers? Evidence from occupant surveys and air quality monitoring in homes in three European cities. Build. Res. Inf. 2021, 50, 213–229. [Google Scholar] [CrossRef]
- Rus, H.; Danoff-Burg, S.; Weaver, M.; Rodriguez, R.; Raymann, R. 263 Use of an Air Purifier in the Bedroom Improves Objective and Perceived Sleep. Sleep 2021, 44, A105–A106. [Google Scholar] [CrossRef]
- Hendel, M.; Azos-Diaz, K.; Tremeac, B. Behavioral adaptation to heat-related health risks in cities. Energy Build. 2017, 152, 823–829. [Google Scholar] [CrossRef]
- Liu, X.; He, J.; Xiong, K.; Liu, S.; He, B.-J. Identification of factors affecting public willingness to pay for heat mitigation and adaptation: Evidence from Guangzhou, China. Urban Clim. 2023, 48, 101405. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Song, C.; Liu, J. Appropriate indoor operative temperature and bedding microclimate temperature that satisfies the requirements of sleep thermal comfort. Build. Environ. 2015, 92, 20–29. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emmitt, S. Bedrooms and the Vulnerability of Sleepers to Extreme Heat Events. Atmosphere 2023, 14, 1782. https://doi.org/10.3390/atmos14121782
Emmitt S. Bedrooms and the Vulnerability of Sleepers to Extreme Heat Events. Atmosphere. 2023; 14(12):1782. https://doi.org/10.3390/atmos14121782
Chicago/Turabian StyleEmmitt, Stephen. 2023. "Bedrooms and the Vulnerability of Sleepers to Extreme Heat Events" Atmosphere 14, no. 12: 1782. https://doi.org/10.3390/atmos14121782
APA StyleEmmitt, S. (2023). Bedrooms and the Vulnerability of Sleepers to Extreme Heat Events. Atmosphere, 14(12), 1782. https://doi.org/10.3390/atmos14121782