Patterns and Drivers of Change in the Normalized Difference Vegetation Index in Nunavik (Québec, Canada) over the Period 1984–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Trend Detection
2.3. Statistical Analyses
2.4. Drivers of NDVI Trends
3. Results
3.1. Spatial Patterns of NDVI
3.2. Contribution of Vegetation Zones and Cover Types to NDVI Increase
3.3. Drivers of NDVI Trends
4. Discussion
4.1. Spatial Trends
4.2. Climate and Topography as Drivers of NDVI
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report; Pachauri, R.K., Mayer, L., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2015; ISBN 978-92-9169-143-2. [Google Scholar]
- Bush, E.; Lemmen, D.S. Canada’s Climate Change Report; Government of Canada: Ottawa, ON, Canada, 2019; ISBN 978-0-660-30222-5.
- Ravn, N.R.; Elberling, B.; Michelsen, A. Arctic Soil Carbon Turnover Controlled by Experimental Snow Addition, Summer Warming and Shrub Removal. Soil Biol. Biochem. 2020, 142, 107698. [Google Scholar] [CrossRef]
- Previdi, M.; Smith, K.L.; Polvani, L.M. Arctic Amplification of Climate Change: A Review of Underlying Mechanisms. Environ. Res. Lett. 2021, 16, 093003. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Kerby, J.T.; Phoenix, G.K.; Bjerke, J.W.; Epstein, H.E.; Assmann, J.J.; John, C.; Andreu-Hayles, L.; Angers-Blondin, S.; Beck, P.S.A.; et al. Complexity Revealed in the Greening of the Arctic. Nat. Clim. Chang. 2020, 10, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Sun, X.; Epstein, H.; Xu, X.; Li, X. Spatial Heterogeneity of Climate Variation and Vegetation Response for Arctic and High-Elevation Regions from 2001–2018. Environ. Res. Commun. 2020, 2, 011007. [Google Scholar] [CrossRef]
- Liu, Q.; Peng, C.; Schneider, R.; Cyr, D.; McDowell, N.G.; Kneeshaw, D. Drought-induced Increase in Tree Mortality and Corresponding Decrease in the Carbon Sink Capacity of Canada’s Boreal Forests from 1970 to 2020. Glob. Chang. Biol. 2023, 29, 2274–2285. [Google Scholar] [CrossRef]
- Mamet, S.D.; Brown, C.D.; Trant, A.J.; Laroque, C.P. Shifting Global Larix Distributions: Northern Expansion and Southern Retraction as Species Respond to Changing Climate. J. Biogeogr. 2019, 46, 30–44. [Google Scholar] [CrossRef] [Green Version]
- Munier, A.; Hermanutz, L.; Jacobs, J.D.; Lewis, K. The Interacting Effects of Temperature, Ground Disturbance, and Herbivory on Seedling Establishment: Implications for Treeline Advance with Climate Warming. Plant Ecol. 2010, 210, 19–30. [Google Scholar] [CrossRef]
- Buchan, G.D. Temperature Effects in Soil. In Encyclopedia of Agrophysics; Gliński, J., Horabik, J., Lipiec, J., Eds.; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2011; pp. 891–895. ISBN 978-90-481-3584-4. [Google Scholar]
- Box, J.E.; Colgan, W.T.; Christensen, T.R.; Schmidt, N.M.; Lund, M.; Parmentier, F.-J.W.; Brown, R.; Bhatt, U.S.; Euskirchen, E.S.; Romanovsky, V.E.; et al. Key Indicators of Arctic Climate Change: 1971–2017. Environ. Res. Lett. 2019, 14, 045010. [Google Scholar] [CrossRef]
- Prevéy, J.S.; Rixen, C.; Rüger, N.; Høye, T.T.; Bjorkman, A.D.; Myers-Smith, I.H.; Elmendorf, S.C.; Ashton, I.W.; Cannone, N.; Chisholm, C.L.; et al. Warming Shortens Flowering Seasons of Tundra Plant Communities. Nat. Ecol. Evol. 2019, 3, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Sarneel, J.M.; Sundqvist, M.K.; Molau, U.; Björkman, M.P.; Alatalo, J.M. Decomposition Rate and Stabilization across Six Tundra Vegetation Types Exposed to >20 Years of Warming. Sci. Total Environ. 2020, 724, 138304. [Google Scholar] [CrossRef]
- Teufel, B.; Sushama, L. Abrupt Changes across the Arctic Permafrost Region Endanger Northern Development. Nat. Clim. Chang. 2019, 9, 858–862. [Google Scholar] [CrossRef]
- Elmendorf, S.C.; Henry, G.H.R.; Hollister, R.D.; Björk, R.G.; Bjorkman, A.D.; Callaghan, T.V.; Collier, L.S.; Cooper, E.J.; Cornelissen, J.H.C.; Day, T.A.; et al. Global Assessment of Experimental Climate Warming on Tundra Vegetation: Heterogeneity over Space and Time: Warming Effects on Tundra Vegetation. Ecol. Lett. 2012, 15, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Masek, J.G. The Vegetation Greenness Trend in Canada and US Alaska from 1984–2012 Landsat Data. Remote Sens. Environ. 2016, 176, 1–16. [Google Scholar] [CrossRef]
- Hallinger, M.; Manthey, M.; Wilmking, M. Establishing a Missing Link: Warm Summers and Winter Snow Cover Promote Shrub Expansion into Alpine Tundra in Scandinavia. New Phytol. 2010, 186, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Forbes, B.C.; Fauria, M.M.; Zetterberg, P. Russian Arctic Warming and ‘Greening’ Are Closely Tracked by Tundra Shrub Willows. Glob. Chang. Biol. 2010, 16, 1542–1554. [Google Scholar] [CrossRef]
- Elmendorf, S.C.; Henry, G.H.R.; Hollister, R.D.; Björk, R.G.; Boulanger-Lapointe, N.; Cooper, E.J.; Cornelissen, J.H.C.; Day, T.A.; Dorrepaal, E.; Elumeeva, T.G.; et al. Plot-Scale Evidence of Tundra Vegetation Change and Links to Recent Summer Warming. Nature Clim. Chang. 2012, 2, 453–457. [Google Scholar] [CrossRef]
- García Criado, M.; Myers-Smith, I.H.; Bjorkman, A.D.; Lehmann, C.E.R.; Stevens, N. Woody Plant Encroachment Intensifies under Climate Change across Tundra and Savanna Biomes. Global Ecol. Biogeogr. 2020, 29, 925–943. [Google Scholar] [CrossRef]
- Rees, W.G.; Hofgaard, A.; Boudreau, S.; Cairns, D.M.; Harper, K.; Mamet, S.; Mathisen, I.; Swirad, Z.; Tutubalina, O. Is Subarctic Forest Advance Able to Keep Pace with Climate Change? Glob Chang. Biol. 2020, 26, 3965–3977. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Berner, L.T.; Jantz, P.; Tape, K.D.; Goetz, S.J. Tundra Plant Above-Ground Biomass and Shrub Dominance Mapped across the North Slope of Alaska. Environ. Res. Lett. 2018, 13, 035002. [Google Scholar] [CrossRef] [Green Version]
- Luo, N.; Mao, D.; Wen, B.; Liu, X. Climate Change Affected Vegetation Dynamics in the Northern Xinjiang of China: Evaluation by SPEI and NDVI. Land 2020, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Berner, L.T.; Massey, R.; Jantz, P.; Forbes, B.C.; Macias-Fauria, M.; Myers-Smith, I.; Kumpula, T.; Gauthier, G.; Andreu-Hayles, L.; Gaglioti, B.V.; et al. Summer Warming Explains Widespread but Not Uniform Greening in the Arctic Tundra Biome. Nat. Commun 2020, 11, 4621. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, L.K.; Barry, T.; Bosse, K.R.; Currie, W.S.; Christensen, T.; Longan, S.; Shuchman, R.A.; Tanzer, D.; Taylor, J.J. Satellite-Based Decadal Change Assessments of Pan-Arctic Environments. Ambio 2020, 49, 820–832. [Google Scholar] [CrossRef] [PubMed]
- Leboeuf, A.; Pomerleau, I.; Morissette, A.; Noreau, L. Cartographie Écologique de la Végétation du Nord Québécois: Norme de Cartographie; Ministère des forêts, de la Faune et des Parcs: Québec, QC, Canada, 2018; ISBN 978-2-550-81204-3.
- Paquin, D.; Mailhot, A.; Guay, C.; Malenfant, C.; Bresson, É.; Logan, T.; Smith, T.; Talbot, G. Portrait Climatique Régional en Climat de Référence et Futur en Soutien à L’analyse des Impacts et de L’adaptation aux Changements Climatiques sur le Territoire Eeyou Lstchee Baie-James, du Nord de l’Abitibi-Témiscamingue et du Nunavik; Ministère des Transports: Quebec, QC, Canada, 2022; p. 904.
- Payette, S. The Forest Tundra and Present Tree-Lines of the Northern Québec-Labrador Peninsula. Nordicana 1983, 27, 3–23. [Google Scholar]
- Payette, S.; Filion, L.; Delwaide, A. Spatially Explicit Fire-Climate History of the Boreal Forest-Tundra (Eastern Canada) over the Last 2000 Years. Phil. Trans. R. Soc. B 2008, 363, 2299–2314. [Google Scholar] [CrossRef] [Green Version]
- Allard, M.; Lemay, M.; Barrette, C.; L’Hérault, E.; Sarrazin, D. Chapter 6. Permafrost and Climate Change in Nunavik and Nunatsiavut: Importance for Municipal and Transportation Infrastructures. 2012, pp. 171–197. Available online: https://www.researchgate.net/profile/Mickael-Lemay-2/publication/264454915_Chapter_6_Permafrost_and_climate_change_in_Nunavik_and_Nunatsiavut_Importance_for_municipal_and_transportation_infrastructures/links/53dfc9ac0cf27a7b8306b877/Chapter-6-Permafrost-and-climate-change-in-Nunavik-and-Nunatsiavut-Importance-for-municipal-and-transportation-infrastructures.pdf (accessed on 9 June 2023).
- Ropars, P.; Lévesque, E.; Boudreau, S. Shrub Densification Heterogeneity in Subarctic Regions: The Relative Influence of Historical and Topographic Variables. Écoscience 2015, 22, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Hobart, G.W.; Luther, J.E.; Hermosilla, T.; Griffiths, P.; Coops, N.C.; Hall, R.J.; Hostert, P.; Dyk, A.; et al. Pixel-Based Image Compositing for Large-Area Dense Time Series Applications and Science. Can. J. Remote Sens. 2014, 40, 192–212. [Google Scholar] [CrossRef] [Green Version]
- Example of Landsat Collection 2 Surface Reflectance|U.S. Geological Survey. Available online: https://www.usgs.gov/media/images/example-landsat-collection-2-surface-reflectance-0 (accessed on 8 June 2023).
- Liang, S. Narrowband to Broadband Conversions of Land Surface Albedo I. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Lemay, M.-A.; Provencher-Nolet, L.; Bernier, M.; Lévesque, E.; Boudreau, S. Spatially Explicit Modeling and Prediction of Shrub Cover Increase near Umiujaq, Nunavik. Ecol. Monogr. 2018, 88, 385–407. [Google Scholar] [CrossRef]
- Government of Canada. Canadian Digital Elevation Model, 1945-2011—Open Government Portal. Available online: https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333 (accessed on 9 June 2023).
- Beers, T.W.; Dress, P.E.; Wensel, L.C. Notes and Observations: Aspect Transformation in Site Productivity Research. J. For. 1966, 64, 691–692. [Google Scholar]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- McKenney, D.W.; Hutchinson, M.F.; Papadopol, P.; Lawrence, K.; Pedlar, J.; Campbell, K.; Milewska, E.; Hopkinson, R.F.; Price, D.; Owen, T. Customized Spatial Climate Models for North America. Bull. Am. Meteorol. Soc. 2011, 92, 1611–1622. [Google Scholar] [CrossRef] [Green Version]
- Climate Data Canada. Available online: https://climatedata.ca/ (accessed on 20 May 2023).
- Blok, D.; Sass-Klaassen, U.; Schaepman-Strub, G.; Heijmans, M.M.P.D.; Sauren, P.; Berendse, F. What Are the Main Climate Drivers for Shrub Growth in Northeastern Siberian Tundra? Biogeosciences 2011, 8, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
- Muggeo, V. Segmented: An R Package to Fit Regression Models with Broken-Line Relationships. R News 2008, 8, 20–25. [Google Scholar]
- Johnston, R.; Jones, K.; Manley, D. Confounding and Collinearity in Regression Analysis: A Cautionary Tale and an Alternative Procedure, Illustrated by Studies of British Voting Behaviour. Qual. Quant. 2018, 52, 1957–1976. [Google Scholar] [CrossRef] [Green Version]
- Harrell, F.E.; Charles, D. Hmisc: Harrell Miscellaneous. R Package Version 2008, 437. [Google Scholar]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix (Version 0.84); Vienna, Austria, 2017; Available online: https://cran.r-project.org/web/packages/corrplot/corrplot.pdf (accessed on 20 May 2023).
- Bieniek, P.A.; Walsh, J.E.; Thoman, R.L.; Bhatt, U.S. Using Climate Divisions to Analyze Variations and Trends in Alaska Temperature and Precipitation. J. Clim. 2014, 27, 2800–2818. [Google Scholar] [CrossRef] [Green Version]
- Sulla-Menashe, D.; Woodcock, C.E.; Friedl, M.A. Canadian Boreal Forest Greening and Browning Trends: An Analysis of Biogeographic Patterns and the Relative Roles of Disturbance versus Climate Drivers. Environ. Res. Lett. 2018, 13, 014007. [Google Scholar] [CrossRef]
- Epstein, H.E.; Bhatt, U.S.; Raynolds, M.K.; Walker, D.A.; Bieniek, P.A.; Tucker, C.J.; Pinzon, J.; Myers-Smith, I.; Forbes, B.C.; Macias-Fauria, M.; et al. Tundra Greenness. In Arctic Report Card: Update for 2015; 2015. [Google Scholar]
- Bhatt, U.; Walker, D.; Raynolds, M.; Bieniek, P.; Epstein, H.; Comiso, J.; Pinzon, J.; Tucker, C.; Polyakov, I. Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra. Remote Sens. 2013, 5, 4229–4254. [Google Scholar] [CrossRef] [Green Version]
- Bonney, M.T.; Danby, R.K.; Treitz, P.M. Landscape Variability of Vegetation Change across the Forest to Tundra Transition of Central Canada. Remote Sens. Environ. 2018, 217, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Ropars, P.; Boudreau, S. Shrub Expansion at the Forest–Tundra Ecotone: Spatial Heterogeneity Linked to Local Topography. Environ. Res. Lett. 2012, 7, 015501. [Google Scholar] [CrossRef]
- Riedel, S.M.; Epstein, H.E.; Walker, D.A. Biotic Controls over Spectral Reflectance of Arctic Tundra Vegetation. Int. J. Remote Sens. 2005, 26, 2391–2405. [Google Scholar] [CrossRef]
- Greaves, H.E.; Vierling, L.A.; Eitel, J.U.H.; Boelman, N.T.; Magney, T.S.; Prager, C.M.; Griffin, K.L. High-Resolution Mapping of Aboveground Shrub Biomass in Arctic Tundra Using Airborne Lidar and Imagery. Remote Sens. Environ. 2016, 184, 361–373. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Forbes, B.C.; Wilmking, M.; Hallinger, M.; Lantz, T.; Blok, D.; Tape, K.D.; Macias-Fauria, M.; Sass-Klaassen, U.; Lévesque, E.; et al. Shrub Expansion in Tundra Ecosystems: Dynamics, Impacts and Research Priorities. Environ. Res. Lett. 2011, 6, 045509. [Google Scholar] [CrossRef] [Green Version]
- Beck, P.S.A.; Juday, G.P.; Alix, C.; Barber, V.A.; Winslow, S.E.; Sousa, E.E.; Heiser, P.; Herriges, J.D.; Goetz, S.J. Changes in Forest Productivity across Alaska Consistent with Biome Shift: Changes in Forest Productivity across Alaska. Ecol. Lett. 2011, 14, 373–379. [Google Scholar] [CrossRef]
- Harsch, M.A.; Hulme, P.E.; McGlone, M.S.; Duncan, R.P. Are Treelines Advancing? A Global Meta-Analysis of Treeline Response to Climate Warming. Ecol. Lett. 2009, 12, 1040–1049. [Google Scholar] [CrossRef]
- Bjerke, J.W.; Treharne, R.; Vikhamar-Schuler, D.; Karlsen, S.R.; Ravolainen, V.; Bokhorst, S.; Phoenix, G.K.; Bochenek, Z.; Tømmervik, H. Understanding the Drivers of Extensive Plant Damage in Boreal and Arctic Ecosystems: Insights from Field Surveys in the Aftermath of Damage. Sci. Total Environ. 2017, 599–600, 1965–1976. [Google Scholar] [CrossRef]
- Raynolds, M.K.; Walker, D.A.; Munger, C.A.; Vonlanthen, C.M.; Kade, A.N. A Map Analysis of Patterned-Ground along a North American Arctic Transect. J. Geophys. Res. 2008, 113, G03S03. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, U.S.; Walker, D.A.; Raynolds, M.K.; Bieniek, P.A.; Epstein, H.E.; Comiso, J.C.; Pinzon, J.E.; Tucker, C.J.; Steele, M.; Ermold, W.; et al. Changing Seasonality of Panarctic Tundra Vegetation in Relationship to Climatic Variables. Environ. Res. Lett. 2017, 12, 055003. [Google Scholar] [CrossRef] [Green Version]
- Jia, G.J.; Epstein, H.E.; Walker, D.A. Greening of Arctic Alaska, 1981–2001. Geophys. Res. Lett. 2003, 30, 2067. [Google Scholar] [CrossRef]
- Verbyla, D. The Greening and Browning of Alaska Based on 1982–2003 Satellite Data. Glob. Ecol. Biogeogr. 2008, 17, 547–555. [Google Scholar] [CrossRef]
- Wipf, S.; Rixen, C. A Review of Snow Manipulation Experiments in Arctic and Alpine Tundra Ecosystems. Polar Res. 2010, 29, 95–109. [Google Scholar] [CrossRef]
- Sturm, M.; Schimel, J.; Michaelson, G.; Welker, J.M.; Oberbauer, S.F.; Liston, G.E.; Fahnestock, J.; Romanovsky, V.E. Winter Biological Processes Could Help Convert Arctic Tundra to Shrubland. BioScience 2005, 55, 17. [Google Scholar] [CrossRef]
- Crichton, K.A.; Anderson, K.; Charman, D.J.; Gallego-Sala, A. Seasonal Climate Drivers of Peak NDVI in a Series of Arctic Peatlands. Sci. Total Environ. 2022, 838, 156419. [Google Scholar] [CrossRef]
- Marek, R.S.; Richardson, J.B. Investigating Surficial Geologic Controls on Soil Properties, Inorganic Nutrient Uptake, and Northern Hardwood Growth in Western Massachusetts, USA. J. Soil Sci. Plant Nutr. 2020, 20, 901–911. [Google Scholar] [CrossRef]
- Da Rocha, P.R., Jr.; Ribeiro, P.H.; Mesquita, L.F.; Andrade, F.V.; Mendonça, E.d.S. Distribution of C and Inorganic Phosphorus Fractions in Different Aggregate Sizes under Forestry, Agroforestry System and Pasture. J. Soil Sci. Plant Nutr. 2018, 18, 361–375. [Google Scholar] [CrossRef]
- Vessia, G.; Di Curzio, D. Lacustrine Deposits. In Encyclopedia of Engineering Geology; Bobrowsky, P., Marker, B., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–6. ISBN 978-3-319-12127-7. [Google Scholar]
Cover Types | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Vegetation Zones | Coniferous Forest | Lichen Woodland | Erect Shrubs < 30% | Erect Shrubs 30–70% | Erect Shrubs > 70% | Prostrate Shrubs | Wetlands | Open Areas | Bedrock | All Cover Types |
Prostrate shrub tundra | N.A. | N.A. | 0.0 | 0.0 | N.A. | −2.1 | −0.1 | −1.4 | −0.3 | −3.8 |
Erect shrub tundra | N.A. | N.A. | 1.6 | 1.4 | 0.2 | −0.1 | 0.1 | −0.4 | −0.1 | 2.6 |
Forest tundra | 0.3 | 0.6 | 1.8 | 1.2 | 0.2 | −0.3 | −0.2 | 0 | 0 | 3.6 |
Spruce- lichen woodland | −0.6 | −1.2 | −0.1 | 0 | 0 | N.A. | −0.5 | 0 | 0 | −2.4 |
Greening rate (NDVI units y−1) | ||||||||||
0–0.0039 | 0.0040–0.0049 | 0.0050–0.0059 | <0.0060 |
Tann | Tjja | T fall | T win | Pann | Pjja | Pfall | Pwin | Aspect | Surf. Dep * Cover Type | AIC | ΔAIC | R2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nunavik | X | X | X | X | −17,903,000 | - | 0.152 | ||||||
X | X | −17,901,406 | 1594 | 0.151 | |||||||||
X | X | X | −17,900,895 | 2106 | 0.151 | ||||||||
X | −17,894,075 | 8925 | 0.134 | ||||||||||
X | X | −17,888,690 | 14,310 | 0.144 | |||||||||
X | X | X | X | X | −17,871,591 | 31,409 | 0.151 | ||||||
Best climatic model | X | X | X | −17,707,544 | 195,456 | 0.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaspard, A.; Simard, M.; Boudreau, S. Patterns and Drivers of Change in the Normalized Difference Vegetation Index in Nunavik (Québec, Canada) over the Period 1984–2020. Atmosphere 2023, 14, 1115. https://doi.org/10.3390/atmos14071115
Gaspard A, Simard M, Boudreau S. Patterns and Drivers of Change in the Normalized Difference Vegetation Index in Nunavik (Québec, Canada) over the Period 1984–2020. Atmosphere. 2023; 14(7):1115. https://doi.org/10.3390/atmos14071115
Chicago/Turabian StyleGaspard, Anna, Martin Simard, and Stéphane Boudreau. 2023. "Patterns and Drivers of Change in the Normalized Difference Vegetation Index in Nunavik (Québec, Canada) over the Period 1984–2020" Atmosphere 14, no. 7: 1115. https://doi.org/10.3390/atmos14071115
APA StyleGaspard, A., Simard, M., & Boudreau, S. (2023). Patterns and Drivers of Change in the Normalized Difference Vegetation Index in Nunavik (Québec, Canada) over the Period 1984–2020. Atmosphere, 14(7), 1115. https://doi.org/10.3390/atmos14071115