Investigating the Effect of Fuel Moisture and Atmospheric Instability on PyroCb Occurrence over Southeast Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. PyroCb Catalogue
2.2. Study Area
2.3. Data Description
2.3.1. Dependent Variables
2.3.2. Explanatory Variables
2.4. Modelling Approach
3. Results
3.1. The Effect of FMI and C-Haines on pyroCb Occurrence
3.1.1. Univariate Models
3.1.2. Multivariate Models
3.2. Distribution of C-Haines and FMI Values of pyroCbs and Standard Wildfires
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fromm, M. Pyro-Cumulonimbus Injection of Smoke to the Stratosphere: Observations and Impact of a Super Blowup in Northwestern Canada on 3–4 August 1998. J. Geophys. Res. 2005, 110, D08205. [Google Scholar] [CrossRef] [Green Version]
- Fromm, M.; Lindsey, D.T.; Servranckx, R.; Yue, G.; Trickl, T.; Sica, R.; Doucet, P.; Godin-Beekmann, S. The Untold Story of Pyrocumulonimbus. Bull. Amer. Meteor. Soc. 2010, 91, 1193–1210. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.H.; Schumacher, R.S.; Ruppert, J.H.; Lindsey, D.T.; Ruthford, J.E.; Kriederman, L. The Role of Convective Outflow in the Waldo Canyon Fire. Mon. Wea. Rev. 2014, 142, 3061–3080. [Google Scholar] [CrossRef] [Green Version]
- Lang, T.J.; Rutledge, S.A.; Dolan, B.; Krehbiel, P.; Rison, W.; Lindsey, D.T. Lightning in Wildfire Smoke Plumes Observed in Colorado during Summer 2012. Mon. Weather. Rev. 2014, 142, 489–507. [Google Scholar] [CrossRef] [Green Version]
- Dowdy, A.J.; Fromm, M.D.; McCarthy, N. Pyrocumulonimbus Lightning and Fire Ignition on Black Saturday in Southeast Australia. J. Geophys. Res. Atmos. 2017, 122, 7342–7354. [Google Scholar] [CrossRef]
- Fromm, M.; Tupper, A.; Rosenfeld, D.; Servranckx, R.; McRae, R. Violent Pyro-Convective Storm Devastates Australia’s Capital and Pollutes the Stratosphere. Geophys. Res. Lett. 2006, 33, L05815. [Google Scholar] [CrossRef]
- McRae, R.H.D.; Sharples, J.J.; Wilkes, S.R.; Walker, A. An Australian Pyro-Tornadogenesis Event. Nat. Hazards 2013, 65, 1801–1811. [Google Scholar] [CrossRef]
- McRae, R.H.D.; Sharples, J.J.; Fromm, M. Linking Local Wildfire Dynamics to PyroCb Development. Nat. Hazards Earth Syst. Sci. 2015, 15, 417–428. [Google Scholar] [CrossRef] [Green Version]
- Peterson, D.A.; Hyer, E.J.; Campbell, J.R.; Solbrig, J.E.; Fromm, M.D. A Conceptual Model for Development of Intense Pyrocumulonimbus in Western North America. Mon. Weather. Rev. 2017, 145, 2235–2255. [Google Scholar] [CrossRef]
- Peterson, D.A.; Campbell, J.R.; Hyer, E.J.; Fromm, M.D.; Kablick, G.P.; Cossuth, J.H.; DeLand, M.T. Wildfire-Driven Thunderstorms Cause a Volcano-like Stratospheric Injection of Smoke. npj Clim. Atmos. Sci. 2018, 1, 30. [Google Scholar] [CrossRef] [Green Version]
- Khaykin, S.; Legras, B.; Bucci, S.; Sellitto, P.; Isaksen, L.; Tencé, F.; Bekki, S.; Bourassa, A.; Rieger, L.; Zawada, D.; et al. The 2019/20 Australian Wildfires Generated a Persistent Smoke-Charged Vortex Rising up to 35 Km Altitude. Commun. Earth Environ. 2020, 1, 22. [Google Scholar] [CrossRef]
- Peterson, D.A.; Fromm, M.D.; McRae, R.H.D.; Campbell, J.R.; Hyer, E.J.; Taha, G.; Camacho, C.P.; Kablick, G.P.; Schmidt, C.C.; DeLand, M.T. Australia’s Black Summer Pyrocumulonimbus Super Outbreak Reveals Potential for Increasingly Extreme Stratospheric Smoke Events. npj Clim. Atmos. Sci. 2021, 4, 38. [Google Scholar] [CrossRef]
- Hirsch, E.; Koren, I. Record-Breaking Aerosol Levels Explained by Smoke Injection into the Stratosphere. Science 2021, 371, 1269–1274. [Google Scholar] [CrossRef]
- Solomon, S.; Stone, K.; Yu, P.; Murphy, D.M.; Kinnison, D.; Ravishankara, A.R.; Wang, P. Chlorine Activation and Enhanced Ozone Depletion Induced by Wildfire Aerosol. Nature 2023, 615, 259–264. [Google Scholar] [CrossRef]
- Tang, W.; Llort, J.; Weis, J.; Perron, M.M.G.; Basart, S.; Li, Z.; Sathyendranath, S.; Jackson, T.; Sanz Rodriguez, E.; Proemse, B.C.; et al. Widespread Phytoplankton Blooms Triggered by 2019–2020 Australian Wildfires. Nature 2021, 597, 370–375. [Google Scholar] [CrossRef]
- Abram, N.J.; Henley, B.J.; Sen Gupta, A.; Lippmann, T.J.R.; Clarke, H.; Dowdy, A.J.; Sharples, J.J.; Nolan, R.H.; Zhang, T.; Wooster, M.J.; et al. Connections of Climate Change and Variability to Large and Extreme Forest Fires in Southeast Australia. Commun. Earth Environ. 2021, 2, 8. [Google Scholar] [CrossRef]
- Peterson, D.A.; Hyer, E.J.; Campbell, J.R.; Fromm, M.D.; Hair, J.W.; Butler, C.F.; Fenn, M.A. The 2013 Rim Fire: Implications for Predicting Extreme Fire Spread, Pyroconvection, and Smoke Emissions. Bull. Am. Meteorol. Soc. 2015, 96, 229–247. [Google Scholar] [CrossRef]
- Tory, K.J.; Thurston, W.; Kepert, J.D. Thermodynamics of Pyrocumulus: A Conceptual Study. Mon. Weather. Rev. 2018, 146, 2579–2598. [Google Scholar] [CrossRef]
- Tory, K.J.; Kepert, J.D. Pyrocumulonimbus Firepower Threshold: Assessing the Atmospheric Potential for PyroCb. Weather. Forecast. 2021, 36, 439–456. [Google Scholar] [CrossRef]
- Mills, G.A.; McCaw, W.L.; Centre for Australian Weather and Climate Research. Atmospheric Stability Environments and Fire Weather in Australia: Extending the Haines Index; Centre for Australian Weather and Climate Research: Melbourne, Australia, 2010; ISBN 978-1-921605-56-7. [Google Scholar]
- Haines, D.A. A Lower Atmospheric Severity Index for Wildland Fires. Natl. Weather. Dig. 1988, 13, 23–27. [Google Scholar]
- Long, M. A Climatology of Extreme Fire Weather Days in Victoria. Meteor. Mag 2006, 55, 3–18. [Google Scholar]
- Winkler, J.A.; Potter, B.E.; Wilhelm, D.F.; Shadbolt, R.P.; Piromsopa, K.; Bian, X. Climatological and Statistical Characteristics of the Haines Index for North America. Int. J. Wildland Fire 2007, 16, 139. [Google Scholar] [CrossRef] [Green Version]
- Tatli, H.; Türkeş, M. Climatological Evaluation of Haines Forest Fire Weather Index over the Mediterranean Basin: Evaluation of Haines Forest Fire Weather Index. Met. Apps 2014, 21, 545–552. [Google Scholar] [CrossRef]
- Dowdy, A.J. Climatological Variability of Fire Weather in Australia. J. Appl. Meteorol. Climatol. 2018, 57, 221–234. [Google Scholar] [CrossRef]
- Sharples, J.J.; McRae, R.H.D. Assessing the Potential for Pyrocumulonimbus Occurrence Using Simple Fire Weather Indices. MODSIM2021. In Proceedings of the 24th International Congress on Modelling and Simulation, Sydney, Australia, 16 December 2021; Modelling and Simulation Society of Australia and New Zealand: Wageningen, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Noble, I.R.; Gill, A.M.; Bary, G.A.V. McArthur’s Fire-Danger Meters Expressed as Equations. Austral. Ecol. 1980, 5, 201–203. [Google Scholar] [CrossRef]
- Di Virgilio, G.; Evans, J.P.; Blake, S.A.P.; Armstrong, M.; Dowdy, A.J.; Sharples, J.; McRae, R. Climate Change Increases the Potential for Extreme Wildfires. Geophys. Res. Lett. 2019, 46, 8517–8526. [Google Scholar] [CrossRef]
- Badlan, R.L.; Sharples, J.J.; Evans, J.P.; McRae, R.H.D. Factors Influencing the Development of Violent Pyroconvection. Part I: Fire Size and Stability. Int. J. Wildland Fire 2021, 30, 484. [Google Scholar] [CrossRef]
- Sharples, J.J.; McRae, R.H.D.; Weber, R.O.; Gill, A.M. A Simple Index for Assessing Fire Danger Rating. Environ. Model. Softw. 2009, 24, 764–774. [Google Scholar] [CrossRef]
- Sharples, J.J.; McRae, R.H.D. Evaluation of a Very Simple Model for Predicting the Moisture Content of Eucalypt Litter. Int. J. Wildland Fire 2011, 20, 1000. [Google Scholar] [CrossRef]
- Sharples, J.J.; Matthews, S. Evaluation of Some Simplified Models for Predicting the Moisture Content of Fine, Dead Fuels. MODSIM2011. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011; Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc.: Wageningen, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Furlaud, J.M.; Porter, M.; Williamson, G.J. The Fuel Moisture Index Based on Understorey Hygrochron IButton Humidity and Temperature Measurements Reliably Predicts Fine Fuel Moisture Content in Tasmanian Eucalyptus Forests. Fire 2022, 5, 130. [Google Scholar] [CrossRef]
- Storey, M.A.; Price, O.F.; Sharples, J.J.; Bradstock, R.A. Drivers of Long-Distance Spotting during Wildfires in South-Eastern Australia. Int. J. Wildland Fire 2020, 29, 459. [Google Scholar] [CrossRef]
- McRae, R. Australia PyroCb Register. June 2023. Available online: https://www.highfirerisk.com.au/pyrocb/register.htm (accessed on 2 March 2023).
- National Vegetation Information System, Australian Government Department of Agriculture, Water and the Environment. Available online: https://www.environment.gov.au/fed/catalog/search/resource/downloadData.page?uuid=%7B991C36C0-3FEA-4469-8C30-BB56CC2C7772%7D (accessed on 4 November 2021).
- Zhang, Y.; Lim, S.; Sharples, J.J. Modelling Spatial Patterns of Wildfire Occurrence in South-Eastern Australia. Geomat. Nat. Hazards Risk 2016, 7, 1800–1815. [Google Scholar] [CrossRef] [Green Version]
- Worldwide PyroCb Information Exchange. Available online: https://groups.io/g/pyrocb (accessed on 25 June 2023).
- NSW Fire History, NSW Rural Fire Service. Available online: https://portal.spatial.nsw.gov.au/portal/home/item.html?id=d199a650bf614e9b9a396925b33cd5aa (accessed on 9 November 2021).
- Victoria Fire History Records, Department of Environment, Land, Water & Planning. Available online: https://data.aurin.org.au/dataset/vic-govt-delwp-datavic-fire-fire-history-na (accessed on 5 May 2022).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1940 to Present. Copernic. Clim. Change Serv. (C3S) Clim. Data Store (CDS) 2023. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1940 to Present. Copernic. Clim. Change Serv. (C3S) Clim. Data Store (CDS) 2023. [Google Scholar] [CrossRef]
- Pearson, K. Note on Regression and Inheritance in the Case of Two Parents. Proc. R. Soc. Lond. 1895, 58, 240–242. [Google Scholar] [CrossRef]
- Nelder, J.A.; Wedderburn, R.W.M. Generalized Linear Models. J. R. Stat. Soc. Ser. A 1972, 135, 370. [Google Scholar] [CrossRef]
- Guisan, A.; Edwards, T.C.; Hastie, T. Generalized Linear and Generalized Additive Models in Studies of Species Distributions: Setting the Scene. Ecol. Model. 2002, 157, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Mills, G.; Salkin, O.; Fearon, M.; Harris, S.; Brown, T.; Reinbold, H. Meteorological Drivers of the Eastern Victorian Black Summer (2019–2020) Fires. J. South. Hemisph. Earth Syst. Sci. 2022, 72, 139–163. [Google Scholar] [CrossRef]
- Badlan, R.L.; Sharples, J.J.; Evans, J.P.; McRae, R.H.D. Factors Influencing the Development of Violent Pyroconvection. Part II: Fire Geometry and Intensity. Int. J. Wildland Fire 2021, 30, 498. [Google Scholar] [CrossRef]
- Trentmann, J.; Luderer, G.; Winterrath, T.; Fromm, M.D.; Servranckx, R.; Textor, C.; Herzog, M.; Graf, H.-F.; Andreae, M.O. Modeling of Biomass Smoke Injection into the Lower Stratosphere by a Large Forest Fire (Part I): Reference Simulation. Atmos. Chem. Phys. 2006, 6, 5247–5260. [Google Scholar] [CrossRef] [Green Version]
States | Numbers of PyroCbs |
---|---|
Victoria (Vic) | 53 |
New South Wales (NSW) | 40 |
Western Australia (WA) | 28 |
Queensland (Qld) | 2 |
South Australia (SA) | 1 |
Tasmania (Tas) | 1 |
Total | 125 |
States | Fuel Type | Numbers of PyroCbs | Proportion |
---|---|---|---|
NSW | Forests and woodlands | 29 | 72.5% |
Shrublands and grasslands | 7 | 17.5% | |
Others | 4 | 10.0% | |
Vic | Forests and woodlands | 46 | 86.8% |
Shrublands and grasslands | 2 | 3.8% | |
Others | 5 | 9.4% | |
WA | Forests and woodlands | 11 | 39.3% |
Shrublands and grasslands | 17 | 60.7% |
Fire Type | Number | |||
---|---|---|---|---|
Total | NSW | Vic | ||
PyroCb | 93 | 40 | 53 | |
Standard | ≥10 ha | 7876 | 6652 | 1224 |
≥100 ha | 3908 | 3368 | 540 | |
≥1000 ha | 1077 | 901 | 176 | |
≥4000 ha | 370 | 292 | 78 |
Subsets | Univariate Model | FMI + CH | FMI + CA | FMI + CB | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
FMI | CH | CA | CB | FMI | CH | FMI | CA | FMI | CB | ||
NSW | ≥10 ha | −0.153 | 0.668 | 1.431 | 1.010 | 0.163 | 0.912 | 0.094 | 1.774 | 0.094 | 1.214 |
≥100 ha | −0.144 | 0.643 | 1.405 | 0.952 | 0.164 | 0.888 | 0.105 | 1.791 | 0.094 | 1.156 | |
≥1000 ha | −0.120 | 0.580 | 1.237 | 0.904 | 0.181 | 0.854 | 0.104 | 1.614 | 0.128 | 1.185 | |
≥4000 ha | −0.111 | 0.543 | 1.150 | 0.826 | 0.196 | 0.869 | 0.087 | 1.490 | 0.139 | 1.164 | |
Vic | ≥10 ha | −0.053 | 0.248 | 0.664 | 0.294 | 0.154 | 0.455 | 0.109 | 0.975 | 0.084 | 0.475 |
≥100 ha | −0.025 | 0.215 | 0.589 | 0.244 | 0.170 | 0.433 | 0.131 | 0.934 | 0.107 | 0.466 | |
≥1000 ha | 0.015 | 0.132 | 0.409 | 0.112 | 0.189 | 0.378 | 0.151 | 0.798 | 0.124 | 0.377 | |
≥4000 ha | 0.039 | 0.061 | 0.275 | −0.002 | 0.161 | 0.285 | 0.151 | 0.675 | 0.091 | 0.197 | |
Whole | ≥10 ha | −0.094 | 0.363 | 0.901 | 0.480 | 0.128 | 0.531 | 0.087 | 1.166 | 0.062 | 0.604 |
≥100 ha | −0.070 | 0.328 | 0.826 | 0.429 | 0.150 | 0.519 | 0.112 | 1.157 | 0.084 | 0.593 | |
≥1000 ha | −0.042 | 0.263 | 0.666 | 0.342 | 0.167 | 0.486 | 0.118 | 1.020 | 0.109 | 0.567 | |
≥4000 ha | −0.023 | 0.204 | 0.553 | 0.248 | 0.147 | 0.417 | 0.108 | 0.902 | 0.091 | 0.446 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Wilson, C.S.; Sharples, J.J.; Jovanoski, Z. Investigating the Effect of Fuel Moisture and Atmospheric Instability on PyroCb Occurrence over Southeast Australia. Atmosphere 2023, 14, 1087. https://doi.org/10.3390/atmos14071087
Ma W, Wilson CS, Sharples JJ, Jovanoski Z. Investigating the Effect of Fuel Moisture and Atmospheric Instability on PyroCb Occurrence over Southeast Australia. Atmosphere. 2023; 14(7):1087. https://doi.org/10.3390/atmos14071087
Chicago/Turabian StyleMa, Wenyuan, Caleb S. Wilson, Jason J. Sharples, and Zlatko Jovanoski. 2023. "Investigating the Effect of Fuel Moisture and Atmospheric Instability on PyroCb Occurrence over Southeast Australia" Atmosphere 14, no. 7: 1087. https://doi.org/10.3390/atmos14071087
APA StyleMa, W., Wilson, C. S., Sharples, J. J., & Jovanoski, Z. (2023). Investigating the Effect of Fuel Moisture and Atmospheric Instability on PyroCb Occurrence over Southeast Australia. Atmosphere, 14(7), 1087. https://doi.org/10.3390/atmos14071087