Frost Risk Assessment in Slovenia in the Period of 1981–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climate Data
2.2. Phenological Observations
2.3. Phenological Models
2.4. Statistical Assessment of Frost Risk
2.5. General Procedure
3. Results
3.1. Calculation of Model Parameters and Assessment of Model Performance
3.2. Frost Risk Comparison between Periods 2001–2020 and 1981–2000
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variety | Location (Climate Type) | Sample Size | Mean FL (DOY ± SD) | GDD3 RMSEP | BRIN RMSEP |
---|---|---|---|---|---|
Jonathan | Bizeljsko (SC) | 27 | 108 ± 6 | 7.79 | 9.77 |
Bukovžlak (SC) | 39 | 112 ± 8 | |||
Kadrenci pri C. (SC) | 39 | 108 ± 10 | |||
Lesce (MCHR) | 30 | 122 ± 7 | |||
Mokronog (SC) | 32 | 117 ± 7 | |||
Novo mesto (SC) | 35 | 108 ± 9 | |||
Maribor (SC) | 11 | 112 ± 10 | |||
Sl. konjice (SC) | 17 | 113 ± 10 | |||
Rakičan (SC) | 15 | 114 ± 9 | |||
Šalovci (SC) | 38 | 114 ± 8 | |||
Vrhnika (SC) | 39 | 115 ± 8 | |||
Zibika (SC) | 39 | 109 ± 9 | |||
Jonagold | Bizeljsko (SC) | 7 | 96 ± 7 | 3.55 | 15.25 |
Bobovec | Brod (SC) | 39 | 108 ± 17 | 16.48 | 11.08 |
Dobliče (SC) | 34 | 112 ± 8 | |||
Podlehnik (SC) | 20 | 112 ± 9 | |||
Šmartno pri S.G. (MCHR) | 35 | 118 ± 8 | |||
Golden Delicious | Bukovci (SC) | 13 | 110 ± 7 | 7.61 | 10.02 |
Rakičan (SC) | 20 | 105 ± 9 | |||
Elstar | Bukovci (SC) | 13 | 106 ± 5 | 5.63 | 8.17 |
Maribor (SC) | 13 | 111 ± 5 | |||
Idared | Maribor (SC) | 14 | 102 ± 6 | 12.86 | 9.26 |
Portorož (SM) | 20 | 98 ± 7 |
Variety | Location (Climate Type) | Sample Size | Mean FL (DOY ± SD) | GDD4.5 RMSEP | BRIN RMSEP |
---|---|---|---|---|---|
Germersdorf | Bilje (SM) | 25 | 94 ± 8 | 11.43 | 12.28 |
Portorož (SM) | 27 | 87 ± 9 | |||
Rižana (SM) | 19 | 94 ± 6 | |||
Early Bigi Unknown | Tomaj (SM) | 17 | 101 ± 6 | 7.70 | 8.14 |
Portorož (SM) | 7 | 100 ± 3 | |||
Van | Tomaj (SM) | 15 | 104 ± 10 | 12.59 | 10.61 |
Rižana (SM) | 12 | 100 ± 7 | |||
Slap (SM) | 18 | 93 ± 7 | |||
Germersdorf | Bilje (SM) | 25 | 94 ± 8 | 7.96 | 11.11 |
Variety | Sample Size | GDD3 | BRIN | |||
---|---|---|---|---|---|---|
Fcrit | ZDfl | Ccrit | Fcrit | ZDfl | ||
Jonathan | 361 | 313.97 | 113 | 171.26 | 343.56 | 113 |
Jonagold | 7 | 300.88 | 97 | 180.45 | 325.79 | 98 |
Bobovec | 128 | 327.80 | 113 | 184.91 | 348.00 | 114 |
Golden Delicious | 33 | 301.88 | 107 | 184.37 | 331.06 | 108 |
Elstar | 26 | 330.01 | 110 | 175.37 | 357.01 | 110 |
Idared | 34 | 369.38 | 100 | 184.96 | 308.30 | 100 |
Variety | Sample Size | GDD4.5 | BRIN | |||
---|---|---|---|---|---|---|
Fcrit | ZDfl | Ccrit | Fcrit | ZDfl | ||
Germersdorf | 61 | 226.82 | 92 | 120.27 | 262.35 | 93 |
Early Bigi | 17 | 204.26 | 102 | 140.25 | 250.18 | 101 |
Unknown | 34 | 223.71 | 104 | 165.08 | 214.55 | 102 |
Van | 18 | 198.10 | 95 | 186.22 | 182.30 | 94 |
References
- Soršak, A.; Kobal, M.Z.G.; Kodrič, I.; Koron, D.D. Tehnološka Navodila za Zaščito pred Spomladansko Pozebo v Sadjarstvu. 2018. Available online: https://www.kgzs.si/kgzs/kmetijsko-svetovanje/e-knjiznica/e-knjiznica-zapis/tehnoloska-navodila-za-zascito-pred-spomladansko-pozebo-v-sadjarstvu (accessed on 23 March 2022).
- IPCC. 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Sgubin, G.; Swingedouw, D.; Dayon, G.; García de Cortázar-Atauri, I.; Ollat, N.; Pagé, C.; van Leeuwen, C. The Risk of Tardive Frost Damage in French Vineyards in a Changing Climate. Agric. For. Meteorol. 2018, 250–251, 226–242. [Google Scholar] [CrossRef]
- Chmielewski, F.-M.; Götz, K.-P.; Weber, K.C.; Moryson, S. Climate Change and Spring Frost Damages for Sweet Cherries in Germany. Int. J. Biometeorol. 2018, 62, 217–228. [Google Scholar] [CrossRef]
- Eccel, E.; Rea, R.; Caffarra, A.; Crisci, A. Risk of Spring Frost to Apple Production under Future Climate Scenarios: The Role of Phenological Acclimation. Int. J. Biometeorol. 2009, 53, 273–286. [Google Scholar] [CrossRef]
- Drepper, B.; Gobin, A.; Van Orshoven, J. Spatio-Temporal Assessment of Frost Risks during the Flowering of Pear Trees in Belgium for 1971–2068. Agric. For. Meteorol. 2022, 315, 108822. [Google Scholar] [CrossRef]
- Lhotka, O.; Brönnimann, S. Possible Increase of Vegetation Exposure to Spring Frost under Climate Change in Switzerland. Atmosphere 2020, 11, 391. [Google Scholar] [CrossRef] [Green Version]
- Masaki, Y. Future Risk of Frost on Apple Trees in Japan. Clim. Change 2020, 159, 407–422. [Google Scholar] [CrossRef]
- Meier, M.; Fuhrer, J.; Holzkämper, A. Changing Risk of Spring Frost Damage in Grapevines Due to Climate Change? A Case Study in the Swiss Rhone Valley. Int. J. Biometeorol. 2018, 62, 991–1002. [Google Scholar] [CrossRef] [Green Version]
- Pfleiderer, P.; Menke, I.; Schleussner, C.-F. Increasing Risks of Apple Tree Frost Damage under Climate Change. Clim. Change 2019, 157, 515–525. [Google Scholar] [CrossRef] [Green Version]
- Vanalli, C.; Casagrandi, R.; Gatto, M.; Bevacqua, D. Shifts in the Thermal Niche of Fruit Trees under Climate Change: The Case of Peach Cultivation in France. Agric. For. Meteorol. 2021, 300, 108327. [Google Scholar] [CrossRef]
- Vitasse, Y.; Schneider, L.; Rixen, C.; Christen, D.; Rebetez, M. Increase in the Risk of Exposure of Forest and Fruit Trees to Spring Frosts at Higher Elevations in Switzerland over the Last Four Decades. Agric. For. Meteorol. 2018, 248, 60–69. [Google Scholar] [CrossRef]
- Faust, M.; Erez, A.; Rowland, L.J.; Wang, S.Y.; Norman, H.A. Bud Dormancy in Perennial Fruit Trees: Physiological Basis for Dormancy Induction, Maintenance, and Release. HortScience 1997, 32, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Bielenberg, D.G.; Gasic, K. Peach [Prunus Persica (L.) Batsch] Cultivars Differ in Apparent Base Temperature and Growing Degree Hour Requirement for Floral Budburst. Front. Plant Sci. 2022, 13, 76. [Google Scholar] [CrossRef]
- Chuine, I. A Unified Model for Budburst of Trees. J. Theor. Biol. 2000, 207, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Chuine, I.; Kramer, K.; Hänninen, H. Plant Development Models. In Phenology: An Integrative Environmental Science; Schwartz, M.D., Ed.; Tasks for Vegetation Science; Springer: Dordrecht, The Netherlands, 2003; pp. 217–235. ISBN 978-94-007-0632-3. [Google Scholar]
- García de Cortázar-Atauri, I.; Brisson, N.; Gaudillere, J.P. Performance of Several Models for Predicting Budburst Date of Grapevine (Vitis vinifera L.). Int. J. Biometeorol. 2009, 53, 317–326. [Google Scholar] [CrossRef] [PubMed]
- García de Cortázar-Atauri, I.; Brisson, N.; Seguin, B.; Gaudillere, J.P.; Baculat, B. Simulation of Budbreak Date for Vine. The BRIN Model. Some Applications in Climate Change Study. In Proceedings of the XIV International GESCO Viticulture Congress, Geisenheim, Germany, 23–27 August 2005; pp. 485–490. [Google Scholar]
- Xu, Y.; Castel, T.; Richard, Y.; Cuccia, C.; Bois, B. Burgundy Regional Climate Change and Its Potential Impact on Grapevines. Clim. Dyn. 2012, 39, 1613–1626. [Google Scholar] [CrossRef]
- Putti, G.L.; Petri, J.L.; Mendez, M.H.; Leite, G.B. Necessidades térmicas para indução da brotação de diferentes cultivares de macieira. Agropecuária Catarin. 2006, 19, 71–74. [Google Scholar]
- Marra, F.; Inglese, P.; Dejong, T.; Johnson, R.S. Thermal Time Requirement and Harvest Time Forecast for Peach Cultivars with Different Fruit Development Periods. Acta Hortic. 2002, 592, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Richardson, E.A.; Seeley, S.D.; Walker, D.R. A Model for Estimating the Completation of Rest for Redhaven and Elberta Peach Trees. Hortic. Sci. 1974, 9, 331–332. [Google Scholar]
- Richardson, E.; Seeley, S.; Walker, D.; Anderson, J.; Ashcroft, G.L. Pheno-Climatography of Spring Peach Bud Development. Hortic. Sci. 1975, 10, 236–237. [Google Scholar]
- Proebsting, E.L.J.; Mills, H.H. Low Temperature Resistance of Developing Flower Buds of Six Deciduous Fruit Species. J. Am. Soc. Hortic. Sci. 1978, 103, 192–198. [Google Scholar] [CrossRef]
- Trought, M.; Howell, G.; Cherry, N. Practical Considerations for Reducing Frost Damage in Vineyards; Lincoln University: Chester County, PA, USA, 1999. [Google Scholar]
- Caffarra, A.; Eccel, E. Increasing the Robustness of Phenological Models for Vitis vinifera Cv. Chardonnay. Int. J. Biometeorol. 2010, 54, 255–267. [Google Scholar] [CrossRef]
- Stella, T.; Webber, H.; Olesen, J.E.; Ruane, A.C.; Fronzek, S.; Bregaglio, S.; Mamidanna, S.; Bindi, M.; Collins, B.; Faye, B.; et al. Methodology to Assess the Changing Risk of Yield Failure Due to Heat and Drought Stress under Climate Change. Environ. Res. Lett. 2021, 16, 104033. [Google Scholar] [CrossRef]
- Vitra, A.; Lenz, A.; Vitasse, Y. Frost Hardening and Dehardening Potential in Temperate Trees from Winter to Budburst. New Phytol. 2017, 216, 113–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diniz, É.S.; Lorenzon, A.S.; de Castro, N.L.M.; Marcatti, G.E.; dos Santos, O.P.; de Deus Júnior, J.C.; Cavalcante, R.B.L.; Fernandes-Filho, E.I.; Hummeldo Amaral, C. Forecasting Frost Risk in Forest Plantations by the Combination of Spatial Data and Machine Learning Algorithms. Agric. For. Meteorol. 2021, 306, 108450. [Google Scholar] [CrossRef]
- Rigby, J.R.; Porporato, A. Spring Frost Risk in a Changing Climate. Geophys. Res. Lett. 2008, 35, 12703. [Google Scholar] [CrossRef]
- Bertalanič, R.; Dolinar, M. Ocena podnebnih sprememb v Sloveniji do konca 21. stoletja: Sintezno poročilo; Ministrstvo za Okolje in Prostor, Agencija Republike Slovenije za Okolje: Ljubljana, Slovenia, 2018; ISBN 978-961-6024-80-8. [Google Scholar]
- Kozjek, K.; Dolinar, M.; Skok, G. Objective Climate Classification of Slovenia. Int. J. Climatol. 2017, 37, 848–860. [Google Scholar] [CrossRef]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- Huld, T.; Pinedo Pascua, I. Spatial Downscaling of 2-Meter Air Temperature Using Operational Forecast Data. Energies 2015, 8, 2381–2411. [Google Scholar] [CrossRef] [Green Version]
- Moncur, M.W.; Rattigan, K.; Mackenzie, D.H.; Intyre, G.N.M. Base Temperatures for Budbreak and Leaf Appearance of Grapevines. Am. J. Enol. Vitic. 1989, 40, 21–26. [Google Scholar] [CrossRef]
- Bidabe, B. Contrôle de l’époque de floraison du pommier par une nouvelle conception de l’action de températures. C. R. Acad. Agric. Fr. 1965, 49, 934–945. [Google Scholar]
- Liennard , M. Contribution à L’étude de la Prévision de la Précocité de Floraison et du Déterminisme Climatique des Nécroses Florales de l’Abricotier, Prunus armeniaca L., dans le Contexte des Changements Climatiques; Institut National d’Horticulture: Angers, France, 2002. [Google Scholar]
- Pouget, R. Le Débourrement Des Bourgeons de La Vigne: Méthode de Prévision et Principes d’établissement d’une Échelle de Précocité de Débourrement. OENO One 1988, 22, 105–123. [Google Scholar] [CrossRef]
- Luedeling, E.; Schiffers, K.; Fohrmann, T.; Urbach, C. PhenoFlex—An Integrated Model to Predict Spring Phenology in Temperate Fruit Trees. Agric. For. Meteorol. 2021, 307, 108491. [Google Scholar] [CrossRef]
- Wallach, D.; Makowski, D.; Jones, J.W.; Brun, F. Chapter 7—Calibration of System Models. In Working with Dynamic Crop Models, 3rd ed.; Wallach, D., Makowski, D., Jones, J.W., Brun, F., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 251–274. ISBN 978-0-12-811756-9. [Google Scholar]
- Willmott, C.J. On the Validation of Models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Parker, A.K.; De Cortázar-Atauri, I.G.; Van Leeuwen, C.; Chuine, I. General Phenological Model to Characterise the Timing of Flowering and Veraison of Vitis vinifera L. Aust. J. Grape Wine Res. 2011, 17, 206–216. [Google Scholar] [CrossRef]
- Chuine, I.; Bonhomme, M.; Legave, J.-M.; García de Cortázar-Atauri, I.; Charrier, G.; Lacointe, A.; Améglio, T. Can Phenological Models Predict Tree Phenology Accurately in the Future? The Unrevealed Hurdle of Endodormancy Break. Glob. Change Biol. 2016, 22, 3444–3460. [Google Scholar] [CrossRef]
- Duchêne, E.; Huard, F.; Dumas, V.; Schneider, C.; Merdinoglu, D. The challenge of adapting grapevine varieties to climate change. Clim. Res. 2010, 41, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Omazić, B.; Blašković, L.; Prtenjak, M.T.; Bubola, M.; Karoglan, M.; Anić, M. Future Change in Viticulture Phenological Stages and Early Frost Risk in Istria Region, Croatia. In Proceedings of the EMS Annual Meeting 2022, Bonn, Germany, 5–9 September 2022. [Google Scholar] [CrossRef]
Fruit Tree | Phenological Stage | Variety | Station Name (Period) | Location (Latitude, Longitude, Altitude) | Climate Type |
---|---|---|---|---|---|
Grapevine (Vitis vinifera L.) | Budburst | Refošk–Teran | Rižana (1981–2020) | (45°32’ N, 13°50’ E, 80 m) | Sub-Mediterranean |
Tomaj (1981–1983, 1985–2012, 2020) | (45°45’ N, 13°51’ E, 326 m) | Sub-Mediterranean | |||
Malvasia | Portorož (1985–2006) | (45°28’ N, 13°36’ E, 2 m) | Sub-Mediterranean | ||
Rižana (1981–2020) | (45°32’ N, 13°50’ E, 80 m) | Sub-Mediterranean | |||
Merlot | Bilje (1990, 1994–2008, 2011–2020) | (45°53’ N, 13°37 E, 55 m) | Sub-Mediterranean | ||
Slap (1984–2006, 2018–2020) | (45°52’ N, 13°49’ E, 169.2 m) | Sub-Mediterranean | |||
Laški Rizling | Bizeljsko (1982–2012, 2014–2020) | (46°00’ N, 15°41’ E, 176 m) | Subcontinental | ||
Slovenske Konjice (1981–2008, 2010–2015) | (46°19’ N, 15°25’ E, 332 m) | Subcontinental | |||
Zibika (1982–1984, 1986, 1988–1993, 1995–2020) | (46°10’ N, 15°34’ E, 235 m) | Subcontinental | |||
Chardonnay | Šalovci (2002–2018, 2020) | (46°45’ N, 16°14’ E, 347 m) | Subcontinental | ||
Apple (Malus domestica) | Flowering | Jonathan | Bizeljsko (1986–2012) | (46°00’ N, 15°41’ E, 176 m) | Subcontinental |
Bukovžlak (1982–2021) | (46°14’ N, 15°15’ E, 266 m) | Subcontinental | |||
Kadrenci pri Cerkvenjaku (1981–2021) | (46°33’ N, 15°57’ E, 316 m) | Subcontinental | |||
Lesce (1982–1984, 1986–2015) | (46°20’ N, 14°10’ E, 515 m) | Moderate climate of the hilly region | |||
Mokronog (1982–2008, 2010–2013) | (45°56’ N, 15°08’ E, 251 m) | Subcontinental | |||
Maribor (1981–1991) | (46°31’ N, 15°38’ E, 275 m) | Subcontinental | |||
Novo mesto (1981–2017) | (45°48’ N, 15°10’ E, 157 m) | Subcontinental | |||
Rakičan (1981–1984, 1986–1996) | (46°38’ N, 16°11’ E, 190 m) | Subcontinental | |||
Slovenske Konjice (1981–1997) | (46°19’ N, 15°25’ E, 332 m) | Subcontinental | |||
Šalovci (1981–2018) | (46°45’ N, 16°14’ E, 347.5 m) | Subcontinental | |||
Vrhnika (1981–1986, 1988–2021) | (45°57’ N, 14°17’ E, 293 m) | Subcontinental | |||
Zibika (1981–2021) | (46°10’ N, 15°34’ E, 235 m) | Subcontinental | |||
Jonagold | Bizeljsko (2014–2021) | (46°00’ N, 15°41’ E, 176 m) | Subcontinental | ||
Bobovec | Brod (1981–2021) | (45°51’ N, 15°27’ E, 147 m) | Subcontinental | ||
Dobliče (1981, 1989–2020) | (45°33’ N, 15°09’ E, 157 m) | Subcontinental | |||
Podlehnik (1981, 1982, 1984–1987, 1989, 2002–2015) | (46° 20’ N, 15° 52’ E, 320 m) | Subcontinental | |||
Slovenj Gradec (1981, 1983, 1985, 1987, 1989–2021) | (46°29’ N, 15°06’ E, 455 m) | Moderate climate of the hilly region | |||
Golden Delicious | Bukovci (1996–2008) | (46°23’ N, 15°57’ E, 216 m) | Subcontinental | ||
Rakičan (1992, 1999–2012, 2014–2018) | (46°38’ N, 16°11’ E, 190 m) | Subcontinental | |||
Elstar | Bukovci (2008–2021) | (46°23’ N, 15°57’ E, 216 m) | Subcontinental | ||
Maribor (1992–2004) | (46°31’ N, 15°38’ E, 275 m) | Subcontinental | |||
Idared | Maribor (2005–2018) | (46°31’ N, 15°38’ E, 275 m) | Subcontinental | ||
Portorož (2001–2021) | (45°28’ N, 13°36’ E, 2 m) | Sub-Mediterranean | |||
Sweet cherry (Prunus avium L.) | Flowering | Germersdorf | Portorož (1989–1993, 1999–2020) | (45°28’ N, 13°36’ E, 2 m) | Sub-Mediterranean |
Rižana (2001–2015, 2017–2020) | (45°32’ N, 13°50’ E, 80 m) | Sub-Mediterranean | |||
Bilje (1981–1982, 1987–1988, 1993, 2004–2020) | (45°53’ N, 13°37 E, 55 m) | Sub-Mediterranean | |||
Early Bigi | Tomaj (1996–2012) | (45°45’ N, 13°51’ E, 326 m) | Sub-Mediterranean | ||
Unknown | Tomaj (1981–1995) | (45°45’ N, 13°51’ E, 326 m) | Sub-Mediterranean | ||
Portorož (1984–1995) | (45°28’ N, 13°36’ E, 2 m) | Sub-Mediterranean | |||
Rižana (1984–1995) | (45°32’ N, 13°50’ E, 80 m) | Sub-Mediterranean | |||
Van | Slap (1992–2006, 2018–2019) | (45°52’ N, 13°49’ E, 169 m) | Sub-Mediterranean |
Variety | Location (Climate Type) | Sample Size | Mean BB (DOY ± SD) | GDD5 RMSEP | BRIN RMSEP |
---|---|---|---|---|---|
Refošk–Teran | Rižana (SM) | 40 | 110 ± 7 | 10.79 | 9.89 |
Tomaj (SM) | 32 | 117 ± 6 | |||
Malvasia | Portorož (SM) | 22 | 107 ± 7 | 7.80 | 9.70 |
Rižana (SM) | 40 | 116 ± 6 | |||
Merlot | Bilje (SM) | 26 | 108 ± 7 | 6.19 | 7.59 |
Slap (SM) | 26 | 111 ± 6 | |||
Laški Rizling | Bizeljsko (SC) | 38 | 117 ± 9 | 5.14 | 8.57 |
S. Konjice (SC) | 34 | 117 ± 6 | |||
Zibika (SC) | 36 | 117 ± 6 | |||
Chardonnay | Šalovci (SC) | 18 | 113 ± 5 | 4.19 | 9.26 |
Variety | Sample Size | GDD5 | BRIN | |||
---|---|---|---|---|---|---|
Fcrit | ZDbb | Ccrit | Fcrit | ZDbb | ||
Refošk–Teran | 72 | 293.67 | 114 | 197.32 | 257.07 | 114 |
Malvasia | 62 | 350.16 | 115 | 194.96 | 268.83 | 113 |
Merlot | 52 | 276.09 | 110 | 204.52 | 257.17 | 111 |
Laški Rizling | 98 | 267.19 | 119 | 200.98 | 265.11 | 119 |
Chardonnay | 18 | 230.19 | 113 | 177.97 | 241.41 | 113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žnidaršič, Z.; Gregorič, G.; Sušnik, A.; Pogačar, T. Frost Risk Assessment in Slovenia in the Period of 1981–2020. Atmosphere 2023, 14, 683. https://doi.org/10.3390/atmos14040683
Žnidaršič Z, Gregorič G, Sušnik A, Pogačar T. Frost Risk Assessment in Slovenia in the Period of 1981–2020. Atmosphere. 2023; 14(4):683. https://doi.org/10.3390/atmos14040683
Chicago/Turabian StyleŽnidaršič, Zala, Gregor Gregorič, Andreja Sušnik, and Tjaša Pogačar. 2023. "Frost Risk Assessment in Slovenia in the Period of 1981–2020" Atmosphere 14, no. 4: 683. https://doi.org/10.3390/atmos14040683
APA StyleŽnidaršič, Z., Gregorič, G., Sušnik, A., & Pogačar, T. (2023). Frost Risk Assessment in Slovenia in the Period of 1981–2020. Atmosphere, 14(4), 683. https://doi.org/10.3390/atmos14040683