PM2.5 Characterization and Source Apportionment Using Positive Matrix Factorization at San Luis Potosi City, Mexico, during the Years 2017–2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Measurements
2.3. PMF Analysis and Procedure
3. Results
3.1. PM2.5 Gravimetric Mass
3.2. PM2.5 Chemical Composition
3.3. PMF Source Apportionment Model Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kulmala, M.; Laakso, L.; Lehtinen, K.E.J.; Riipinen, I.; Dal Maso, M.; Antilla, T.; Kerminen, V.M.; Hörrak, U.; Vana, M.; Tammet, H. Initial steps of aerosol growth. Atmos. Chem. Phys. 2004, 4, 2553–2560. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Health Aspects of Air Pollution with Particulate Matter, Ozone and Nitrogen Dioxide; Report on a WHO Working Group; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2013.
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Bond, T.C.; Dhoerty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assesment. J. Geophys. Res. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Qu, R.; Han, G. A critical review of the variation in rainwater acidity in 24 Chinese cities during 1982–2018. Elem. Sci. Anthr. 2021, 9, 00142. [Google Scholar] [CrossRef]
- Watson, J.G. Visibility: Science and Regulation. J. Air Waste Manag. 2002, 52, 628–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nava, S.; Becherini, F.; Bernardi, A.; Bonazza, A.; Chiari, M.; García-Orellana, I.; Lucarelli, F.; Ludwig, N.; Migliori, A.; Sabbioni, C.; et al. An integrated approach to assess air pollution threats to cultural heritage in a semi-confined environment: The case study of Michelozzo’s Courtyard in Florence (Italy). Sci. Total Environ. 2010, 408, 1403–1413. [Google Scholar] [CrossRef]
- Santibáñez-Andrade, M.; Quezada-Maldonado, E.M.; Osornio-Vargas, Á.; Sánchez-Pérez, Y.; García-Cuellar, C. Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis. Environ. Pollut. 2017, 229, 412–422. [Google Scholar] [CrossRef]
- Michael, S.; Montag, M.; Dott, W. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter. Environ. Pollut. 2013, 183, 19–29. [Google Scholar] [CrossRef]
- Gualtieri, M.; Øvrevik, J.; Holme, J.A.; Perrone, M.G.; Bolzacchini, E.; Schwarze, P.E.; Camatini, M. Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells. Toxicol. Vitr. 2010, 24, 29–39. [Google Scholar] [CrossRef]
- Hoffman, B.; Moebus, S.; Dragano, N.; Stang, A.; Möhlenkamp, S.; Schmermund, A.; Memmesherimer, M.; Bröcker, M.; Mann, K.; Erbel, R.; et al. Chronic Residential Exposure to Partticulate Matter Air Pollution and Systemic Inflammatory Markers. Environ. Health Perspect. 2009, 117, 1302–1308. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.A., III; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Pan, S.; Lin, L.; Zeng, F.; Zhang, J.; Dong, G.; Yang, B.; Jing, Y.; Chen, S.; Zhang, G.; Yu, Z.; et al. Effect of lead, cadmium, arsenic, and mercury co-exposure on children’s intelligence quotient in an industrialized area of southern China. Environ. Pollut. 2018, 235, 47–54. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef]
- Cortez-Lugo, M.; Riojas-Rodríguez, H.; Moreno-Macías, H.; Montes, S.; Rodríguez-Agudelo, Y.; Hernández-Bonilla, D.; Catalán-Vázquez, M.; Díaz-Godoy, R.; Rodríguez-Dozal, S. Evaluation of the effect of an environmental management program on exposure to manganese in a mining zone in Mexico. Neurotoxicology 2017, 64, 142–151. [Google Scholar] [CrossRef]
- Riojas, H.; Solís, R.; Schilmann, A.; Montes, S.; Rodriguez, S.; Ríos, C.; Rodríguez, Y. Intellectual Function in Mexican Children Living in a Mining Area and Environmentally Exposed to Manganese. Environ. Health Perspect. 2010, 118, 1465–1470. [Google Scholar] [CrossRef] [Green Version]
- Diario Oficial de la Federación. Norma Oficial Mexicana NOM-025-SSA1-2021; Salud Ambiental. Criterio Para Evaluar la Calidad del Aire Ambiente con Respecto a las Partículas Suspendidas PM10 y PM2.5. Valores Normados para la Concentración de Partículas Suspendidas PM10 y PM2.5 en el Aire Ambiente, Como Medida de Protección a la Salud de la Población. Secretaria de Salud: Mexico City, Mexico, 2021. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5633855&fecha=27/10/2021#gsc.tab=0 (accessed on 15 June 2023).
- Diario Oficial de la Federación. Norma Oficial Mexicana NOM-156-SEMARNAT-2012; Establecimiento y Operación de Sistemas de Monitoreo de la Calidad del Aire. Secretaria de Medio Ambiente y Recursos Renovables: Mexico City, Mexico, 2012. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5259464&fecha=16/07/2012#gsc.tab=0 (accessed on 15 June 2023).
- Diario Oficial de la Federación. Norma Oficial Mexicana NOM-172-SEMARNAT-2019; Lineamientos para la Obtención y Comunicación del Índice de Calidad del Aire y Riesgos a la Salud. Secretaria de Medio Ambiente y Recursos Renovables: Mexico City, Mexico, 2019. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5579387&fecha=20/11/2019 (accessed on 15 June 2023).
- Instituto Nacional de Estadística y Geografía. San Luis Potosí División Municipal. Censo de Población y Vivienda. 2020. Available online: https://cuentame.inegi.org.mx/monografias/informacion/slp/territorio/divmunicipal.aspx?tema=me&e=24 (accessed on 15 June 2023).
- Pineda-Martinez, L.F.; Carbajal, N.; Ramos, A.; Aragon-Piña, A.; García, A.R. Dispersion of atmospheric coarse particulate matter in the San Luis Potosí, México, urban area. Atmosfera 2014, 27, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Hernández-López, A.E.; Miranda Martín del Campo, J.; Mugica-Álvarez, V.; Hernández-Valle, B.L.; Mejía-Ponce, L.V.; Pineda-Santamaría, J.C.; Reynoso-Cruces, S.; Mendoza-Flores, J.A.; Rozanes-Valenzuela, D. A study of PM2.5 elemental composition in southwest Mexico City and development of receptor models with positive matrix factorization. Rev. Int. Contam. Ambient. 2021, 37, 67–88. [Google Scholar] [CrossRef]
- Bernasconi, G.; Tajani, A.; Kregsamer, P. Manual for QXAS-AXIL. Version 3.5 International Atomic Energy Agency, Vienna International Council on Clean Transportation and Diesel. 2000. Available online: https://www.transportpolicy.net/topic/air-quality-standards (accessed on 15 June 2023).
- Espinosa, A.A.; Miranda, J.; Pineda, J.C. Evaluation of uncertainty in correlated quantities: Application to elemental analysis of atmospheric aerosols. Rev. Mex. Fís. E 2010, 56, 134–140. [Google Scholar]
- Hopke, P.K. Recent developments in receptor modeling. J. Chemom. 2003, 17, 255–265. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive Matrix Factorization: A Non-negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Hopke, P.K. A Review of Receptor Modeling Methods for Source Apportionment. J. Air Waste Manag. Assoc. 2016, 66, 237–259. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Positive Matrix Factorization (PMF) 5.0 Model. 2014. Available online: https://www.epa.gov/air-research/positive-matrixfactorization-model-environmental-data-analyses (accessed on 15 June 2023).
- Belis, C.A.; Larsen, B.R.; Amato, F.; El Haddad, I.; Favez, O.; Harrison, R.M.; Hopke, P.K.; Nava, S.; Paatero, P.; Prévôt, A.; et al. European Guide on with Receptor Models Air Pollution Source Apportionment; JRC Reference Reports; EU: European Commission, Joint Research Centre, Institute for Environment and Sustainability: Ispra, Italy, 2014; Available online: http://www.jrc.ec.europa.eu (accessed on 15 June 2023).
- Brown, S.G.; Hafner, H. Multivariate Receptor Modeling Workbook; Sonoma Technology Inc.: Petaluma, CA, USA, 2005; p. 236. Available online: http://www.sonomatechdata.com/sti_workbooks/ (accessed on 15 June 2023).
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Malm, W.C.; Sisler, J.F. Atmospheric aerosol over Alaska, 2. Elemental composition and sources. J. Geophys. Res. 1998, 103, 19045–19057. [Google Scholar] [CrossRef]
- Norris, G.A.; Vedantham, R.; Wade, K.; Zhan, P.; Brown, S.; Paatero, P.; Eberly, S.I.; Foley, C. Guidance Document for PMF Applications with the Multilinear Engine; EPA/600/R-09/032; US Environmental Protection Agency: Washington, DC, USA, 2009.
- Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.; Giannoni, M.; Traversi, R.; Udisti, R. On the autarchic use of solely PIXE data in particulate matter source apportionment studies by receptor modeling. Nucl. Instrum. Methods Phys. Res. B 2015, 363, 105–111. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. Openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Clarke, K.C. Advances in geographic information systems, computers, environment and urban systems. Comput. Environ. Urban Syst. 1986, 10, 175–184. [Google Scholar] [CrossRef]
- Draxler, R.R.; Rolph, G.D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website. 2010. Available online: https://ready.arl.noaa.gov/HYSPLIT.php (accessed on 15 June 2023).
- Diario Oficial de la Federación. Mexican Official Standard NOM-025-SSA1-2014; Salud Ambiental. Valores Límite Permisibles para la Concentración de Partículas Suspendidas PM10 y PM2.5 en el Aire Ambiente y Criterios para su Evaluación. Secretaría de Salud: Mexico City, Mexico, 2014.
- SINAICA. National Monitoring Network Datasets. 2018. Available online: http://sinaica.ine.gob.mx/ (accessed on 15 June 2023).
- Air Quality Standards. Transport Policy. 2022. Available online: https://www.transportpolicy.net/topic/air-quality-standards/ (accessed on 4 October 2021).
- Turpin, B.J.; Lim, H. Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass. Aerosol Sci. Technol. 2001, 35, 602–610. [Google Scholar] [CrossRef]
- Vega, E.; López-Veneroni, D.; Ramírez, O.; Chow, J.C.; Watson, J.G. Particle-bound PAHs and Chemical Composition, Sources and Health Risk of PM2.5 in a Highly Industrialized Area. Aerosol Air Qual. Res. 2021, 21, 210047. [Google Scholar] [CrossRef]
- Paatero, P. User’s Guide for Positive Matrix Factorization Programs PMF2 and PMF3, Part 1: Tutorial. 2015. Available online: https://www.helsinki.fi/~paatero/PMF/pmf2.zip (accessed on 15 June 2023).
- Miranda, J.; Andrade, E.; Lopez-Suarez, A.; Ledesma, R.; Cahill, T.A.; Wakabayashi, P.H. A receptor model for atmospheric aerosols from a southwestern site in Mexico City. Atmos. Environ. 1996, 30, 3471–3479. [Google Scholar] [CrossRef]
- Miranda, J. Analysis of atmospheric aerosols in large urban areas with particle induced X-ray emission. In Aerosol Chemical Processes in the Environment; Spurny, K.R., Ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. 405–413. [Google Scholar]
- Querol, X.; Pey, J.; Minguillón, M.C.; Pérez, N.; Alastuey, A.; Viana, M.; Moreno, T.; Bernabé, R.M.; Blanco, S.; Cárdenas, B.; et al. PM speciation and sources in Mexico during the MILAGRO-2006 Campaign. Atmos. Chem. Phys. 2008, 8, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Barrera, V.A.; Miranda, J.; Espinosa, A.A.; Meinguer, J.; Martínez, J.N.; Cerón, E.; Morales, J.R.; Miranda, P.A.; Días, J.F. Contribution of soil, sulfate, and biomass burning sources to the elemental composition of PM10 from Mexico City. Int. J. Environ. Res. 2012, 6, 597–612. [Google Scholar] [CrossRef]
- Nava, S.; Calzolai, G.; Chiari, M.; Giannoni, M.; Giardi, F.; Becagli, S.; Severi, M.; Traversi, R.; Lucarelli, F. Source Apportionment of PM2.5 in Florence (Italy) by PMF Analysis of Aerosol Composition Records. Atmosphere 2020, 11, 484. [Google Scholar] [CrossRef]
- Barrera, V.; Calzolai, G.; Chiari, M.; Lucarelli, F.; Nava, S.; Giannoni, M.; Becagli, S.; Frosini, D. Study of air pollution in the proximity of a waste incinerator. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 363, 112–118. [Google Scholar] [CrossRef]
- Mejía-Ponce, L.V.; Hernández-López, A.E.; Miranda-Martín-del-Campo, J.; Pineda-Santamaría, J.C.; Reynoso-Cruces, S.; Mendoza-Flores, J.A.; Espinosa-Guzmán, A.A. Elemental analysis of PM10 in southwest Mexico City and source apportionment using positive matrix factorization. J. Atmos. Chem. 2022, 79, 167–198. [Google Scholar] [CrossRef]
- Chillrud, S.N.; Epstein, D.; Ross, J.M.; Sax, S.N.; Pederson, D.; Spengler, J.D.; Kinney, P.L. Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City’s subway system. Environ. Sci. Technol. 2004, 38, 732–737. [Google Scholar] [CrossRef]
- Minguillón, M.C.; Reche, C.; Martins, V.; Amato, F.; de Miguel, E.; Capdevila, M.; Centelles, S.; Querol, X.; Moreno, T. Aerosol sources in subway environments. Environ. Res. 2018, 167, 314–328. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Oh, M.; Yoon, Y.; Park, E.; Lee, K. Source identification of PM10 pollution in subway passenger cabins using positive matrix factorization. Atmos. Environ. 2012, 29, 180–185. [Google Scholar] [CrossRef]
- Park, D.; Lee, T.; Hwang, D.; Jung, W.; Lee, Y.; Cho, K.; Kim, D.; Lee, K. Identification of the sources of PM10 in a subway tunnel using positive matrix factorization. J. Air Waste Manag. Assoc. 2014, 64, 1361–1368. [Google Scholar] [CrossRef]
- Lucarelli, F.; Barrera, V.; Becagli, S.; Chiari, M.; Giannoni, M.; Nava, S.; Traversi, R.; Calzoilai, G. Combined use of daily and horly data sets for the source apportionment of particulate matter near a waste incinerator plant. Environ. Pollut. 2019, 247, 802–811. [Google Scholar] [CrossRef] [Green Version]
- Vega, E.; Lowenthal, D.; Ruiz, H.; Reyes, E.; Watson, J.G.; Chow, J.C.; Viana, M.; Querol, J.; Alastuey, A. Fine particle receptor modeling in the atmosphere of México city. J. Air Waste Manag. Assoc. 2009, 59, 1417–1428. [Google Scholar] [CrossRef]
- Morton, O.; Garza, R.; Hernandez, E.; Amador, O.; García, M.E.; Ordoñez, S.L.; Beramendi, L.; Santos, G.L.; Miranda, J.; Rosas, I. Recognition of the importance of geogenic sources in the content of metals in PM2.5 collected in the México city Metropolitan Area. Environ. Monit. Assess. 2018, 190, 83. [Google Scholar] [CrossRef]
- Garza-Galindo, R.; Morton-Bermea, O.; Hernández-Álvarez, E.; Ordoñez-Godínez, S.L.; Amador-Muñoz, O.; Beramendi-Orosco, L.E.; Retama, A.; Miranda, J.; Rosas-Pérez, I. Spatial and temporal distribution of metals in PM2.5 during 2013: Assessment of wind patterns to the impacts of geogenic and anthropogenic sources. Environ. Monit. Assess. 2019, 191, 165. [Google Scholar] [CrossRef]
- Gonzalez, I.; Galán, E.; Fabbri, B. Problemática de las emisiones de flúor, cloro y azufre durante la cocción de materiales de la industria ladrillera. Bol. Soc. Esp. Cerám. Vidrio 1998, 37, 307–313. [Google Scholar]
- Amato, F.; Hopke, P.K. Source apportionment of the ambient PM2.5 across St. Louis using constrained positive matrix factorization. Atmos. Environ. 2012, 46, 329–337. [Google Scholar] [CrossRef]
- Lim, J.-M.; Lee, J.-H.; Moon, J.-H.; Chung, Y.-S.; Kim, K.-H. Source apportionment of PM10 at a small industrial area using Positive Matrix Factorization. Atmos. Res. 2010, 95, 88–100. [Google Scholar] [CrossRef]
- Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.; Sánchez de la Campa, A.; Artíñano, B.; et al. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 2007, 41, 7219–7231. [Google Scholar] [CrossRef]
- Pacyna, J.M.; Pacyna, E.G. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 2001, 9, 269–298. [Google Scholar] [CrossRef]
- Johnson, K.S.; de Foy, B.; Zuberi, B.; Molina, L.T.; Molina, M.J.; Xie, Y.; Laskin, A.; Shutthanandan, V. Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate analysis. Atmos. Chem. Phys. 2006, 6, 4591–4600. [Google Scholar] [CrossRef] [Green Version]
- Olivares-Salazar, S.E.; Alvarez-Ospina, H.; Aguillón-Vazquez, C.; Salcedo, D. Source Apportionment of Particulate Matter in the Metropolitan Area of Queretaro (Central Mexico): First Case Study. ACS Earth Space Chem. 2021, 5, 2347–2355. [Google Scholar] [CrossRef]
- Aragón-Piña, A.; Torres Villasenor, G.; Santiago Jacinto, P.; Monroy Fernandez, M. Scanning and transmission electron microscope of suspended lead-rich particles in the air of San Luis Potosi, Mexico. Atmos. Environ. 2002, 36, 5235–5243. [Google Scholar] [CrossRef]
- Mancilla, Y.; Hernandez-Paniagua, I.Y.; Mendoza, A. Spatial differences in ambient coarse and fine particles in the Monterrey metropolitan area, Mexico: Implications for source contribution. J. Air Waste Manag. Assoc. 2019, 69, 548–564. [Google Scholar] [CrossRef] [Green Version]
- Pachon, J.E.; Weber, R.J.; Zhang, X.; Mulholland, J.A.; Russell, A.G. Revising the use of potassium (K) in the source apportionment of PM2.5. Atmos. Pollut. Res. 2013, 4, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Aldape, F.; Flores, M.J.; Flores, A.; Retama-Hernandez, A.; Rivera-Hernandez, O. Elemental Composition and Source Identification of PM2.5 particles collected in downtown Mexico City. Int. J. PIXE 2005, 15, 263–270. [Google Scholar] [CrossRef]
- Herrera Murillo, J.; Campos Ramos, A.; Ángeles García, F.; Blanco Jiménez, S.; Cárdenas, B.; Mizohata, A. Chemical composition of PM2.5 particles in Salamanca, Guanajuato Mexico: Source apportionment with receptor models. Atmos. Res. 2012, 107, 31–41. [Google Scholar] [CrossRef]
- Quiroz-Carranza, J.A.; Cantú, C.; Garcia, R. Entre Humo y Arcilla: Contaminación Ambiental y Sobrevivencia Humana en la Producción Artesanal de Ladrillos; Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México: Mexico City, Mexico, 2021; ISBN 978-607-30-5227-6. [Google Scholar]
- Zhang, H.; He, P.J.; Sha, L.M. Fate of heavy metals during municipal solid waste incineration in Shanghai. J. Hazard. Mater. 2008, 156, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Morishita, M.; Keeler, G.J.; Kamal, A.S.; Wagner, J.G.; Harkema, J.R.; Rohr, A.C. Identification of ambient PM2.5 sources and analysis of pollution episodes in Detroit, Michigan using highly time-resolved measurements. Atmos. Environ. 2011, 45, 1627–1637. [Google Scholar] [CrossRef]
- Jeong, C.; McGuire, M.L.; Herod, D.; Dann, T.; Dabek–Zlotorzynska, E.; Wang, D.; Ding, L.; Celo, V.; Mathieu, D.; Evans, G. Receptor model based identification of PM2.5 sources in Canadian cities. Atmos. Pollut. Res. 2011, 2, 158–171. [Google Scholar] [CrossRef] [Green Version]
- Venturini, E.; Vassura, I.; Ferroni, L.; Raffo, S.; Passarini, F.; Beddows, D.C.S.; Harrison, R.M. Bulk deposition close to a Municipal Solid Waste incinerator: One source among many. Sci. Total Environ. 2013, 456–457, 392–403. [Google Scholar] [CrossRef]
Species | Year 2017 | Year 2018 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | Mean | Inc | Median | Std Dev | N | Mean | Inc | Median | Std Dev | |
Na | 42 | 0.283 | 0.022 | 0.297 | 0.108 | 38 | 0.342 | 0.0325 | 0.328 | 0.210 |
Mg | <LOD | <LOD | <LOD | <LOD | <LOD | 4 | 0.0538 | 0.0005 | 0.0538 | 0.025 |
Al | 27 | 0.0769 | 0.0015 | 0.0541 | 0.0589 | 32 | 0.222 | 0.0133 | 0.118 | 0.308 |
Si | 46 | 0.305 | 0.0112 | 0.277 | 0.194 | 37 | 0.530 | 0.0453 | 0.370 | 0.576 |
P | 40 | 0.0198 | 0.0001 | 0.0155 | 0.0204 | 35 | 0.0450 | 0.0004 | 0.0383 | 0.0330 |
S | 46 | 1.65 | 0.259 | 1.44 | 1.05 | 38 | 1.86 | 0.306 | 1.65 | 1.01 |
Cl | 46 | 0.449 | 0.0174 | 0.455 | 0.115 | 38 | 0.324 | 0.0105 | 0.296 | 0.135 |
K | 46 | 0.388 | 0.0130 | 0.388 | 0.119 | 38 | 0.249 | 0.0070 | 0.212 | 0.146 |
Ca | 46 | 0.603 | 0.0381 | 0.576 | 0.189 | 38 | 0.408 | 0.0207 | 0.360 | 0.175 |
Ti | 42 | 0.114 | 0.0023 | 0.113 | 0.0542 | 30 | 0.0636 | 0.0010 | 0.0496 | 0.0467 |
V | 45 | 0.149 | 0.0034 | 0.143 | 0.0655 | 27 | 0.0739 | 0.0013 | 0.0665 | 0.0622 |
Cr | 46 | 0.390 | 0.0153 | 0.384 | 0.0807 | 38 | 0.217 | 0.0066 | 0.170 | 0.119 |
Mn | 46 | 0.550 | 0.0568 | 0.419 | 0.682 | 38 | 0.267 | 0.0117 | 0.153 | 0.244 |
Fe | 46 | 1.02 | 0.0835 | 1.01 | 0.131 | 38 | 1.0034 | 0.1026 | 0.8262 | 0.5932 |
Ni | 46 | 0.569 | 0.0285 | 0.569 | 0.080 | 38 | 0.387 | 0.0151 | 0.365 | 0.103 |
Cu | 46 | 0.242 | 0.0067 | 0.229 | 0.0611 | 38 | 0.129 | 0.0027 | 0.0963 | 0.0777 |
Zn | 46 | 0.378 | 0.0145 | 0.368 | 0.103 | 38 | 0.258 | 0.0082 | 0.238 | 0.110 |
Pb | 46 | 2.35 | 0.444 | 2.28 | 0.290 | 38 | 1.16 | 0.184 | 0.916 | 0.412 |
OC | 44 | 10.7 | 1.85 | 10.0 | 3.04 | ND | ND | ND | ND | ND |
EC | 44 | 1.89 | 0.328 | 1.46 | 1.42 | ND | ND | ND | ND | ND |
POM | 44 | 17.2 | 2.98 | 16.0 | 4.86 | ND | ND | ND | ND | ND |
PM2.5 | 47 | 33.2 | 6.99 | 31.2 | 14.7 | 49 | 28.2 | 6.11 | 22.6 | 15.8 |
Monitoring Site | Fit | % Contribution | Emission Sources | Main Chemical Species |
---|---|---|---|---|
BIBLIOTECA SITE, 2017. | 18 Species 7 Sources. | 24.2 | (1) Urban Dust | (OC, EC, Si, S, Pb, Fe, Ca, K) |
16.3 | (2) Oil Combustion | (S, OC, Fe, Pb, EC, Ca, Zn, Ni) | ||
2.30 | (3) Braking | (Ti, Pb, Mn, K, Ni, Cr, Na, Ca, Cu, Fe) | ||
22.2 | (4) Mobile Sources | (OC, EC, S, Pb, Fe, Cl, Na, K, Ni, Cr) | ||
4.40 | (5) Ceramic Industry + Biomass Burning | (OC, Ca, Na, V, Fe, S, Cu, Cl) | ||
12.4 | (6) Smelting | (Zn, OC, EC, Pb, Fe, Ca, Mn) | ||
18.2 | (7) Chemical Industry | (OC, Cl, Fe, Pb, Ni, Cr, Mn, EC) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrera, V.; Contreras, C.; Mugica-Alvarez, V.; Galindo, G.; Flores, R.; Miranda, J. PM2.5 Characterization and Source Apportionment Using Positive Matrix Factorization at San Luis Potosi City, Mexico, during the Years 2017–2018. Atmosphere 2023, 14, 1160. https://doi.org/10.3390/atmos14071160
Barrera V, Contreras C, Mugica-Alvarez V, Galindo G, Flores R, Miranda J. PM2.5 Characterization and Source Apportionment Using Positive Matrix Factorization at San Luis Potosi City, Mexico, during the Years 2017–2018. Atmosphere. 2023; 14(7):1160. https://doi.org/10.3390/atmos14071160
Chicago/Turabian StyleBarrera, Valter, Carlos Contreras, Violeta Mugica-Alvarez, Guadalupe Galindo, Rogelio Flores, and Javier Miranda. 2023. "PM2.5 Characterization and Source Apportionment Using Positive Matrix Factorization at San Luis Potosi City, Mexico, during the Years 2017–2018" Atmosphere 14, no. 7: 1160. https://doi.org/10.3390/atmos14071160
APA StyleBarrera, V., Contreras, C., Mugica-Alvarez, V., Galindo, G., Flores, R., & Miranda, J. (2023). PM2.5 Characterization and Source Apportionment Using Positive Matrix Factorization at San Luis Potosi City, Mexico, during the Years 2017–2018. Atmosphere, 14(7), 1160. https://doi.org/10.3390/atmos14071160