NPP and Vegetation Carbon Sink Capacity Estimation of Urban Green Space Using the Optimized CASA Model: A Case Study of Five Chinese Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Vegetation Type Data
2.2.2. NDVI
2.2.3. Meteorological Data
2.2.4. MODIS NPP Product (MOD17A3H Version 6 Product)
2.2.5. UGS Data
2.3. Methods
2.3.1. NPP Estimation Based on the Optimized CASA Model
2.3.2. NEP Estimation Method
2.3.3. Spatial Autocorrelation Analysis of NEP in UGS
3. Results
3.1. NPP Analysis Based on the Optimized CASA Model
3.1.1. NPP Estimation Results
3.1.2. NPP Values of Different UGS Types
3.1.3. The Accuracy Test of Estimated NPP Values
3.2. The NEP Values of UGS in Different Cities
3.2.1. The Spatial Distribution of NEP of UGS
3.2.2. Spatial Autocorrelation Analysis of NEP Values
4. Discussion
4.1. The NPP Estimation of UGS
4.2. The NEP Estimation Results of the Coupling Model
4.3. The Prospects of the Study
5. Conclusions
- (1)
- The optimized CASA model with high-resolution satellite images and a specified εmax for different vegetation types is an effective method to estimate the NPP values of UGS. Among the selected cities, Beijing has the best performance in terms of NPP and vegetation carbon sink capacity due to the sound ecological protection and low-carbon management measures;
- (2)
- The vegetation NPP and vegetation carbon sink capacity of different UGS types in five cities have similar characteristics, that is, in the urban area NPP and NEP values of regional green space are the highest, which are followed by the values of park green space, while the NPP and NEP values of attached green space and protective green space are relatively low. The UGS inside the urban built-up areas have lower NPP and NEP values than the UGS outside the urban built-up areas. It is especially essential to improve the carbon sink capacity of attached green space and protective green space inside the urban built-up areas;
- (3)
- The NEP values estimated by the coupling model of the optimized CASA model and the soil heterotrophic respiration model indicate that most of the UGS types are carbon sinks. However, the attached green space in Shanghai and Xi’an and the protective green space in Guangzhou and Xi’an are carbon sources. Effective measures to reduce carbon emissions and increase carbon sequestration should be taken for these carbon source areas;
- (4)
- The NEP values of UGS are different in each region of China, presenting the pattern of Beijing > Xi’an > Guangzhou > Shenyang > Shanghai. In all five cities, the spatial distribution of NEP values shows a high degree of spatial autocorrelation. The areas with high–high clusters should be protected and the connectivity of the UGS network should be increased in order to improve the vegetation carbon sink capacity of the UGS ecosystem.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Huang, B.; Luo, D. Effects of Land Use and Transportation on Carbon Sources and Carbon Sinks: A Case Study in Shenzhen, China. Landsc. Urban Plann. 2014, 122, 175–185. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Lu, Q.; Zhang, M.; Zhao, R.; Lu, J. Spatiotemporal Changes of Built-Up Land Expansion and Carbon Emissions Caused by the Chinese Construction Industry. Env. Sci. Technol. 2015, 49, 13021–13030. [Google Scholar] [CrossRef] [PubMed]
- Strohbach, M.W.; Arnold, E.; Haase, D. The Carbon Footprint of Urban Green Space—A Life Cycle Approach. Landscape Urban Plann. 2012, 104, 220–229. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon Storage and Sequestration by Trees in Urban and Community Areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimmond, C.S.B.; King, T.S.; Cropley, F.D.; Nowak, D.J.; Souch, C. Local-Scale Fluxes of Carbon Dioxide in Urban Environments: Methodological Challenges and Results from Chicago. Environ. Pollut. 2002, 116, 243–254. [Google Scholar] [CrossRef]
- Chang, S.; Yang, H.; Ge, J. Research Progress and Problems of Net Ecosystem Productivity. J. Beijing Norm. Univ. (Nat. Sci. Ed.) 2005, 5, 517–521. [Google Scholar]
- Mu, S.; Zhou, K.; Chen, Y.; Yang, Q.; Li, J. Dynamic Changes of Net Ecosystem Productivity of Different Communities in Typical Grasslands of Inner Mongolia. J. Ecol. 2014, 33, 885–895. [Google Scholar]
- Field, C.B. Sharing the Garden. Science 2001, 294, 2490–2491. [Google Scholar] [CrossRef]
- Xing, W.; Chi, Y.; Ma, X.; Liu, D. Spatiotemporal Characteristics of Vegetation Net Primary Productivity on an Intensively-Used Estuarine Alluvial Island. Land 2021, 10, 130. [Google Scholar] [CrossRef]
- Lieth, H. Modeling the Primary Productivity of the World. In Primary Productivity of the Biosphere; Lieth, H., Whittaker, R.H., Eds.; Springer: Berlin, Germany, 1975; pp. 237–263. [Google Scholar]
- Lieth, H. Evapotranspiration and Primary Productivity; C.W. THORNTHWAITE Memorial Mode. Publ. Climatol. 1972, 25, 37–46. [Google Scholar]
- Uchijima, Z.; Seino, H. Agroclimatic Evaluation of Net Primary Productivity of Natural Vegetations. J. Agric. Meteorol. 1985, 40, 343–352. [Google Scholar] [CrossRef]
- White, M.A.; Thornton, P.E.; Running, S.W.; Nemani, R.R. Parameterization and Sensitivity Analysis of the BIOME–BGC Terrestrial Ecosystem Model: Net Primary Production Controls. Earth Interact. 2000, 4, 1–85. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ECOSYSTEM Production: A Process Model Based on Global Satellite and Surface Data. Global Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Zhou, K.-S.; Du, J.; Shen, X.; Pu, G.-J.; Zhang, D.-D.; Dang, X.-N. Spatial and Temporal Variability of Vegetation Net Primary Productivity in Qiangtang National Nature Reserve under Climate Change. Chin. J. Agrometeorol. 2021, 42, 627–641. [Google Scholar]
- Chuanhua, L.; Haiyan, H.; Yeping, F.; Hongjuan, C.; Yutao, W.; Hao, S. NPP Change and Scenario Simulation in Wudaoliang Area of the Tibetan Plateau Based on Biome-BGC Model. Sci. Geogr. Sin. 2019, 39, 1330–1339. [Google Scholar]
- Zhang, Y.; Hao, H.; Fan, L.; Li, Y.; Zhang, R.; Li, K. Study on Spatio-Temporal Dynamics and Driving Factors of NPP in Central Asian Grassland. Arid. Zone Res. 2022, 39, 698–707. [Google Scholar]
- Zhou, W.; Mu, F.; Gang, C.; Guan, D.; He, J.; Li, J. Spatio-Temporal Dynamics of Grassland Net Primary Productivity and their Relationship with Climatic Factors from 1982 to 2010 in China. Acta Ecol. Sin. 2017, 37, 4335–4345. [Google Scholar]
- Peng, J.; Shen, H.; Wu, W.; Liu, Y.; Wang, Y. Net Primary Productivity (NPP) Dynamics and Associated Urbanization Driving Forces in Metropolitan Areas: A Case Study in Beijing City, China. Landscape Ecol. 2016, 31, 1077–1092. [Google Scholar] [CrossRef]
- Gao, Q.; Wan, Y.; Li, Y.; Guo, Y.; Ganjurjav; Qin, X.; Jiangcun, W.; Wang, B. Effects of Topography and Human Activity on the Net Primary Productivity (NPP) of Alpine Grassland in Northern Tibet from 1981 to 2004. Int. J. Remote Sens. 2013, 34, 2057–2069. [Google Scholar] [CrossRef]
- Yu, R. An Improved Estimation of Net Primary Productivity of Grassland in the Qinghai-Tibet Region Using Light Use Efficiency with Vegetation Photosynthesis Model. Ecol. Model. 2020, 431, 109–121. [Google Scholar] [CrossRef]
- Dong, G.; Bai, J.; Yang, S.; Wu, L.; Cai, M.; Zhang, Y.; Luo, Y.; Wang, Z. The Impact of Land Use and Land Cover Change on Net Primary Productivity on China’s Sanjiang Plain. Environ. Earth Sci. 2015, 74, 2907–2917. [Google Scholar] [CrossRef]
- Liang, L.; Geng, D.; Yan, J.; Qiu, S.; Shi, Y.; Wang, S.; Wang, L.; Zhang, L.; Kang, J. Remote Sensing Estimation and Spatiotemporal Pattern Analysis of Terrestrial Net Ecosystem Productivity in China. Remote Sens. 2022, 14, 1902. [Google Scholar] [CrossRef]
- Fisher, J.B.; Sikka, M.; Oechel, W.C.; Huntzinger, D.N.; Melton, J.R.; Koven, C.D.; Ahlström, A.; Arain, M.A.; Baker, I.; Chen, J.M.; et al. Carbon Cycle Uncertainty in the Alaskan Arctic. Biogeosciences 2014, 11, 4271–4288. [Google Scholar] [CrossRef] [Green Version]
- Running, S.W.; Zhao, M. Daily GPP and Annual NPP (MOD17A2/A3) Products NASA Earth Observing System MODIS Land Algorithm. MOD17 User’s Guide 2015, 2015, 1–28. [Google Scholar]
- Bala, G.; Joshi, J.; Chaturvedi, R.K.; Gangamani, H.V.; Hashimoto, H.; Nemani, R. Trends and Variability of AVHRR-Derived NPP in India. Remote Sens. 2013, 5, 810–829. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Liu, X.; Wang, F.; Li, X.; Ou, J.; Wen, Y.; Liang, X. Assessing the Impacts of Urban Sprawl on Net Primary Productivity Using Fusion of Landsat and MODIS Data. Sci. Total Environ. 2018, 613, 1417–1429. [Google Scholar] [CrossRef]
- Robinson, N.P.; Allred, B.W.; Smith, W.K.; Jones, M.O.; Moreno, A.; Erickson, T.A.; Naugle, D.E.; Running, S.W. Terrestrial Primary Production for the Conterminous United States Derived from Landsat 30 m and MODIS 250 m. Remote Sens. Ecol. Conserv. 2018, 4, 264–280. [Google Scholar] [CrossRef]
- He, L.; Wang, R.; Mostovoy, G.; Liu, J.; Chen, J.M.; Shang, J.; Liu, J.; McNairn, H.; Powers, J. Crop Biomass Mapping Based on Ecosystem Modeling at Regional Scale Using High Resolution Sentinel-2 Data. Remote Sens. 2021, 13, 806. [Google Scholar] [CrossRef]
- Aklilu, D.; Wang, T.; Amsalu, E.; Feng, W.; Li, Z.; Li, X.; Tao, L.; Luo, Y.; Guo, M.; Liu, X.; et al. Short-Term Effects of Extreme Temperatures on Cause Specific Cardiovascular Admissions in Beijing, China. Environ. Res. 2020, 186, 109455. [Google Scholar] [CrossRef]
- Overview of Beijing. Available online: https://www.beijing.gov.cn/renwen/bjgk/#dlyzr (accessed on 11 January 2023).
- General Situation of Guangzhou. Available online: https://www.gz.gov.cn/zlgz/gzgk/zrdl/index.html (accessed on 12 January 2023).
- Overview of Shanghai. Available online: https://www.shanghai.gov.cn/nw2318/index.html (accessed on 12 January 2023).
- Yang, G.; Fu, Y.; Yan, M.; Zhang, J. Exploring the Distribution of Energy Consumption in a Northeast Chinese City Based on Local Climate Zone Scheme: Shenyang City as a Case Study. Energy Explor. Exploit. 2020, 38, 2079–2094. [Google Scholar] [CrossRef]
- Overview of Shenyang City. Available online: http://www.shenyang.gov.cn/wssy/scfm/csgk/ (accessed on 13 January 2023).
- Overview of Xi’an City. Available online: https://www.xa.gov.cn/sq/csgk/zrdl/1.html (accessed on 13 January 2023).
- Almorox, J.; Hontoria, C.J.E.C. Global Solar Radiation Estimation Using Sunshine Duration in Spain. Energy Convers. Manag. 2004, 45, 1529–1535. [Google Scholar] [CrossRef]
- CJJ/T 85—2017; Standard for Classification of Urban Green Space. Ministry of Housing and Urban-Rural Development of the People’s Republic of China; China Architecture and Building Press: Beijing, China, 2017.
- Data Set of Built-Up Areas of Chinese Cities in 2020. Available online: https://www.scidb.cn/en/detail?dataSetId=5876ca6bf2064a9f9b8d4b092a7a7ba9&dataSetType=journal (accessed on 4 July 2023).
- Jin, H.; Bao, G.; Chen, J.; Chopping, M.; Jin, E.; Mandakh, U.; Jiang, K.; Huang, X.; Bao, Y.; Vandansambuu, B. Modifying the Maximal Light-Use Efficiency for Enhancing Predictions of Vegetation Net Primary Productivity on the Mongolian Plateau. Int. J. Remote Sens. 2020, 41, 3740–3760. [Google Scholar] [CrossRef]
- Ruimy, A.; Saugier, B.; Dedieu, G. Methodology for the Estimation of Terrestrial Net Primary Production from Remotely Sensed Data. J. Geohys. Res. Atmos. 1994, 99, 5263–5283. [Google Scholar] [CrossRef]
- Field, C.B.; Randerson, J.T.; Malmström, C.M. Global Net Primary Production: Combining Ecology and Remote Sensing. Remote Sens. Environ. 1995, 51, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Pan, Y.; He, H.; Yu, D.; Hu, H. Simulation of Maximum Light Use Efficiency for Some Typical Vegetation Types in China. Chin. Sci. Bull. 2006, 51, 457–463. [Google Scholar] [CrossRef]
- Liu, F.; Zeng, Y. Analysis of the Spatio-Temporal Variation of Vegetation Carbon Source/Sink in Qinghai Plateau from 2000–2015. Acta Ecol. Sin. 2021, 41, 5792–5803. [Google Scholar]
- Pei, Z.; Zhou, C.; Ouyang, H.; Yang, W. A Carbon Budget of Alpine Steppe Area in the Tibetan Plateau. Geogr. Res. 2010, 29, 102–110. [Google Scholar]
- Swetnam, T.L.; Lynch, A.M.; Falk, D.A.; Yool, S.R.; Guertin, D.P. Discriminating Disturbance from Natural Variation with LiDAR in Semi-Arid Forests in the Southwestern USA. Ecosphere 2015, 6, 1–22. [Google Scholar] [CrossRef]
- Fallah, G.; Dadash, A. An Investigation on Thermal Patterns in Iran Based on Spatial Autocorrelation. Theor. Appl. Climatol. 2018, 131, 865–876. [Google Scholar] [CrossRef]
- Li, D.; Wang, Z. The Characteristics of NPP of Terrestrial Vegetation in China Based on MOD17A3 Data. Ecol. Environ. Sci. 2018, 27, 397–405. [Google Scholar]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Maeirsperger, T.K.; Gower, S.T.; Kirschbaum, A.A.; Running, S.W.; Zhao, M.; Wofsy, S.C.; Dunn, A.L.; et al. Site-Level Evaluation of Satellite-Based Global Terrestrial Gross Primary Production and Net Primary Production Monitoring. Glob. Change Biol. 2005, 11, 666–684. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; Han, H. Analyzing Land-Use Change Scenarios for Ecosystem Services and their Trade-Offs in the Ecological Conservation Area in Beijing, China. Int. J. Environ. Res. Public. Health 2020, 17, 8632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Kafy, A.A.; Ren, B.; Zhang, Y.; Tan, S.; Li, J. Application of the Optimal Parameter Geographic Detector Model in the Identification of Influencing Factors of Ecological Quality in Guangzhou, China. Land 2022, 11, 1303. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Z. Quantitative Assessment of Human-Induced Impacts Based on Net Primary Productivity in Guangzhou, China. Environ. Sci. Pollut. Res. 2018, 25, 11384–11399. [Google Scholar] [CrossRef]
- Zhan, J.; Zhang, F.; Chu, X.; Liu, W.; Zhang, Y. Ecosystem Services Assessment Based on Emergy Accounting in Chongming Island, Eastern China. Ecol. Indic. 2019, 105, 464–473. [Google Scholar] [CrossRef]
- Eisfelder, C.; Kuenzer, C. Investigating Fourteen Years of Net Primary Productivity Based on Remote Sensing Data for China. In Remote Sensing Time Series: Revealing Land Surface Dynamics; Springer: Cham, Switzerland, 2015; pp. 269–288. [Google Scholar]
- Chen, T.; Liu, M.; Hu, Y.; Lu, J.; Ma, J.; Sun, F.; Gong, J. Land Use and Net Primary Productivity Changes in Shenyang Metropolitan Area. Acta Ecol. Sin. 2015, 35, 8231–8240. [Google Scholar]
- Liang, C.; Su, H.; Zhang, Y.; Wang, J. Spatial-Temporal Changes and Influencing Factors Of Net Primary Productivity of Guanzhong Plain City Cluster from 2000 to 2019. Res. Soil Water Conserv. 2023, 30, 293–300. [Google Scholar]
- Zhu, M. Study on the Carbon Fixation Evaluation of the Green-Land System in the Xi ‘an Chanba Eco-Region. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2020. [Google Scholar]
- Goncharova, O.; Matyshak, G.; Udovenko, M.; Semenyuk, O.; Epstein, H.; Bobrik, A. Temporal Dynamics, Drivers, and Components of Soil Respiration in Urban Forest Ecosystems. Catena 2020, 185, 104299. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Y.; Deng, Y.; Lin, L.; Liu, X.; Xiao, R. The Carbon Footprint Accounting and Assessment of Urban Green Space—Taking Guangzhou as an Example. For. Resour. Manag. 2017, 2, 65–73. [Google Scholar]
- Yang, F.; Wang, H. A Review of the Usability of Research Results on Carbon Sink and Carbon Emission in Urban Green Space from the Perspective of Planning and Design Practice. Landsc. Archit. 2023, 40, 71–78. [Google Scholar]
- Guo, Z.; Zhang, Z.; Wu, X.; Wang, J.; Zhang, P.; Ma, D.; Liu, Y. Building Shading Affects the Ecosystem Service of Urban Green Spaces: Carbon Capture in Street Canyons. Ecol. Model. 2020, 431, 109178. [Google Scholar] [CrossRef]
- Lindén, L.; Riikonen, A.; Setälä, H.; Yli-Pelkonen, V. Quantifying Carbon Stocks in Urban Parks Under Cold Climate Conditions. Urban For. Urban Green. 2020, 49, 126633. [Google Scholar] [CrossRef]
Vegetation Type | (gC·MJ−1) |
---|---|
Deciduous needle leaf forest | 1.086 |
Evergreen needle leaf forest | 0.962 |
Deciduous broad leaf forest | 1.165 |
Evergreen broad leaf forest | 1.268 |
Mixed forest | 1.051 |
Shrubland | 1.061 |
Grassland | 0.86 |
Cropland | 1.044 |
Wetland | 0.86 |
UGS Location | Beijing | Guangzhou | Shanghai | Shenyang | Xi’an |
---|---|---|---|---|---|
UGS inside the urban built-up areas | 227.0 | 324.4 | 212.7 | 204.2 | 102.6 |
UGS outside the urban built-up areas | 1038.2 | 1055.6 | 650.7 | 725.8 | 912.4 |
total UGS | 1008.5 | 997.4 | 403.8 | 666.1 | 889.7 |
UGS Type | Beijing | Guangzhou | Shanghai | Shenyang | Xi’an |
---|---|---|---|---|---|
attached green space | 652.1 | 522.9 | 319.5 | 486.9 | 127.9 |
park green space | 826.6 | 901.9 | 613.3 | 636.6 | 419.2 |
protective green space | 609.0 | 425.6 | 384.5 | 301.1 | 122.7 |
regional green space | 1067.7 | 1074.6 | 705.9 | 728.3 | 918.5 |
total UGS | 1008.5 | 997.4 | 403.8 | 666.1 | 889.7 |
UGS Type | Beijing | Guangzhou | Shanghai | Shenyang | Xi’an |
---|---|---|---|---|---|
attached green space | 200.5 | 313.7 | 194.8 | 151.4 | 80.3 |
park green space | 452.1 | 484.5 | 500.1 | 595.5 | 393.1 |
protective green space | 300.2 | 323.8 | 294.0 | 205.6 | 94.5 |
regional green space | 295.1 | 335.5 | 269.1 | 247.1 | 170.7 |
UGS Type | Beijing | Guangzhou | Shanghai | Shenyang | Xi’an |
---|---|---|---|---|---|
attached green space | 809.8 | 761.2 | 485.7 | 674.0 | 245.7 |
park green space | 867.8 | 973.0 | 686.0 | 691.3 | 488.2 |
protective green space | 721.1 | 612.2 | 517.5 | 456.3 | 202.8 |
regional green space | 1068.5 | 1079.2 | 719.0 | 739.4 | 919.7 |
UGS Type | Beijing | Guangzhou | Shanghai | Shenyang | Xi’an |
---|---|---|---|---|---|
attached green space | 0.658 ** | 0.708 ** | 0.496 ** | 0.819 ** | 0.509 ** |
park green space | 0.631 ** | 0.677 ** | 0.339 ** | 0.275 ** | 0.617 ** |
protective green space | 0.534 ** | 0.572 ** | 0.503 ** | 0.603 ** | 0.542 ** |
regional green space | 0.900 ** | 0.924 ** | 0.807 ** | 0.918 ** | 0.955 ** |
total UGS | 0.875 ** | 0.903 ** | 0.730 ** | 0.897 ** | 0.951 ** |
UGS Location | Beijing | Guangzhou | Shanghai | Shenyang | Xi’an |
---|---|---|---|---|---|
UGS inside the urban built-up areas | −28.8 | −115.7 | −135.4 | −19.4 | −162.1 |
UGS outside the urban built-up areas | 802.0 | 625.7 | 306.7 | 505.0 | 655.6 |
total UGS | 771.5 | 566.7 | 194.2 | 445.0 | 632.7 |
UGS Type | Beijing | Guangzhou | Shanghai | Shenyang | Xi’an |
---|---|---|---|---|---|
attached green space | 399.1 | 82.7 | −27.7 | 265.8 | −137.6 |
park green space | 572.2 | 460.2 | 266.8 | 413.1 | 189.6 |
protective green space | 355.7 | −14.5 | 36.2 | 77.6 | −140.5 |
regional green space | 833.4 | 645.6 | 362.6 | 507.6 | 661.7 |
total UGS | 771.5 | 566.7 | 194.2 | 445.0 | 632.7 |
UGS Type | Beijing | Guangzhou | Shanghai | Shenyang | Xi’an |
---|---|---|---|---|---|
attached green space | −55.4 | −126.3 | −153.3 | −72.3 | −184.3 |
park green space | 195.5 | 44.4 | 152.6 | 371.9 | 134.9 |
protective green space | 44.4 | −116.2 | −54.3 | −18.1 | −169.9 |
regional green space | 42.9 | −106.3 | −79.2 | 23.6 | −95.0 |
UGS Type | Beijing | Guangzhou | Shanghai | Shenyang | Xi’an |
---|---|---|---|---|---|
attached green space | 557.8 | 320.8 | 139.4 | 454.3 | −14.6 |
park green space | 613.6 | 531.0 | 340.1 | 467.9 | 235.3 |
protective green space | 468.6 | 171.7 | 169.4 | 233.1 | −56.6 |
regional green space | 834.3 | 650.4 | 375.9 | 518.7 | 662.9 |
Cities | Moran’s I | E(I) | Var(I) | Z(I) | p |
---|---|---|---|---|---|
Beijing | 0.42 | −0.000097 | 0.000011 | 129.50 | 0 |
Guangzhou | 0.44 | −0.000225 | 0.000022 | 93.96 | 0 |
Shanghai | 0.22 | −0.000523 | 0.000049 | 31.28 | 0 |
Shenyang | 0.31 | −0.000858 | 0.000071 | 37.42 | 0 |
Xi’an | 0.56 | −0.000167 | 0.000011 | 168.24 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Wang, X.; Li, L. NPP and Vegetation Carbon Sink Capacity Estimation of Urban Green Space Using the Optimized CASA Model: A Case Study of Five Chinese Cities. Atmosphere 2023, 14, 1161. https://doi.org/10.3390/atmos14071161
Xu F, Wang X, Li L. NPP and Vegetation Carbon Sink Capacity Estimation of Urban Green Space Using the Optimized CASA Model: A Case Study of Five Chinese Cities. Atmosphere. 2023; 14(7):1161. https://doi.org/10.3390/atmos14071161
Chicago/Turabian StyleXu, Fang, Xiangrong Wang, and Liang Li. 2023. "NPP and Vegetation Carbon Sink Capacity Estimation of Urban Green Space Using the Optimized CASA Model: A Case Study of Five Chinese Cities" Atmosphere 14, no. 7: 1161. https://doi.org/10.3390/atmos14071161
APA StyleXu, F., Wang, X., & Li, L. (2023). NPP and Vegetation Carbon Sink Capacity Estimation of Urban Green Space Using the Optimized CASA Model: A Case Study of Five Chinese Cities. Atmosphere, 14(7), 1161. https://doi.org/10.3390/atmos14071161