Assessment of CH4 and CO2 Emissions from a Gas Collection System of a Regional Non-Hazardous Waste Landfill, Harmanli, Bulgaria, Using the Interrupted Time Series ARMA Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Monitoring, Sampling, Measurement
- CCH4—Converted amount of CH4 from % v/v in to mg/m3;
- CCO2—Converted amount of CO2 from % v/v in to mg/m3;
- CCH4(% v/v)—CH4 concentration in % v/v;
- CCO2(% v/v)—CO2 concentration in % v/v;
- MmCH4—Molar mass of methane = 16.04 g/mol;
- MmCO2—Molar mass of carbon dioxide = 44.01 g/mol;
- 22.4—Conversion factor, represents the volume per mole of an ideal gas.
- QCH4—Annual amount (emission) of the emitted CH4, kg/y;
- QCO2—Annual amount (emission) of the emitted CO2, kg/y;
- dh—Average flow rate per gas well, kg/h;
- Ngw—Number of the gas wells;
- 365 and 24—the annual days and daily hours, respectively.
2.3. Statistical Analysis
3. Results and Discussion
3.1. Variation of CH4 and CO2 Contents
3.2. CH4/CO2 Volumetric Ratio
3.3. CH4 and CO2 Emissions
3.4. Interrupted Time Series ARMA Model Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MSW | municipal solid waste |
GHG | greenhouse gas |
LFG | landfill gas |
GW | gas well |
EU | European Union |
RNHWL | regional non-hazardous waste landfill |
HDPE | high-density polyethylene |
ITS | Interrupted Time Series |
NWMP | National Waste Management Plan |
BDS | Bulgarian State Standard |
Cv | Coefficients of variation. |
References
- Hannan, M.A.; Abdulla Al Mamun, M.; Hussain, A.; Basri, H.; Begum, R.A. A review on technologies and their usage in solid waste monitoring and management systems: Issues and challenges. Waste Manag. 2015, 43, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Njoku, P.O.; Odiyo, J.O.; Durowoju, O.S.; Edokpayi, J.N. A Review of Landfill Gas Generation and Utilisation in Africa. Open Environ. Sci. 2018, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Scheutz, C.; Kjeldsen, P. Trace gas emissions from municipal solid waste landfills: A review. Waste Manag. 2021, 119, 39–62. [Google Scholar] [CrossRef]
- Hoornweg, D.A.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management; Urban Development Series; Knowledge Papers No. 15; World Bank: Washington, DC, USA, 2012; Available online: https://openknowledge.worldbank.org/handle/10986/17388 (accessed on 20 April 2022).
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. At a Glance: A Global Picture of Solid Waste Management. In What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; Kaza, S., Yao, L., Bhada-Tata, P., Van Woerden, F., Eds.; World Bank Report; World Bank: Washington, DC, USA, 2018; pp. 17–38. Available online: http://hdl.handle.net/10986/30317 (accessed on 20 September 2022).
- Ricci-Jürgensen, M.; Gilbert, J.; Ramola, A. Global Assessment of Municipal Organic Waste Production and Recycling; International Solid Waste Association (ISWA): Rotterdam, The Netherlands, 2020; pp. 6–7. Available online: https://www.altereko.it/wp-content/uploads/2020/03/Report-1-Global-Assessment-of-Municipal-Organic-Waste.pdf (accessed on 9 December 2021).
- Stanisavljević, N.; Ubavin, D.; Batinić, B.; Johann Fellner, J.; Vujić, G. Methane emissions from landfills in Serbia and potential mitigation strategies: A case study. Waste Manag. Res. 2012, 30, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, Z.; Zhang, X.; Liu, Y.; Xie, Y. Comparison study of landfill gas emissions from subtropical landfill with various phases: A case study in Wuhan, China. J. Air Waste Manag. Assoc. 2015, 65, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Ferronato, N.; Torretta, V. Waste mismanagement in developing countries: A review of global issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaverková, M.D. Landfill Impacts on the Environment—Review. Geosciences 2019, 9, 431. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Xu, T.; Feng, H.; Chen, S. Greenhouse Gas Emissions from Landfills: A Review and Bibliometric Analysis. Sustainability 2019, 11, 2282. [Google Scholar] [CrossRef] [Green Version]
- Fischedick, M.; Roy, J.; Abdel-Aziz, A.; Acquaye, A.; Allwood, J.; Ceron, J.P.; Geng, Y.; Kheshgi, H.; Lanza, A.; Perczyk, D.; et al. Industry. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 743–784. Available online: http://www.ipcc.ch/report/ar5/wg3/ (accessed on 15 December 2022).
- Wang, Y.; Levis, J.W.; Barlaz, M.A. An Assessment of the Dynamic Global Warming Impact Associated with Long-Term Emissions from Landfills. Environ. Sci. Technol. 2020, 54, 1304–1313. [Google Scholar] [CrossRef]
- Paraskaki, I.; Lazaridis, M. Quantification of landfill emissions to air: A case study of the Ano Liosia landfill site in the greater Athens area. Waste Manag. Res. 2005, 23, 199–208. [Google Scholar] [CrossRef]
- Aderemi, A.O.; Falade, T.C. Environmental and health concerns associated with the open dumping of municipal solid waste: A Lagos, Nigeria experience. Am. J. Environ. Eng. 2012, 2, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Palmiotto, M.; Fattore, E.; Paiano, V.; Celeste, G.; Colombo, A.; Davoli, E. Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environ. Int. 2014, 68, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, R.; Gupta, S.; Das, K. Impact of landfill waste on health: An overview. IOSR J. Environ. Sci. Toxicol. Food. Technol. (IOSR-JESTFT) 2015, 1, 17–23. Available online: https://www.iosrjournals.org/iosr-jestft/papers/SSSSMHB/Volume-4/4.paper%2053.pdf (accessed on 15 June 2022).
- Njoku, P.O.; Edokpayi, J.N.; Odiyo, J.O. Health and Environmental Risks of Residents Living Close to a Landfill: A Case Study of Thohoyandou Landfill, Limpopo Province, South Africa. Int. J. Environ. Res. Public Health 2019, 16, 2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallam, R.M.A. Landfill emissions and their impact on the environment. Int. J. Chem. Stud. 2020, 8, 1567–1574. [Google Scholar] [CrossRef]
- Siddiqua, A.; Hahladakis, J.N.; Al-Attiya, W.A.K.A. An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environ. Sci. Pollut. Res. 2022, 29, 58514–58536. [Google Scholar] [CrossRef]
- Polvara, E.; Essna ashari, B.; Capelli, L.; Sironi, S. Evaluation of Occupational Exposure Risk for Employees Working in Dynamic Olfactometry: Focus on Non-Carcinogenic Effects Correlated with Exposure to Landfill Emissions. Atmosphere 2021, 12, 1325. [Google Scholar] [CrossRef]
- Durlević, U.; Novković, I.; Carević, I.; Valjarević, D.; Marjanović, A.; Batoćanin, N.; Krstić, F.; Stojanović, L.; Valjarević, A. Sanitary landfill site selection using GIS-based on a fuzzy multi-criteria evaluation technique: A case study of the City of Kraljevo, Serbia. Environ. Sci. Pollut. Res. 2023, 30, 37961–37980. [Google Scholar] [CrossRef]
- Niskanen, A.; Värri, H.; Havukainen, J.; Uusitalo, V.; Horttanainen, M. Enhancing landfill gas recovery. J. Clean. Prod. 2013, 55, 67–71. [Google Scholar] [CrossRef]
- Yang, D.; Xu, L.; Gao, X.; Guo, Q.; Huang, N. Inventories and reduction scenarios of urban waste-related greenhouse gas emissions for management potential. Sci. Total Environ. 2018, 626, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Khatiwada, D.; Golzar, F.; Mainali, B.; Devendran, A.A. Circularity in the Management of Municipal Solid Waste: A Systematic Review. Environ. Clim. Technol. 2021, 25, 491–507. [Google Scholar] [CrossRef]
- Guo, H.; Xu, H.; Liu, J.; Nie, X.; Li, X.; Shu, T.; Bai, B.; Ma, X.; Yao, Y. Greenhouse Gas Emissions in the Process of Landfill Disposal in China. Energies 2022, 15, 6711. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Chapter 3: Solid Waste Disposal. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories—Waste; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006; Volume 5, pp. 8–40. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.html (accessed on 2 March 2023).
- Pecorini, I.; Iannelli, R. Landfill GHG Reduction through Different Microbial Methane Oxidation Biocovers. Processes 2020, 8, 591. [Google Scholar] [CrossRef]
- Scheutz, C.; Kjeldsen, P.; Bogner, J.E.; De Visscher, A.; Gebert, G.; Hilger, H.A.; Huber-Humer, M.; Spokas, K. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag. Res. 2009, 27, 409–455. [Google Scholar] [CrossRef] [PubMed]
- United Nations Environment Programme (UNEP). Waste and Climate Change—Global Trends and Strategy Framework, USA. 2010. Available online: https://wedocs.unep.org/20.500.11822/8648 (accessed on 19 March 2023).
- Brindley, T. The Management of Landfill Gas. In Landfill Gas—Industry Code of Practice; Environment Services Association; Todeka Ltd.: Codicote, UK, 2012; Available online: https://www.esauk.org/application/files/8515/5782/4933/20120301_ICoP_Landfill_Gas_2012.pdf (accessed on 1 March 2023).
- Mohsen, R.A. Estimation of Greenhouse Gas Emissions in Municipal Solid Waste Landfills in Ontario Using Mathematical Models and Direct Measurements. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, December 2019; pp. 4–16. Available online: https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/17659/AMohsen_Riham_201912_phd.pdf?sequence=3 (accessed on 10 February 2023).
- Asgari, M.; Safavi, K.; Mortazaeinezahad, F. Landfill Biogas production process. In Proceedings of the International Conference on Food Engineering and Biotechnology (IPCBEE), Bangkok, Thailand, 7–9 May 2011; IACSIT Press: Singapore, 2011; Volume 9, pp. 208–212. [Google Scholar] [CrossRef]
- Ciuła, J.; Kozik, V.; Generowicz, A.; Gaska, K.; Bąk, A.; Paździor, M.; Barbusiński, K. Emission and neutralization of methane from a municipal landfill-parametric analysis. Energies 2020, 13, 6254. [Google Scholar] [CrossRef]
- Haeming, H.; Bretthauer, F.; Heyer, K.-U.; Stegmann, R.; Quicker, P. Waste, 8. Landfilling and Deposition. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Aghdam, E.F.; Scheutz, C.; Kjeldsen, P. Impact of meteorological parameters on extracted landfill gas composition and flow. Waste Manag. 2019, 87, 905–914. [Google Scholar] [CrossRef] [Green Version]
- Pehme, K.-M.; Orupõld, K.; Kuusemets, V.; Tamm, O.; Jani, Y.; Tamm, T.; Kriipsalu, M. Field Study on the Efficiency of a Methane Degradation Layer Composed of Fine Fraction Soil from Landfill Mining. Sustainability 2020, 12, 6209. [Google Scholar] [CrossRef]
- Chen, C.; Hegde, U.; Chang, C.-H.; Yang, S.-S. Methane and carbon dioxide emissions from closed landfill in Taiwan. Chemosphere 2008, 70, 1484–1491. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; Del, R.; Rosso, R.D.; Magnano, E. Evaluation of landfill surface emissions. Chem. Eng. Trans. 2014, 40, 187–192. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Basic Information about Landfill Gas; USEPA: Washington, DC, USA, 2023. Available online: https://www.epa.gov/lmop/basic-information-about-landfill-gas (accessed on 25 March 2023).
- Bhowmik, D. Global methane emission: Patterns and Kuznets hypothesis. AU eJournal of Interdiscipl. Res. 2020, 5, 22–43. Available online: http://www.assumptionjournal.au.edu/index.php/eJIR/article/view/4792 (accessed on 7 July 2020).
- Njoku, P.O.; Edokpayi, J.N. Estimation of landfill gas production and potential utilization in a South Africa landfill. J. Air Waste Manag. Assoc. 2022, 73, 1–14. [Google Scholar] [CrossRef]
- Glöser-Chahoud, S. Methane emissions and related abatement technologies from waste landfills and the natural gas grid in Europe. In Proceedings of the Joint EECCA_CG-TFTEI Virtual Workshop, Online, 26–27 April 2021; French-German Institute for Environmental Research (DFIU/KIT): Karlsruhe, Germany, 2021; pp. 1–27. Available online: https://unece.org/sites/default/files/2021-04/Methane%2027.04.pdf (accessed on 15 April 2023).
- Olaguer, E.P.; Jeltema, S.; Gauthier, T.; Jermalowicz, D.; Ostaszewski, A.; Batterman, S.; Xia, T.; Raneses, J.; Kovalchick, M.; Miller, S.; et al. Landfill Emissions of Methane Inferred from Unmanned Aerial Vehicle and Mobile Ground Measurements. Atmosphere 2022, 13, 983. [Google Scholar] [CrossRef]
- European Environmental Agency (EEA). Methane Emissions in the EU: The Key to Immediate Action on Climate Change. 2023. Available online: https://www.eea.europa.eu/publications/methane-emissions-in-the-eu (accessed on 30 November 2022).
- Hamoda, M.F. Air Pollutants Emissions from Waste Treatment and Disposal Facilities. J. Environ. Sci. Health Part A 2006, 41, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Pratt, C.; Walcroft, A.S.; Deslippe, J.; Tate, K.R. CH4/CO2 ratios indicate highly efficient methane oxidation by a pumice landfill cover-soil. Waste Manag. 2013, 33, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Abualqumboz, M.S.; Malakahmad, A.; Mohammed, N.I. Greenhouse gas emissions estimation from proposed El Fukhary Landfill in the Gaza Strip. J. Air Waste Manag. Assoc. 2016, 66, 597–608. [Google Scholar] [CrossRef] [Green Version]
- Barlaz, M.A.; Chanton, J.P.; Green, R.B. Controls on landfill gas collection efficiency: Instantaneous and lifetime performance. J. Air Waste Manag. Assoc. 2009, 59, 1399–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalvatzaki, E.; Lazaridis, M. Estimation of greenhouse gas emissions from landfills: Application to the Akrotiri landfill site (Chania, Greece). Global NEST J. 2010, 12, 108–116. Available online: https://journal.gnest.org/sites/default/files/Journal%20Papers/108-116_681_Lazaridis_12-1.pdf (accessed on 11 February 2022).
- Gupta, J.; Ghosh, P.; Kumari, M.; Thakur, I.S.; Swati. Chapter 14: Solid waste landfill sites for the mitigation of greenhouse gases. In Biomass, Biofuels, Biochemicals—Climate Change Mitigation: Sequestration of Green House Gases; Thakur, I.S., Pandey, A., Ngo, H.H., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 315–340. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Annual European Union Greenhouse Gas Inventory 1990–2020 and Inventory Report. 2022. Available online: https://www.eea.europa.eu/publications/annual-european-union-greenhouse-gas-1 (accessed on 31 May 2022).
- European Environmental Agency (EEA). Municipal Waste Management across European Countries—Briefing. 2022. Available online: https://www.eea.europa.eu/publications/municipal-waste-management-across-european-countries (accessed on 14 November 2022).
- Eurostat. Waste Statistics—Statistics Explained. 2023. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics (accessed on 20 January 2023).
- European Union. Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Off. J. L 1999, 182, 0001–0019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31999L0031 (accessed on 25 October 2022).
- Municipal Waste; National Statistical Institute (NSI): Sofia, Bulgaria, 2021. Available online: https://www.nsi.bg/en/content/2564/municipal-waste-total (accessed on 10 February 2023).
- National Waste Management Plan (NWMP) 2021–2028; Ministry of Environment and Water: Sofia, Bulgaria 2020. Available online: https://www.moew.government.bg/static/media/ups/tiny/%D0%A3%D0%9E%D0%9E%D0%9F/%D0%9D%D0%9F%D0%A3%D0%9E-2021-2028/NPUO_2021-2028.pdf (accessed on 15 September 2022). (In Bulgarian)
- Rettenberger, G. Chapter 9.4: Utilization of Landfill Gas and Safety Measures. In Solid Waste Landfilling: Concepts, Processes, Technology; Cossu, R., Stegmann, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 463–476. Available online: https://books.google.bg/books?hl=en&lr=&id=Gs6cBAAAQBAJ&oi=fnd&pg=PA463&ots=rSFQohJxZ3&sig=sW0e2CnzO4EDWSzElkyjLLGw3BU&redir_esc=y#v=onepage&q&f=false (accessed on 11 November 2022).
- Bacchi, D.; Bacci, R.; Ferrara, G.; Lombardi, L.; Pecorini, I.; Rossi, E. Life Cycle Assessment (LCA) of landfill gas management: Comparison between conventional technologies and microbial oxidation systems. Energy Procedia 2018, 148, 1066–1073. [Google Scholar] [CrossRef]
- Official Gazette (OG). Ordinance No 6 of August 27, 2013 on the Conditions and Requirements for Construction and Operation of the Landfill and Other Facilities and Installations for Waste Recovery and Disposal. OG No 80/2013, Last Amendment OG, No 36/01.05.2021. Available online: https://eea.government.bg/bg/legislation/waste/NAREDBA___6_ot_27082013_g_za_usloviqta_i_iziskvaniqta_za_izgrajdane_i_eksploataciq_na_depa_i_na_d.pdf (accessed on 15 July 2022). (In Bulgarian)
- Lee, U.; Han, J.; Wang, M. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways. J. Clean. Prod. 2017, 166, 335–342. [Google Scholar] [CrossRef]
- Weather in Bulgaria 1999–2023; National Institute of Meteorology and Hydrology (NIMH): Sofia, Bulgaria, 2023. Available online: https://www.stringmeteo.com/synop/temp_month.php (accessed on 10 February 2023). (In Bulgarian).
- Methodology for Determining the Morphological Composition of Household Waste, Approved by Order No. RD-744/29.09.2012 of the Minister of Environment and Water; Ministry of Environment and Water: Sofia, Bulgaria, 2012. Available online: https://www.moew.government.bg/static/media/ups/tiny/file/Waste/Municipal_Waste/Metodika-2012.pdf (accessed on 15 December 2022). (In Bulgarian)
- BDS EN 15934:2012; Sludge, Treated Biowaste, Soil and Waste—Calculation of Dry Matter Fraction after Determination of Dry Residue or Water Content. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2012. Available online: https://bds-bg.org/bg/project/show/bds:proj:83514 (accessed on 20 November 2022).
- BDS EN 12619:2013; Stationary Source Emissions—Determination of the Mass Concentration of Total Gaseous Organic Carbon—Continuous Flame Ionisation Detector Method. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2013. Available online: https://bds-bg.org/bg/project/show/bds:proj:83868 (accessed on 19 March 2022).
- Haro, K.; Ouarma, I.; Nana, B.; Bere, A.; Guy Christian Tubreoumya, G.C.; Kam, S.Z.; Laville, P.; Loubet, B.; Koulidiati, J. Assessment of CH4 and CO2 surface emissions from Polesgo’s landfill (Ouagadougou, Burkina Faso) based on static chamber method. Adv. Clim. Chang. Res. 2019, 10, 181–191. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (USEPA). Greenhouse Gas Equivalencies Calculator. 2022. Available online: https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator) (accessed on 20 April 2023).
- CRAN. Institute for Statistics and Mathematics of WU (Wirtschaftsuniversität Wien), Austria. Available online: https://cran.r-project.org/ (accessed on 28 January 2023).
- McDowall, D.; McCleary, R.; Bradley, J.; Bartos, B.J. Interrupted Time Series Analysis; Oxford University Press: Oxford, UK, 2019; pp. 11–47. [Google Scholar] [CrossRef]
- Turner, S.L.; Karahalios, A.; Forbes, A.B.; Taljaard, M.; Grimshaw, J.M.; Cheng, A.C.; Bero, L.; McKenzie, J.E. Design characteristics and statistical methods used in interrupted time series studies evaluating public health interventions: Protocol for a review. BMJ Open 2019, 9, e024096. [Google Scholar] [CrossRef]
- Ewusie, J.E.; Soobiah, C.; Blondal, E.; Beyene, J.; Thabane, L.; Hamid, J.S. Methods, Applications and Challenges in the Analysis of Interrupted Time Series Data: A Scoping Review. J. Multidiscip. Healthc. 2020, 13, 411–423. [Google Scholar] [CrossRef]
- Alexandrov, V.; Simeonov, P.; Kazandzhiev, V.; Korchev, G.; Yotova, A. Climatic Changes; Alexandrov, V., Ed.; National Institute of Climatology and Hydrology, Bulgarian Academy of Sciences: Sofia, Bulgaria, 2010; Available online: https://bglog.net//ClientFiles/d5d21550-02ea-4306-b49b-8224865fd3c/bro6ura.pdf (accessed on 11 November 2022). (In Bulgarian)
- Executive Environment Agency (ExEA). Climate Change. In National Report on the State and Protection of the Environment for 2020; Ministry of Environment and Water: Sofia, Bulgaria, 2022. Available online: https://eea.government.bg/bg/soer/2020/climate (accessed on 15 February 2023).
- Bouzonville, A.; Peng, S.-F.; Atkins, S. Review of Long Term Landfill Gas Monitoring Data and Potential For Use to Predict Emissions Influenced by Climate Change. In Proceedings of the 21th Clean Air Society of Australia and New Zealand Conference, Sydney, Australia, 7–13 September 2013; pp. 1–8. Available online: https://www.atmoterra.com/files/publications/ABouzonville-Paper-LFG-Climate-Change.pdf (accessed on 22 October 2022).
- Javadinejad, S.; Eslamian, S.; Ostad-Ali-Askari, K. Investigation of monthly and seasonal changes of methane gas with respect to climate change using satellite data. Appl. Water Sci. 2019, 9, 180. [Google Scholar] [CrossRef] [Green Version]
- Simonton, D.K. Erratum to Simonton. Psychol. Bull. 1977, 84, 1097. [Google Scholar] [CrossRef]
- Huitema, B.; McKean, J. Design Specification Issues in Time-Series Intervention Models. Educ. Psychol. Meas. 2000, 60, 38–58. [Google Scholar] [CrossRef]
- Linden, A.; Adams, J. Applying a propensity-score based weighting model to interrupted time series data: Improving causal inference in program evaluation. J. Eval. Clin. Pract. 2011, 17, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 3rd ed.; OTexts: Melbourne, Australia, 2021; Available online: https://otexts.com/fpp3/ (accessed on 10 November 2022).
- Engineering Statistics Handbook (ESH): NIST/SEMATECH e-Handbook of Statistical Methods; National Institute of Standards and Technology: Gaithersburg, MD, USA; U.S. Department of Commerce: Washington, DC, USA, 2012. [CrossRef]
- Xiaoli, C.; Ziyang, L.; Shimaoka, T.; Nakayama, H.; Ying, Z.; Xiaoyan, C.; Komiya, T.; Ishizaki, T.; Youcai, Z. Characteristics of environmental factors and their effects on CH4 and CO2 emissions from a closed landfill: An ecological case study of Shanghai. Waste Manag. 2010, 30, 446–451. [Google Scholar] [CrossRef]
- Uyanik, I.; Özkaya, B.; Demir, S.; Çakmakci, M. Meteorological parameters as an important factor on the energy recovery of landfill gas in landfills. J. Renew. Sustain. Energy 2012, 4, 063135. [Google Scholar] [CrossRef]
- Raza, S.T.; Hafeez, S.; Ali, Z.; Nasir, Z.A.; Butt, M.M.; Saleem, I.; Wu, J.; Chen, Z.; Xu, Y. An Assessment of Air Quality within Facilities of Municipal Solid Waste Management (MSWM) Sites in Lahore, Pakistan. Processes 2021, 9, 1604. [Google Scholar] [CrossRef]
- Herath, P.L.; Jayawardana, D.; Bandara, N. Quantification of methane and carbon dioxide emissions from an active landfill: Study the effect of surface conditions on emissions. Environ. Earth Sci. 2023, 82, 64. [Google Scholar] [CrossRef]
- Sanci, R.; Panarello, H.O. CO2 and CH4 Flux Measurements from Landfills—A Case Study: Gualeguaychú Municipal Landfill, Entre Ríos Province, Argentina. In Greenhouse Gases—Emission, Measurement and Management; Liu, G., Ed.; InTechOpen: London, UK, 2012; pp. 255–256. [Google Scholar] [CrossRef] [Green Version]
- Abushammala, M.F.; Basri, N.E.A.; Younes, M.K. Seasonal variation of landfill methane and carbon dioxide emissions in a tropical climate. Int. J. Environ. Sci. Dev. 2016, 7, 586–590. [Google Scholar] [CrossRef] [Green Version]
- Sonderfeld, H.; Bösch, H.; Jeanjean, A.P.R.; Riddick, S.N.; Allen, G.; Ars, S.; Davies, S.; Harris, N.; Humpage, N.; Leigh, R.; et al. CH4 emission estimates from an active landfill site inferred from a combined approach of CFD modelling and in situ FTIR measurements. Atmos. Meas. Tech. 2017, 10, 3931–3946. [Google Scholar] [CrossRef] [Green Version]
- Adamcová, D.; Vaverková, M.; Břoušková, E. Emission Assessment at the Štěpánovice Municipal Solid Waste Landfill Focusing on CH4 Emissions. J. Ecol. Eng. 2016, 17, 9–17. [Google Scholar] [CrossRef]
- Capaccioni, B.; Caramiello, C.; Tatàno, F.; Viscione, A. Effects of a temporary HDPE cover on landfill gas emissions: Multiyear evaluation with the static chamber approach at an Italian landfill. Waste Manag. 2011, 31, 956–965. [Google Scholar] [CrossRef]
- Gollapalli, M.; Kota, S.H. Methane emissions from a landfill in north-east India: Performance of various landfill gas emission models. Environ. Pollut. 2018, 234, 174–180. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, Y.; Wang, X.; Chen, S. Temporal and spatial variation of greenhouse gas emissions from a limited-controlled landfill site. Environ. Int. 2019, 127, 387–394. [Google Scholar] [CrossRef]
- Pinheiro, L.T.; Cattanio, J.H.; Imbiriba, B.; Castellon, S.F.M.; Elesbão, S.A.; de Souza Ramos, J.R. Carbon dioxide and methane flux measurements at a large unsanitary dumping site in the Amazon region. Braz. J. Environ. Sci. (RBCIAMB) 2019, 54, 13–33. [Google Scholar] [CrossRef] [Green Version]
- Valjarević, A.; Morar, C.; Živković, J.; Niemets, L.; Kićović, D.; Golijanin, J.; Gocić, M.; Bursać, N.M.; Stričević, L.; Žiberna, I.; et al. Long Term Monitoring and Connection between Topography and Cloud Cover Distribution in Serbia. Atmosphere 2021, 12, 964. [Google Scholar] [CrossRef]
- Börjesson, G.; Svensson, B.H. Seasonal and diurnal methane emissions from a landfill and their regulation by methane oxidation. Waste Manag. Res. 1997, 15, 33–54. [Google Scholar] [CrossRef]
- Manheim, D.C.; Yeşiller, Z.; Hanson, J.H. Gas Emissions from Municipal Solid Waste Landfills: A Comprehensive Review and Analysis of Global Data. J. Indian Inst. Sci. 2021, 101, 625–657. [Google Scholar] [CrossRef]
- Rachor, I.M.; Gebert, J.; Gröngröft, A.; Pfeiffer, E.M. Variability of methane emissions from an old landfill over different time-scales. Eur. J. Soil Sci. 2013, 64, 16–26. [Google Scholar] [CrossRef]
- Merez, M. Analyse of Landfill Gas Composition and Optimization of Its Production and Exploitation at Landfill Sites (Analyse de la Composition du Biogaz en vue de L’optimisation de sa Production et de son Exploitation Dans des Centres de Stockage des Déchets Ménagers). Ph.D. Thesis, National School of Mines, Saint-Etienne, France, Jagiellonian University of Krakow, Krakow, Poland, 19 September 2005; pp. 87–90. Available online: https://theses.hal.science/tel-00793654/document (accessed on 15 September 2022). (In French).
- Wangyao, K.; Yamada, M.; Endo, K.; Ishigaki, T.; Naruoka, T.; Towprayoon, S.; Chiemchaisri, C.; Sutthasil, N. Methane Generation Rate Constant in Tropical Landfill. J. Sustain. Energy Environ. 2010, 1, 181–184. Available online: https://www.academia.edu/25568325/Methane_Generation_Rate_Constant_in_Tropical_Landfill (accessed on 8 November 2021).
- Themelis, N.J.; Ulloa, P.A. Methane generation in landfills. Renew. Energy 2007, 32, 1243–1257. [Google Scholar] [CrossRef]
- Choden, Y.; Sharma, M.P. Greenhouse gas estimation from municipal solid waste dump site in Roorkee (Uttrakhand), India. Int. J. Res. Environ. Stud. 2019, 6, 39–46. [Google Scholar] [CrossRef]
- He, H.; Gao, S.; Hu, J.; Zhang, T.; Wu, T.; Qiu, Z.; Zhang, C.; Sun, Y.; He, S. In-Situ Testing of Methane Emissions from Landfills Using Laser Absorption Spectroscopy. Appl. Sci. 2021, 11, 2117. [Google Scholar] [CrossRef]
- Das, D.; Majhi, B.K.; Pal, S.; Jash, T. Estimation of Land-fill Gas Generation from Municipal Solid Waste in Indian Cities. Energy Procedia 2016, 90, 50–56. [Google Scholar] [CrossRef]
- Cho, H.S.; Moon, H.S.; Kim, J.Y. Effect of quantity and composition of waste on the prediction of annual methane potential from landfills. Bioresour. Technol. 2012, 109, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson: Upper Saddle River, NJ, USA, 2010; Available online: https://www.drnishikantjha.com/papersCollection/Multivariate%20Data%20Analysis.pdf (accessed on 22 January 2023).
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming, 3rd ed.; Routledge: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
No | Parameter | Unit |
---|---|---|
1 | Daily accepted waste | 83–132 m3 |
2 | Fractional composition of the waste | 0–65 mm: 32.6–45.7% 65–150 mm: 22.4–33.8% >100 mm: 13.3–20.4% |
3 | Moisture content of the waste | Spring: 38–58% Summer: 26–35% Autumn: 40–60% Winter: 60–78% |
4 | Bulk weight of accepted waste | 0.183–0.252 t/m3 |
5 | Weight of the compacted waste | 0.905–0.943 t/m3 |
6 | Degree of waste compaction | 1:3.5 |
Fraction | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|
Percentage by Weight | ||||
Food | 15.61 | 15.30 | 14.42 | 13.88 |
Garden | 10.62 | 10.28 | 9.35 | 9.74 |
Plastic | 18.26 | 18.05 | 21.40 | 18.57 |
Paper and cardboard | 14.67 | 14.50 | 15.46 | 15.71 |
Textile | 3.53 | 3.28 | 2.73 | 2.02 |
Wood | 2.84 | 3.05 | 2.08 | 3.62 |
Glass | 3.22 | 4.63 | 4.52 | 3.53 |
Metal | 2.93 | 2.25 | 1.80 | 2.82 |
Leather | 0.96 | 1.53 | 0.53 | 0.74 |
Rubber | 0.92 | 1.36 | 0.76 | 1.62 |
Dangerous | 1.10 | 0.77 | 0.71 | 1.08 |
Inert materials | 6.90 | 5.98 | 5.08 | 6.44 |
Others | 18.44 | 19.02 | 21.17 | 20.23 |
Year | Gas Well | CH4 v/v % | Cv, % | CO2, % v/v | Cv, % | ||||
---|---|---|---|---|---|---|---|---|---|
Average Mean ± SD | Min. | Max. | Average Mean ± SD | Min. | Max. | ||||
2018 | GW1 | 9.57 ± 0.10 a | 9.45 | 9.73 | 1.04 | 7.34 ± 0.09 a | 7.12 | 7.45 | 1.22 |
GW2 | 6.59 ± 0.07 c | 6.49 | 6.68 | 1.06 | 4.58 ± 0.06 c | 4.49 | 4.68 | 1.31 | |
GW3 | 7.94 ± 0.18 b | 7.70 | 8.21 | 2.26 | 5.91 ± 0.14 b | 5.69 | 6.13 | 2.36 | |
8.03 ± 0.11 A | - | - | 1.36 | 5.94 ± 0.09 A | - | - | 1.51 | ||
2019 | GW1 | 6.39 ± 0.74 b | 5.81 | 8.11 | 11.6 | 5.62 ± 0.37 b | 4.84 | 6.20 | 6.58 |
GW2 | 9.12 ± 3.38 a | 5.38 | 15.1 | 37.1 | 7.69 ± 1.59 a | 6.62 | 11.1 | 20.7 | |
GW3 | 6.12 ± 0.33 b | 5.78 | 6.61 | 5.38 | 4.39 ± 0.18 c | 4.07 | 4.70 | 4.10 | |
7.21 ± 1.19 AB | - | - | 16.5 | 5.90 ± 0.58 A | - | - | 9.83 | ||
2020 | GW1 | 8.24 ± 3.70 b | 4.37 | 17.3 | 44.9 | 6.24 ± 2.41 b | 4.23 | 12.7 | 38.6 |
GW2 | 10.4 ± 1.34 a | 9.21 | 14.2 | 12.9 | 8.11 ± 1.19 a | 5.72 | 10.2 | 14.7 | |
GW3 | 6.64 ± 0.89 b | 5.29 | 8.42 | 13.4 | 4.31 ± 0.29 c | 3.98 | 5.03 | 6.72 | |
8.41 ± 1.33 A | - | - | 15.8 | 6.22 ± 0.62 A | - | - | 9.96 | ||
2021 | GW1 | 4.12 ± 0.60 b | 3.29 | 5.18 | 14.6 | 4.26 ± 0.53 b | 3.32 | 4.90 | 12.4 |
GW2 | 10.3 ± 0.92 a | 9.26 | 12.2 | 8.96 | 8.70 ± 1.05 a | 5.96 | 9.95 | 12.1 | |
GW3 | 3.79 ± 0.64 b | 2.56 | 4.86 | 16.9 | 4.03 ± 0.31 b | 3.69 | 4.79 | 7.69 | |
6.06 ± 0.48 B | - | - | 7.92 | 5.66 ± 0.50 A | - | - | 8.83 | ||
2022 | GW1 | 2.85 ± 0.41 b | 2.06 | 3.48 | 14.4 | 2.92 ± 0.17 b | 2.60 | 3.16 | 5.82 |
GW2 | 8.18 ± 0.30 a | 7.69 | 8.53 | 3.67 | 5.44 ± 0.47 a | 4.86 | 6.27 | 8.64 | |
GW3 | 2.56 ± 0.22 c | 2.21 | 2.88 | 8.59 | 2.61 ± 0.21 c | 2.19 | 2.95 | 8.04 | |
4.53 ± 0.27 C | - | - | 5.96 | 3.66 ± 0.25 B | - | - | 6.83 |
Year | Parameter | Average Mean ± SD | Min. | Max. |
---|---|---|---|---|
2018 | Atmospheric pressure, hPa (n = 36) * | 976.12 ± 4.75 | 970.5 | 982.5 |
Air temperature, T °C (n = 36) | 16.28 ± 8.71 | 3.3 | 28.6 | |
Precipitation, mm (n = 12) ** | 44.533 ± 39.104 | 1.20 | 102.8 | |
2019 | Atmospheric pressure, hPa (n = 36) | 978.48 ± 9.80 | 962.5 | 995.7 |
Air temperature, T °C (n = 36) | 17.62 ± 7.96 | 3.4 | 29.0 | |
Precipitation, mm (n = 12) | 25.017 ± 18.306 | 2.20 | 59.3 | |
2020 | Atmospheric pressure, hPa (n = 36) | 994.08 ± 7.39 | 982.4 | 1002.0 |
Air temperature, T °C (n = 36) | 18.58 ± 9.71 | 3.5 | 29.2 | |
Precipitation, mm (n = 12) | 37.033 ± 33.711 | 5.30 | 123.1 | |
2021 | Atmospheric pressure, hPa (n = 36) | 990.38 ± 20.85 | 929.1 | 1008.2 |
Air temperature, T °C (n = 36) | 18.43 ± 9.99 | 5.2 | 35.8 | |
Precipitation, mm (n = 12) | 42.142 ± 37.989 | 1.30 | 109.4 | |
2022 | Atmospheric pressure, hPa (n = 36) | 998.22 ± 5.55 | 991.6 | 1011.2 |
Air temperature, T °C (n = 36) | 18.03 ± 9.03 | 7.6 | 31.4 | |
Precipitation, mm (n = 12) | 23.967 ± 23.561 | 1.10 | 89.4 |
Gas Well | Winter Period | Non-Winter Period | Year | |||||||
---|---|---|---|---|---|---|---|---|---|---|
December, January, February | March, April, May | June, July, August | September, October, November | |||||||
kg | kg | kg | kg | kg | ||||||
CH4 | CO2 | CH4 | CO2 | CH4 | CO2 | CH4 | CO2 | CH4 | CO2 | |
2018 | ||||||||||
GW1 | 131.76 | 278.65 | 149.40 | 311.85 | 122.75 | 257.20 | 116.35 | 247.56 | 520.26 | 1095.26 |
GW2 | 84.02 | 158.74 | 84.24 | 163.22 | 80.39 | 155.09 | 72.70 | 141.09 | 321.53 | 618.14 |
GW3 | 102.42 | 208.43 | 109.92 | 225.67 | 83.98 | 173.13 | 85.20 | 174.79 | 381.52 | 782.02 |
Total | 318.20 | 645.82 | 343.56 | 700.74 | 287.12 | 585.42 | 274.25 | 563.44 | 1223.3 | 2495.42 |
2019 | ||||||||||
GW1 | 139.73 | 288.01 | 147.62 | 339.43 | 154.60 | 408.66 | 145.54 | 393.18 | 587.49 | 1429.28 |
GW2 | 184.85 | 381.45 | 156.60 | 384.62 | 129.53 | 450.41 | 279.07 | 546.28 | 750.05 | 1762.76 |
GW3 | 118.13 | 222.62 | 107.81 | 196.64 | 97.09 | 203.79 | 89.10 | 181.87 | 412.13 | 804.92 |
Total | 442.71 | 892.08 | 412.03 | 920.69 | 381.22 | 1062.86 | 503.71 | 1121.33 | 1749.67 | 3996.96 |
2020 | ||||||||||
GW1 | 194.09 | 460.30 | 205.44 | 394.97 | 123.55 | 259.22 | 194.52 | 382.08 | 717.60 | 1496.57 |
GW2 | 209.47 | 415.01 | 158.42 | 313.90 | 176.01 | 397.42 | 188.54 | 465.41 | 732.44 | 1591.74 |
GW3 | 125.67 | 244.1 | 151.22 | 225.19 | 106.40 | 198.21 | 99.05 | 193.63 | 482.34 | 861.13 |
Total | 529.23 | 1119.41 | 515.02 | 934.06 | 405.94 | 854.85 | 482.11 | 1041.12 | 1932.38 | 3949.44 |
2021 | ||||||||||
GW1 | 90.51 | 237.24 | 73.58 | 224.81 | 69.28 | 225.84 | 68.46 | 173.71 | 301.83 | 861.60 |
GW2 | 198.76 | 400.75 | 179.04 | 457.51 | 196.69 | 473.71 | 175.92 | 413.99 | 750.41 | 1745.96 |
GW3 | 80.73 | 206.76 | 60.43 | 194.35 | 68.43 | 191.47 | 52.22 | 174.41 | 261.81 | 766.99 |
Total | 370.00 | 844.75 | 313.05 | 876.67 | 334.40 | 891.02 | 296.60 | 762.11 | 1314.05 | 3374.55 |
2022 | ||||||||||
GW1 | 51.31 | 135.84 | 53.14 | 149.26 | 47.91 | 154.49 | 48.52 | 134.66 | 200.88 | 574.25 |
GW2 | 150.38 | 295.78 | 150.60 | 267.84 | 140.62 | 245.23 | 138.35 | 243.51 | 579.95 | 1052.36 |
GW3 | 43.83 | 139.06 | 45.09 | 123.74 | 41.25 | 119.26 | 42.64 | 109.61 | 172.81 | 491.97 |
Total | 245.52 | 570.68 | 248.83 | 540.84 | 229.78 | 518.98 | 229.51 | 487.78 | 953.64 | 2118.58 |
Variable | Mean | St. Dev. | Max | Min | Skewness | Kurtosis | Jarque–Bera (p-Value) |
---|---|---|---|---|---|---|---|
Emission CH4_GW1 | 38.801 | 19.462 | 110.7000 | 13.390 | 1.150 | 2.185 | 21.664 (1.976 × 10−5) |
Emission CO2_GW1 | 91.116 | 36.532 | 237.340 | 37.630 | 1.196 | 2.933 | 30.431 (2.466 × 10−7) |
Air pressure_GW1 | 987.453 | 13.992 | 1011.200 | 929.100 | −1.279 | 3.587 | 41.101 (1.189 × 10−9) |
Air temperature_GW1 | 17.783 | 8.832 | 35.7000 | 1.500 | −0.154 | −0.981 | 2.725 (0.256) |
Emission CH4_GW2 | 52.237 | 17.956 | 108.700 | 20.880 | 0.539 | 1.041 | 4.598 (0.100) |
Emission CO2_GW2 | 112.849 | 43.177 | 217.440 | 40.320 | 0.046 | −0.789 | 1.714 (0.424) |
Air pressure_GW2 | 987.477 | 13.999 | 1011.200 | 929.100 | −1.281 | 3.588 | 41.164 (1.152 × 10−9) |
Air temperature_GW2 | 18.022 | 8.956 | 35.800 | 1.500 | −0.165 | −1.022 | 2.950 (0.229) |
Emission CH4_GW3 | 28.560 | 10.632 | 64.080 | 12.240 | 0.475 | 0.548 | 2.558 (0.278) |
Emission CO2_GW3 | 61.779 | 13.523 | 97.920 | 34.970 | −0.120 | −0.037 | 0.180 (0.914) |
Air pressure_GW3 | 988.093 | 14.091 | 1011.200 | 929.100 | −1.323 | 3.701 | 43.879 (2.963 × 10−10) |
Air temperature_GW3 | 18.192 | 9.037 | 35.800 | 1.600 | −0.179 | −1.048 | 3.121 (0.210) |
Precipitation | 34.538 | 31.726 | 123.100 | 1.100 | 1.179 | 0.484 | 13.501 (0.001) |
GW1 | GW2 | GW3 | ||||
---|---|---|---|---|---|---|
Estimate | p-Value | Estimate | p-Value | Estimate | p-Value | |
α0 | −0.153 | 0.131 | 364.398 | 0.487 × 103 **** | −1.685 | 0.807 |
α1 | 0.532 | 0.167 | 1.820 | 0.121 × 10−6 **** | 0.299 | 0.109 |
α2 | −6.226 | 0.486 | 0.868 | 0.925 | −4.819 | 0.242 |
α3 | −1.997 | 0.337 × 103 **** | −2.576 | 0.127 × 10−6 **** | −1.153 | 0.360 × 10−6 **** |
βair presure | 0.037 | 0.2058 × 10−7 **** | −0.347 | 0.001 *** | 0.032 | <0.220 × 10−17 **** |
βair temperature | −0.361 | 0.099 * | ||||
βprecipitation | ||||||
βnon-winter | 9.880 | 0.026 ** |
GW1 | GW2 | GW3 | ||||
---|---|---|---|---|---|---|
Estimate | p-Value | Estimate | p-Value | Estimate | p-Value | |
α0 | −1.058 | 0.495 | 518.260 | 0.023 ** | 163.695 | 0.034 ** |
α1 | 2.124 | 1.260 × 10−6 *** | 4.034 | 0.716 × 10−6 *** | 0.250 | 0.310 |
α2 | −38.857 | 0.258 × 103 *** | 15.548 | 0.457 | 5.276 | 0.356 |
α3 | −4.496 | 0.211 × 10−14 *** | −6.986 | 0.605 × 10−7 *** | −1.558 | 0.106 × 10−6 *** |
βair presure | 0.075 | 0.303 × 10−14 *** | −0.479 | 0.040 ** | ||
βair temperature | −0.287 | 0.085 * | ||||
βprecipitation | ||||||
βnon-winter | 14.582 | 0.080 * |
GW1 | |||
CH4: MA(2) Model | CO2: AR(1) Model | ||
Estimate | θ1= 0.594 | θ2= 0.258 | φ1= 0.127 |
p-value | 0.585 × 10−5 *** | 0.064 * | 0.061 * |
GW2 | |||
CH4: AR(1) Model | CO2: AR(1) Model | ||
Estimate | φ1= 0.532 | φ1= 0.607 | |
p-value | 0.315 × 10−5 *** | 0.678 × 10−10 *** | |
GW3 | |||
CH4: AR(1) Model | CO2: AR(1) Model | ||
Estimate | φ1= 0.525 | φ1= 0.378 | |
p-value | 0.406 × 10−7 *** | 0.002 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borisova, D.; Kostadinova, G.; Petkov, G.; Dospatliev, L.; Ivanova, M.; Dermendzhieva, D.; Beev, G. Assessment of CH4 and CO2 Emissions from a Gas Collection System of a Regional Non-Hazardous Waste Landfill, Harmanli, Bulgaria, Using the Interrupted Time Series ARMA Model. Atmosphere 2023, 14, 1089. https://doi.org/10.3390/atmos14071089
Borisova D, Kostadinova G, Petkov G, Dospatliev L, Ivanova M, Dermendzhieva D, Beev G. Assessment of CH4 and CO2 Emissions from a Gas Collection System of a Regional Non-Hazardous Waste Landfill, Harmanli, Bulgaria, Using the Interrupted Time Series ARMA Model. Atmosphere. 2023; 14(7):1089. https://doi.org/10.3390/atmos14071089
Chicago/Turabian StyleBorisova, Daniela, Gergana Kostadinova, Georgi Petkov, Lilko Dospatliev, Miroslava Ivanova, Diyana Dermendzhieva, and Georgi Beev. 2023. "Assessment of CH4 and CO2 Emissions from a Gas Collection System of a Regional Non-Hazardous Waste Landfill, Harmanli, Bulgaria, Using the Interrupted Time Series ARMA Model" Atmosphere 14, no. 7: 1089. https://doi.org/10.3390/atmos14071089
APA StyleBorisova, D., Kostadinova, G., Petkov, G., Dospatliev, L., Ivanova, M., Dermendzhieva, D., & Beev, G. (2023). Assessment of CH4 and CO2 Emissions from a Gas Collection System of a Regional Non-Hazardous Waste Landfill, Harmanli, Bulgaria, Using the Interrupted Time Series ARMA Model. Atmosphere, 14(7), 1089. https://doi.org/10.3390/atmos14071089