Association between Short-Term Exposure to Criteria Air Pollutants and Daily Mortality in Mexico City: A Time Series Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Air Quality and Meteorological Data
2.3. Applicable Regulatory Framework
- For O3: 0.090 ppm (1 h average data) and 0.065 ppm (8 h moving average data) [29];
- For CO: 26.0 ppm (1 h average data) and 9.0 ppm (8 h moving average data) [30];
- For NO2: 0.106 ppm (1 h average data) and 0.021 ppm (annual average) [31];
- For PM10: 70 µg m−3 (24 h daily average data) and 36 µg m−3 (annual average) [32]; and,
- For SO2: 0.075 ppm (1 h average data) and 0.040 ppm (24 h daily average data) [33].
2.4. Epidemiological Data
2.5. Design of the Epidemiological Analysis
- Description and assessment of temporal variations in mortality rate on a monthly basis for all populations and all population sub-groups, by age, gender, and specific cause of death from 1 January 2012 to 31 December 2015.
- Description and assessment of temporal variations in criteria air pollutants concentrations on a monthly basis from 1 January 2012 to 31 December 2015.
- Diagnosis of air quality: Values above the reference values established as maximum permissible limits in the NOMs for each criteria air pollutant and each municipality were obtained.
- Estimation of the magnitude of the association between mortality (by all causes of death and by specific cause of death) and air pollutants concentrations for each municipality and population sub-group. During this stage, the meteorological variables (temperature and relative humidity) were included.
- (A)
- Response variables: Number of monthly and daily deaths for each municipality during the study period, considering different causes of death: respiratory, circulatory, and all causes.
- (B)
- Explanatory variables: Criteria air pollutants (quantitative explanatory variable), monthly and daily mean concentration values for O3, SO2, CO, NO2, and PM10 for each municipality during the study period. Meteorological variables (quantitative explanatory variable): monthly and daily mean values for temperature and relative humidity for each municipality during the study period. Gender (qualitative explanatory variable): number of deaths by gender. Age (qualitative explanatory variable): number of deaths by age group.
- (C)
- Control variables (seasonality): Seasons were classified as cold months (from November to February) and warm months (from May to August).
- (D)
- Confusion variables: Temperature and relative humidity
- (E)
- The delay in the effect of the confusion variables was considered: the time series were pretreated, wherein the time delay from cross correlations of the series (mortality vs. temperature and mortality vs. relative humidity) was estimated by using Infostat software v. 2008 [34], with time delays selected according to their significance level. The epidemiological data series were smoothed, as they mostly presented collinearity and non-linear relationships with some variables (for example, temperature and relative humidity); therefore, a non-parametric method (LOWESS: locally weighted regression scatterplot smoothing) was applied. The air quality data series were pretreated (smoothed) using the ARIMA method (autoregressive integrate moving average) (Box–Jenkins model) [35].
2.6. Estimation of the Magnitude of the Association between Mortality, by All Causes of Death and by Specific Cause of Death, and Atmospheric Pollution Concentrations for Each Municipality and Population Sub-Group
2.6.1. Multivariate Analysis
2.6.2. Relative Risk Index for Daily Mortality Associated with Atmospheric Pollution
2.7. Mapping the Relative Risk Index for Each Municipality
3. Results and Discussion
3.1. Air Quality
3.2. Epidemiological Data
3.3. Values above the Reference Values Established by the NOMs
3.4. Estimation and Mapping of the Relative Risk Index for Each Pollutant by Municipality
3.4.1. Bi-Variate Analysis, Multivariate Analysis, and Multiple Regression of Daily Mortality Data with Explanatory Variables
3.4.2. Relative Risk Index Estimation
3.4.3. Integrated Mapping of Relative Risk Index for Each Pollutant
3.5. Comparisons with Other Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Milojevic, A.; Guo, Y.; Tong, S.; Coelho, M.S.Z.S.; Nascimento Saldiva, P.H.; et al. Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality: Multilocation analysis in 398 cities. BMJ 2021, 372, n534. [Google Scholar] [CrossRef] [PubMed]
- Cerón, R.M.; Cerón, J.G.; Lara, R.; Espinosa, M.L.; Ramirez, E.; Rangel, M.; Rodríguez, A.; Uc, M.P. Short term effects of air Pollution on health in the metropolitan Area of Guadalajara using a time-series approach. Aerosol Air Qual. Res. 2018, 18, 2383–2411. [Google Scholar] [CrossRef]
- Thurston, G.D.; Ahn, J.; Cromar, K.R.; Shao, Y.; Reynolds, H.R.; Jerrett, M.; Lim, C.C.; Shanley, R.; Park, Y.; Hayes, R.B. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP diet and health cohort. Environ. Health Perspect. 2016, 124, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Badida, P.; Krishnamurthy, A.; Jayaprakash, J. Meta analysis of health effects of ambient air pollution exposure in low- and middle-income countries. Environ. Res. 2023, 216, 114604. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for Europe. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Available online: https://apps.who.int/iris/handle/10665/107823 (accessed on 12 December 2022).
- De Pablo, F.; López, A.; Rivas Soriano, L.; Tomás, C.; Diego, L.; González, M.; Barrueco, M. Relationships of daily mortality and hospital admissions to air pollution in Castilla–León, Spain. Atmósfera 2006, 19, 23–39. [Google Scholar]
- Filleul, L.; Cassadou, S.; Médina, S.; Fabres, P.; Lefranc, A.; Eilstein, D.; Le Tertre, A.; Pascal, L.; Chardon, B.; Blanchard, M.; et al. The Relation Between Temperature, Ozone, and Mortality in Nine French Cities During the Heat Wave of 2003. Environ. Health Perspect. 2006, 114, 1344–1347. [Google Scholar] [CrossRef]
- Ritz, B.; Wilhelm, M.; Zhao, Y. Air Pollution and Infant Death in Southern California, 1989–2000. Pediatrics 2006, 118, 493–502. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, X.; Zhang, L.; Shi, G.; Liu, Y.; Lv, K.; Zhang, D.; Yin, C.; Bai, Y.; Zhang, Y.; et al. Effects of short-term exposure to gaseous pollutants on metabolic health indicators of patients with metabolic syndrome in Northwest China. Ecotoxicol. Environ. Saf. 2023, 249, 114438–114445. [Google Scholar] [CrossRef]
- O’Neill, M.S.; Loomis, D.; Borja-Aburto, V.H. Ozone, area social conditions, and mortality in Mexico City. Environ. Res. 2004, 94, 234–242. [Google Scholar] [CrossRef]
- Dratva, J.; Zemp, E.; Dharmage, S.C.; Accordini, S.; Burdet, L.; Gislason, T.; Heinrich, J.; Janson, C.; Jarvis, D.; de Marco, R.; et al. Early Life Origins of Lung Ageing: Early Life Exposures and Lung Function Decline in Adulthood in Two European Cohorts Aged 28–73 Years. PLoS ONE 2016, 11, e0145127. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.P.; Godfrey, K.M.; Fall, C.; Osmond, C.; Winter, P.D.; Shaheen, S.O. Relation of birth weight and childhood respiratory infection to adult lung function and death from chronic obstructive airways disease. BJM 1991, 303, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, C.; Peto, R. The natural history of chronic airflow obstruction. Br. Med. J. 1977, 1, 1645–1648. [Google Scholar] [CrossRef] [PubMed]
- Ab Manan, N.; Noor Aizuddin, A.; Hod, R. Effect of Air Pollution and Hospital Admission: A Systematic Review. Ann. Glob. Health 2018, 84, 670–678. [Google Scholar] [CrossRef]
- Cheng, J.; Su, H.; Xu, Z. Intraday effects of outdoor air pollution on acute upper and lower respiratory infections in Australian children. Environ. Pollut. 2021, 268, 115698. [Google Scholar] [CrossRef]
- Horne, B.D.; Joy, E.A.; Hofmann, M.G.; Gesteland, P.H.; Cannon, J.B.; Lefler, J.S.; Blagev, D.P.; Kent Korgenski, E.; Torosyan, N.; Hansen, G.I.; et al. Short-Term Elevation of Fine Particulate Matter Air Pollution and Acute Lower Respiratory Infection. Am. J. Respir. Crit. Care Med. 2018, 198, 759–766. [Google Scholar] [CrossRef]
- Mazenq, J.; Dubus, J.-C.; Gaudart, J.; Charpin, D.; Nougairede, A.; Viudes, G.; Noel, G. Air pollution and children’s asthma-related emergency hospital visits in southeastern France. Eur. J. Pediatr. 2017, 176, 705–711. [Google Scholar] [CrossRef]
- Nhung, N.T.T.; Amini, H.; Schindler, C.; Joss, M.K.; Dien, T.M.; Probst-Hensch, N.; Perez, L.; Künzli, N. Short-term association between ambient air pollution and pneumonia in children: A systematic review and meta-analysis of time-series and case-crossover studies. Environ. Pollut. 2017, 230, 1000–1008. [Google Scholar] [CrossRef]
- Khomenko, S.; Cirach, M.; Pereira-Barboza, E.; Mueller, N.; Barrera-Gómez, J.; Rojas-Rueda, D.; de Hoogh, K.; Hoek, G.; Nieuwenhuijsen, M. Premature mortality due to air pollution in European cities: A health impact assessment. Lancet Planet. Health 2021, 5, e121–e134. [Google Scholar] [CrossRef]
- Sly, P.; Blake, T.; Islam, Z. Impact of prenatal and early life environmental exposures on normal human development. Pediatr. Respir. Rev. 2021, 40, 10–14. [Google Scholar] [CrossRef]
- Bolton, C.E.; Bush, A.; Hurst, J.R.; Kotecha, S.; McGarvey, L. Lung consequences in adults born prematurely. Thorax 2015, 70, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, X.; Zhang, X.; Dong, M.; Wu, J.; Dong, Y.; Chen, R.; Ding, X.; Huang, C.; Zhang, Q.; et al. The burden of ambient air pollution on years of life lost in Wuxi, China, 2012–2015: A time-series study using a distributed lag non-linear model. Environ. Pollut. 2017, 224, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Hwang, M.J.; Kim, J.H.; Koo, Y.S.; Yun, H.Y.; Cheong, H.K. Impacts of ambient air pollution on glucose metabolism in Korean adults: A Korea National Health and Nutrition Examination Survey study. Environ. Health 2020, 19, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y. Effects of exposure to air pollution on ischemic stroke incidence and mortality. J. Neurol. Sci. 2019, 405, 99. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Ma, Y.X.; Li, H.P.; Cheng, B.W.; Feng, F.L.; Jiso, H.R. Short-term exposure to ozone and nonaccidental mortality in Northeast China. Biomed. Environ. Sci. 2023, 36, 99–102. [Google Scholar] [CrossRef]
- INECC (National Institute of Ecology and Climatic Change). Available online: https://cambioclimatico.gob.mx/estadosymunicipios/Aire.html (accessed on 8 March 2023).
- SEDEMA. (Mexico City Government). Available online: aire.cdmx.gob.mx/default.php (accessed on 7 March 2023).
- NOM-020-SSA1-2021. Criterio para Evaluar la Calidad del Aire Ambiente con Respecto al Ozono (O3). Valores Normados para la Concentración del Ozono en el Aire Ambiente (O3), Como Medida de Protección a la Salud de la Población. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5633956&fecha=28/10/2021#gsc.tab=0 (accessed on 12 December 2022).
- NOM-021-SSA1-2021. Criterio para Evaluar la Calidad del Aire Ambiente con Respecto al Monóxido de Carbono (CO). Valores Normados para la Concentración del Monóxido de Carbono en el Aire Ambiente (CO), Como Medida de Protección a la Salud de la Población. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5634084&fecha=29/10/2021#gsc.tab=0 (accessed on 12 December 2022).
- NOM-023-SSA1-2021. Criterio para Evaluar la Calidad del Aire Ambiente con Respecto al Dióxido de Nitrógeno (NO2). Valores Normados para la Concentración del Dióxido de Nitrógeno en el Aire Ambiente (NO2), Como Medida de Protección a la Salud de la Población. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5633854&fecha=27/10/2021#gsc.tab=0 (accessed on 12 December 2022).
- NOM-025-SSA1-2021. Criterio para Evaluar la Calidad del Aire Ambiente con Respecto a las Partículas Suspendidas PM10 y PM2.5. Valores Normados para la Concentración de Partículas Suspendidas PM10 y PM2.5 en el Aire Ambiente, Como Medida de Protección a la Salud de la Población. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5633855&fecha=27/10/2021#gsc.tab=0 (accessed on 12 December 2022).
- NOM-022-SSA1-2019. Criterio para Evaluar la Calidad del Aire Ambiente con Respecto al Dióxido de Azufre (SO2). Valores Normados para la Concentración de Dióxido de Azufre en el Aire Ambiente (SO2), Como Medida de Protección a la Salud de la Población. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5568395&fecha=20/08/2019#gsc.tab=0 (accessed on 12 December 2022).
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat v.2008. 2008. Available online: http://books.google.com (accessed on 20 January 2020).
- Uriel, E. Introducción al Análisis de Series Temporales, 2nd ed.; Alfa Centauro: Madrid, Spain, 2000; 343p. [Google Scholar]
- Jolliffe, I. Principal Component Analysis, 1st ed.; Springer: New York, NY, USA, 1986; 487p. [Google Scholar]
- Villardón, J.L.V.; Galindo-Villardón, M.P. Biplot ajustados mediante modelos lineales generalizados alternados para la diagnosis de modelos Logit. In Proceedings of the XXVI Congreso Nacional de Estadística e Investigación Operativa, Jaen, Spain, 6–9 November 2001. [Google Scholar]
- Katsouyanni, K.; Schwartz, J.; Spix, C.; Zmirou, D.; Zanobetti, A.; Wojtyniak, B.; Vonk, J.M.; Tobias, A.; Pönkä, A.; Medina, S. Short term effects of air pollution on health: European Approach using epidemiology time series data. The APHEA protocol. J. Epidemiol. Community Health 1996, 50, S12–S18. [Google Scholar] [CrossRef]
- Ballester, F.; Saéz, M.; Pérez-Hoyos, S.; Iñiguez, C.; Gandarillas, A.; Tobías, A.; Bellido, J.; Taracido, M.; Arribas, F.; Daponte, A.; et al. The EMECAM project: A multicentre study on air pollution and mortality in Spain: Combined results for particulates and for sulfur dioxide. Occup. Environ. Med. 2002, 59, 300–308. [Google Scholar] [CrossRef]
- WHO. World Health Organization. Available online: https://apps.who.int/iris/handle/10665/345329 (accessed on 9 May 2023).
- U.K. Air Information Resource, Air Quality Limits. Available online: uk-air.defra.gov.uk/assets/documents/Air_Quality_Objectives_Update.pdf (accessed on 9 May 2023).
- U.S. EPA. Environmental Protection Agency. NAAQS. National Ambient Air Quality Standards. Available online: epa.gov/criteria-air-pollutants/naaqs-table (accessed on 9 May 2023).
- Sunyer, J.; Castellsagué, J.; Sáez, M.; Tobías, A.; Antó, J. Air pollution and mortality in Barcelona. J. Epidemiol. Community Health 1996, 50, S76–S80. [Google Scholar] [CrossRef]
- Zmirou, D.; Barumandzadeh, T.; Balducci, F.; Ritter, P.; Laham, G.; Ghilardi, J. Short term effects of air pollution on mortality in the city of Lyon, France, 1985–1990. J. Epidemiol. Community Health 1996, 50, S30–S35. [Google Scholar] [CrossRef]
- Ballester, F.; Iñiguez, C.; Sáez, M.; Pérez-Hoyos, S.; Daponte, A.; Ordóñez, J.; Barceló, M.; Taracido, M.; Arribas, F.; Cambra, K.; et al. Short-term relationship between air pollution and mortality in 13 Spanish cities. Med. Clin. 2003, 121, 684–689. [Google Scholar] [CrossRef]
- Arribas-Monzón, F.; Rabanaque, M.J.; Martos, M.C.; Abad, J.M.; Alcalá-Nalvaiz, T.; Navarro-Elipoe, M. Efectos de la contaminación atmosférica sobre la mortalidad diaria en la Ciudad de Zaragoza, España 1991–1995. Salud Pública México 2001, 43, 289–297. [Google Scholar] [CrossRef]
- Gouveia, N.; Fletcher, T. Time series analysis of air pollution and mortality: Effects by cause, age and socioeconomic status. J. Epidemiol. Community Health 2000, 54, 750–755. [Google Scholar] [CrossRef]
- Zhang, C.; Quan, Z.; Wu, Q.; Jin, Z.; Lee, J.H.; Li, C.; Zhang, Y.; Cui, L. Association between atmospheric particulate pollutants and mortality for cardio-cerebrovascular diseases in Chinese Korean Population: A Case-crossover study. Int. J. Environ. Res. Public Health 2018, 15, 2835. [Google Scholar] [CrossRef] [PubMed]
- Venners, S.; Wong, B.; Peng, Z.; Xu, Y.; Wang, L.; Yu, X. Particulate matter, sulfur dioxide and daily mortality in Chongqing, China. Environ. Health Perspect. 2003, 11, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, C.; Meng, X.; Niu, Y.; Lin, Z.; Liu, Y.; Liu, J.; Qi, J.; You, L.; Tse, L.; et al. Associations between short-term exposure to ambient sulfur dioxide and increased cause-specific mortality in 272 Chinese Cities. Environ. Int. 2018, 117, 33–39. [Google Scholar] [CrossRef]
- Orellano, P.; Reynoso, J.; Quaranta, N.; Bardach, A.; Ciapponi, A. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. Environ. Int. 2020, 142, 105876–105890. [Google Scholar] [CrossRef]
- Biggeri, A.; Bellini, P.; Terracini, B. Metaanalysis of the Italian Studies on short-term effects of air pollution. Epidemiol. Prev. 2001, 25, 1–71. [Google Scholar] [CrossRef]
- Stieb, D.; Judek, S.; Burnett, R. Meta-analysis of time-series studies of air pollution and mortality: Effects of gases and particles and the influence of cause of death, age and season. J. Air Waste Manag. Assoc. 2002, 52, 470–484. [Google Scholar] [CrossRef]
- Wang, Z.S.; Chen, R.J.; Wu, J.R.; Kan, H.D.; Wu, G.; Wu, X.F. Short-term Effects of Air Pollution on Mortality in a Heavily Polluted Chinese City. Biomed. Environ. Sci. 2013, 26, 671–674. [Google Scholar] [CrossRef]
- Cerón, R.M.; Cerón, J.G.; Espinosa, M.L.; Kahl, J.; Espinosa, A.; García, R.; Guarnaccia, C.; Lara, R.; Ramírez, E.; Francavilla, A. Short-Term Associations between Morbidity and Air Pollution in Metropolitan Area of Monterrey, Mexico. Atmosphere 2021, 12, 1352. [Google Scholar] [CrossRef]
- Crouse, D.; Peters, P.; Hystad, P.; Brook, J.; Van Donkelaar, A.; Martin, R.; Villeneuve, P.; Jerrett, M.; Goldberg, M.; Pope III, C.A.; et al. Ambient PM2.5, O3 and NO2 exposures and associations with mortality over 16 years of follow-up in the Canadian Census Health and Environment Cohort (CanCHEC). Environ. Perspect. 2015, 123, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Zúñiga, J.; Tarajia, M.; Herrera, V.; Urriola, W.; Gómez, B.; Motta, J. Assessment of the possible association of air pollutants PM10, O3, NO2, with an increase in cardiovascular, respiratory and diabetes mortality in Panama City. Medicine 2016, 95, e2464. [Google Scholar] [CrossRef] [PubMed]
- Gariazzo, C.; Renzi, M.; Marinaccio, A.; Michelozzi, P.; Massari, S.; Silibello, C.; Carlino, G.; Rossi, P.G.; Maio, S.; Viegi, G.; et al. Association between short-term exposure to air pollutants and cause-specific daily mortality in Italy. A nationwide analysis. Environ. Res. 2023, 216 Pt 3, 114676. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Yu, L.; Xiao, C.; Deng, J.; Yang, H.; Xu, W.; Chen, Y.; Liu, X.; Ni, J.; Pan, F. Short-term effects of ambient temperature and pollutants on the mortality of respiratory diseases: A time-series analysis in Hefei, China. Ecotoxicol. Environ. Saf. 2021, 215, 112160. [Google Scholar] [CrossRef]
- Yi, Z.; Wei, L.; Ning, J.; Shudan, L.; Jingyuan, L.; Nana, W.; Yuanyuan, L.; Yaohua, T.; Da, F.; Jinxi, W.; et al. Associations between short-term exposure of PM2.5 constituents and hospital admissions of cardiovascular diseases among 18 major Chinese cities. Ecotoxicol. Environ. Saf. 2022, 246, 114149. [Google Scholar] [CrossRef]
- Fischer, P.H.; Marra, M.; Ameling, C.B.; Hoek, G.; Beelen, R.; De Hoogh, K.; Breugelmans, O.; Kruize, H.; Janssen, N.A.; Houthuijs, D. Air pollution and mortality in seven million adults: The dutch environmental longitudinal study (DUELS). Environ. Health Perspect. 2015, 123, 697–704. [Google Scholar] [CrossRef]
- Bentayeb, M.; Wagner, V.; Stempfelet, M.; Zins, M.; Goldberg, M.; Pascal, M.; Larrieu, S.; Beaudeau, P.; Cassadou, S.; Eilstein, D.; et al. Association between long-term exposure to air pollution and mortality in France: A 25-year follow-up study. Environ. Int. 2015, 85, 5–14. [Google Scholar] [CrossRef]
- Desikan, A.; Crichton, S.; Hoang, U.; Barratt, B.; Kelly, F.J.; Wolfe, C. The effect of exhaust and non-exhaust related components of particulate matter on long-term survival after stroke in South London. Int. J. Stroke 2015, 5, 61–62. [Google Scholar] [CrossRef]
- Hvidtfeldt, U.H.; Sørensen, M.; Geels, C.; Ketzel, M.; Khan, J.; Tjønneland, A.; Overvad, K.; Brandt, J.; Raaschou-Nielsen, O. Long-term residential exposure to PM2.5, PM10, black carbon, NO2, and ozone and mortality in a Danish cohort. Environ. Int. 2019, 123, 265–272. [Google Scholar] [CrossRef]
- Amini, H.; Nhung, N.; Schindler, C.; Yunesian, M.; Hosseini, V.; Shamsipour, M.; Hassanvand, M.; Mohammadi, Y.; Farzadfar, F.; Vicedo-Cabrera, A.; et al. Short-term associations between daily mortality and ambient particulate matter, nitrogen dioxide, and the air quality index in a Middle Eastern megacity. Environ. Pollut. 2019, 254 Pt B, 113121. [Google Scholar] [CrossRef]
- Olstrup, H.; Johansson, C.; Fosberg, B.; Astrom, C. Association between mortality and short-term exposure to particles, ozone and nitrogen dioxide in Stockholm, Sweden. Int. J. Environ. Res. Public Health 2019, 16, 1028. [Google Scholar] [CrossRef]
- Tonne, C.; Halonen, J.; Beevers, S.D.; Dajnak, D.; Gulliver, J.; Kelly, F.J.; Wilkinson, P.; Anderson, H.R. Long-term traffic air and noise pollution in relation to mortality and hospital readmission among myocardial infarction survivors. Int. J. Hyg. Environ. Health 2016, 19, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Tiantian, L.; Qinghua, S.; Wanying, S.; Mike, Z.; He, J.W.; Jing, L.; Mengxue, Z.; Qizheng, J.; Menghan, W.; et al. Short-term exposure to ozone and cause-specific mortality risks and thresholds in China: Evidence from nationally representative data, 2013–2018. Environ. Int. 2023, 171, 107666. [Google Scholar] [CrossRef]
- Peng, R.D.; Samoli, S.; Pham, L.; Dominici, F.; Touloumi, G.; Ramsay, T.; Burnett, R.T.; Krewski, D.; Le Tertre, A.; Cohen, A.; et al. Acute effects of ambient ozone on mortality in Europe and North America: Results from the APHENA study. Air Qual. Atmos. Health 2013, 6, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Kan, H.; Chen, B.; Zhao, N.; London, S.J.; Song, G.; Chen, G.; Zhang, Y.; Jiang, L. A time-series study of ambient air pollution and daily mortality in Shanghai, China. Res. Rep. Health Eff. Inst. 2010, 154, 17–78. [Google Scholar] [CrossRef]
- Shin, H.H.; Parajuli, R.P.; Maquiling, A.; Smith-Doiron, M. Temporal trends in associations between ozone and circulatory mortality in age and sex in Canada during 1984–2012. Sci. Total Environ. 2020, 724, 137944. [Google Scholar] [CrossRef] [PubMed]
- Robles, L.; Cortes, S.; Vergara, A.; Ortega, J.C. Short term health effects on particulate matter: A comparison between wood smoke and multi-source polluted urban areas in Chile. Aerosol Air Qual. Res. 2015, 15, 306–318. [Google Scholar] [CrossRef]
- Hadei, M.; Hopke, P.; Nazari, S.; Yarahmadi, M.; Shahsavani, A.; Reza, M. Estimation of mortality and hospital admissions attributed to criteria air pollutants in Tehran Metropolis, Iran (2013–2016). Aerosol Air Qual. Res. 2017, 17, 2474–2481. [Google Scholar] [CrossRef]
- Marzouni, M.B.; Alizadeh, T.; Banafsheh, M.R.; Khorshiddoust, A.M.; Ghozikali, M.G.; Akbaripoor, S.; Sharifi, R.; Goudarzi, G. A comparison of health impacts assessment for PM10 during two successive years in the ambient air of Kermanshah, Iran. Atmos. Pollut. Res. 2016, 7, 768–774. [Google Scholar] [CrossRef]
Criteria Air Pollutant | Principle of Operation | Method Description |
---|---|---|
Sulfur dioxide (SO2) | UV fluorescence | Measurement of the fluorescence emitted when SO2 molecules are excited by an UV radiation source |
Carbon monoxide (CO) | Infrared absorption | Measurement of the absorption of infrared light by carbon monoxide in a correlation cell |
Nitrogen dioxide (NO2) | Chemiluminescence | Measurement of the light emitted during the reaction between NO and O3. The separation of nitrogen species is carried out via the differential measurement of NO and NO2 (with a previous catalytic reduction). The corresponding value for NOx is equal to NO + NO2. |
Ozone (O3) | Photometry UV | Measurement of UV light absorption at a wavelength of 254 nm. The reduction in the signal intensity is proportional to ozone concentration according to the Beer–Lambert law. |
Particulate matter (PM10) | Gravimetric | Measurement of the mass of particles in the airflow. The particles separate from the stream and are then deposited on a filter placed on an oscillating element. The variation of the oscillation frequency is proportional to the mass. The particle size is determined by both selective entry and the sampling flow. |
Site | >60 Years | Respiratory Cause of Death | Circulatory Cause of Death | All Causes of Death |
---|---|---|---|---|
Barcelona, Spain [43] | 1.065–1.209 | 1.063–1.232 | 0.991–1.283 | - |
Lyon, France [44] | - | 1.041–1.144 | 1.01–1.07 | - |
13 cities in Spain [45] | 1.001–1.01 | - | - | - |
Zaragoza, Spain [46] | 1.008–1.058 | 1.006–1.187 | 1.001–1.287 | - |
Sao Paulo, Brazil [47] | - | 0.981–1.101 | 1.01–1.08 | - |
North Korea [48] | - | - | 1.038–1.044 | - |
Chongqing, China [49] | 1.00–1.09 | - | - | - |
China [50] | - | - | - | 1.0125–1.0411 |
Various cities [51] | - | 1.0025–1.0109 | - | 1.0046–1.0071 |
Site 1 | - | 0.9794–1.0204 | 0.9871–1.0083 | 0.9745–1.0233 |
Site 11 | - | - | 0.9956–1.0084 | 0.9962–1.0074 |
Site 2 | 0.987–1.0081 | - | - | - |
Site 3 | - | 0.9606–1.0071 | - | - |
Site 8 | 0.9836–1.0153 | 0.9746–1.0315 | 0.9838–1.0179 | 0.9858–1.0153 |
Site 10 | 0.986–1.019 | 0.9815–1.0312 | 0.9854–1.019 | 0.9865–1.0181 |
Site 9 | 0.9788–1.0216 | - | - | 0.9798–1.0197 |
Site 4 | 0.9812–1.0192 | 0.9909–1.0132 | 0.9809–1.0195 | 0.9826–1.0184 |
Site 7 | 0.9884–1.0039 | 0.9551–1.0389 | 0.9876–1.0049 | 0.9784–1.0154 |
Site | >60 Years | Respiratory Cause of Death | Circulatory Cause of Death | All Causes of Death |
---|---|---|---|---|
13 Spanish cities [45] | 1.005–1.026 | 1.014–1.051 | 1.013–1.032 | - |
Sao Paulo, Brazil [47] | - | 0.981–1.101 | 1.01–1.08 | - |
Cities in Italy [52] | - | 1.015–1.053 | 1.012–1.024 | - |
Cities in Europe [53] | 1.009–1.018 | 1.008–1.03 | - | - |
272 cities in China [54] | 1.0042–1.0183 | - | 1.0085–1.0266 | - |
Monterrey, Mexico [55] | 0.9999–1.0006 | 0.9999–1.0003 | 0.9999–1.0002 | - |
Site 1 | 0.9995–1.0007 | 0.9996–1.0005 | 0.9999–1.0004 | 0.9995–1.0006 |
Site 11 | 0.9996–1.0005 | 0.9998–1.0004 | 0.9996–1.0004 | 0.9996–1.0005 |
Site 2 | 0.9997–1.0001 | 0.9996–1.0002 | 0.9998–1.0002 | - |
Site 8 | 0.9997–1.0005 | 0.9995–1.0009 | 0.9996–1.0004 | 0.9997–1.0004 |
Site 10 | 0.9998–1.0003 | 0.9996–1.0005 | 0.9998–1.0004 | 0.9998–1.0003 |
Site 9 | 0.9997–1.0004 | - | 0.9999–1.0002 | 0.9997–1.0004 |
Site 4 | 0.9997–1.0003 | 0.9998–1.0002 | 0.9997–1.0003 | 0.9997–1.0003 |
Site 7 | 0.9997–1.0004 | 0.9992–1.0007 | 1.0000–1.0003 | 0.9997–1.0004 |
Site | >60 Years | Respiratory Cause of Death | Circulatory Cause of Death | All Causes of Death |
---|---|---|---|---|
Monterrey, Mexico [55] | - | 0.9851–1.0122 | 0.991–1.0082 | - |
North Korea [48] | - | - | 1.057–1.063 | - |
Cities in Canada [56] | 1.045–1.059 | 1.053–1.083 | 0.977–1.034 | - |
272 cities in China [54] | 1.007–1.0115 | 1.009–1.015 | 1.007–1.012 | - |
Panama City [57] | 1.188–1.665 | 1.019–1.213 | 1.001–1.082 | - |
Italy [58] | - | 1.0102–1.1113 | 1.0103–1.1395 | - |
China [59] | - | - | - | 1.014–1.133 |
China [60] | - | - | - | 1.042–1.219 |
DUELS project [61] | - | 1.01–1.03 | - | 1.02–1.04 |
France [62] | - | - | - | 1.0000–1.1500 |
London, U.K. [63] | - | - | - | 0.76–1.17 |
Denmark [64] | - | - | - | 1.04–1.17 |
Tehran, Iran [65] | - | - | - | 0.999–1.007 |
Site 1 | 0.9808–1.0149 | 0.9887–1.0132 | 0.9885–1.0024 | 0.9824–1.0143 |
Site 11 | 0.9863–1.0151 | - | - | 0.9879–1.0147 |
Site 2 | 0.9994–1.0092 | 0.9948–1.0132 | 0.9958–1.0074 | 0.9928–1.0091 |
Site 3 | - | - | 0.9921–1.0117 | 0.9907–1.0099 |
Site 8 | 0.9854–1.0107 | 0.9691–1.0135 | 0.9862–1.0127 | 0.9865–1.0099 |
Site 10 | 0.9904–1.0106 | 0.9913–1.023 | 0.9894–1.0103 | 0.991–1.0104 |
Site 9 | 0.988–1.0168 | - | - | 0.9903–1.0169 |
Site | >60 Years | Respiratory Cause of Death | Circulatory Cause of Death | All Causes of Death |
---|---|---|---|---|
Monterrey, Mexico [55] | - | 0.9849–1.0127 | 0.9912–1.008 | - |
Stockholm, Sweden [66] | 1.01–1.03 | - | - | - |
Cities in Canada [56] | 1.026–1.036 | 1.053–1.083 | 0.977–1.034 | - |
Panama City [57] | 1.001–1.024 | 1.003–1.3 | 1.002–1.144 | - |
Cities in Italy [58] | - | 1.00–1.09 | 1.01–1.06 | - |
England [67] | - | - | - | 0.84–1.06 |
South London [63] | - | - | - | 0.73–1.85 |
Hefei, China [59] | - | - | - | 1.004–1.051 |
China [68] | - | - | 1.04–1.17 | 1.08–1.17 |
China [60] | - | - | - | 1.006–1.034 |
Europe [69] | - | - | - | 1.0009–1.0025 |
Shanghai, China [70] | - | - | - | 1.004–1.0058 |
Various cities [51] | - | - | - | 1.0034–1.0052 |
Canada [71] | - | - | 1.0002–1.011 | - |
Site 1 | 0.989–1.0068 | 0.9926–1.0049 | 0.994–1.0009 | 0.99–1.0062 |
Site 11 | 0.9875–1.0091 | 0.991–1.0069 | 0.9861–1.0091 | 0.988–1.0081 |
Site 2 | - | - | 0.9973–1.0037 | - |
Site 3 | - | - | 0.993–1.0078 | 0.9927–1.007 |
Site 8 | 0.9897–1.0061 | 0.9846–1.0139 | 0.9891–1.0062 | 0.9909–1.0061 |
Site 10 | 0.9931–1.005 | 0.9898–1.0092 | 0.9925–1.0053 | 0.993–1.0052 |
Site 9 | 0.9867–1.0068 | 0.9906–1.0048 | 0.9935–1.0013 | 0.9876–1.0061 |
Site | >60 Years | Respiratory Cause of Death | Circulatory Cause of Death | All Causes of Death |
---|---|---|---|---|
Monterrey, Mexico [55] | - | - | 0.9973–1.0027 | - |
North Korea [48] | 1.009–1.013 | - | 1.136–1.149 | - |
Panama City [57] | 1.071–1.58 | 1.002–1.242 | 1.058–1.136 | - |
Stockholm, Sweden [66] | 1.008–1.014 | - | - | - |
Cities in Canada [56] | 1.029–1.041 | - | - | - |
Pudahuel, Chile [72] | - | - | 1.0007–1.0165 | - |
Temuco, Chile [72] | - | - | 1.0004–1.025 | - |
Tehran, Iran [73] | 1.004–1.008 | - | - | - |
Kermonshah, Iran [74] | - | 1.005–1.022 | 1.005–1.021 | 1.004–1.008 |
Italy [58] | - | 1.0128–1.0392 | 1.0006–1.022 | - |
Various cities [51] | - | - | - | 1.0034–1.0049 |
Site 1 | 0.9911–1.0103 | 0.9926–1.0065 | 0.9973–1.0051 | 0.9919–1.0098 |
Site 11 | 0.9916–1.0149 | 0.9967–1.0131 | 0.9904–1.0141 | 0.9917–1.0135 |
Site 3 | - | - | 0.9957–1.0665 | 0.9943–1.0061 |
Site 8 | 0.99–1.0102 | 0.9831–1.0184 | 0.9896–1.0107 | 0.9905–1.0092 |
Site 9 | 0.9935–1.0095 | 0.9935–1.0046 | - | 0.9936–1.0083 |
Site 4 | 0.9942–1.0084 | 1.0002–1.0086 | 0.9936–1.0081 | 0.9946–1.0081 |
Site 6 | 0.9924–1.005 | 0.9895–1.0118 | - | 0.9937–1.0033 |
Site 7 | 0.9964–1.0039 | 0.9844–1.021 | - | 0.9914–1.0094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerón, R.M.; Cerón, J.G.; Rangel, M.; Ruíz, A.; Aguilar, C.; Montalvo, C.; Canedo, Y.; García, R.; Uc, M.; Galván, A. Association between Short-Term Exposure to Criteria Air Pollutants and Daily Mortality in Mexico City: A Time Series Study. Atmosphere 2023, 14, 955. https://doi.org/10.3390/atmos14060955
Cerón RM, Cerón JG, Rangel M, Ruíz A, Aguilar C, Montalvo C, Canedo Y, García R, Uc M, Galván A. Association between Short-Term Exposure to Criteria Air Pollutants and Daily Mortality in Mexico City: A Time Series Study. Atmosphere. 2023; 14(6):955. https://doi.org/10.3390/atmos14060955
Chicago/Turabian StyleCerón, Rosa María, Julia Griselda Cerón, Marcela Rangel, Alejandro Ruíz, Claudia Aguilar, Carlos Montalvo, Yunúen Canedo, Rocío García, Martha Uc, and Alma Galván. 2023. "Association between Short-Term Exposure to Criteria Air Pollutants and Daily Mortality in Mexico City: A Time Series Study" Atmosphere 14, no. 6: 955. https://doi.org/10.3390/atmos14060955
APA StyleCerón, R. M., Cerón, J. G., Rangel, M., Ruíz, A., Aguilar, C., Montalvo, C., Canedo, Y., García, R., Uc, M., & Galván, A. (2023). Association between Short-Term Exposure to Criteria Air Pollutants and Daily Mortality in Mexico City: A Time Series Study. Atmosphere, 14(6), 955. https://doi.org/10.3390/atmos14060955