Study on Spatial Changes in PM2.5 before and after the COVID-19 Pandemic in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Model Structure and Validation
2.3.1. GTWR Model
2.3.2. Model Variable Selection
3. Results and Discussion
3.1. Statistical Analysis of Model Data
3.2. Analysis of Model Fitting Results
3.3. Comparison of Model Estimation Accuracy with Existing Datasets
3.4. Analysis of Annual Spatial Distribution of PM2.5
3.5. Analysis of Quarterly Spatial Distribution of PM2.5
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.A.; Bashir, O.; Bilal, M.; Ishaq, A.; Dar, M.U.D.; Kumar, R.; Bhat, R.A.; Sher, F. Impact of COVID-related lockdowns on environmental and climate change scenarios. Environ. Res. 2021, 195, 110839. [Google Scholar] [CrossRef] [PubMed]
- Díaz, J.; Antonio-López-Bueno, J.; Culqui, D.; Asensio, C.; Sánchez-Martínez, G.; Linares, C. Does exposure to noise pollution influence the incidence and severity of COVID-19? Environ. Res. 2021, 195, 110766. [Google Scholar] [CrossRef]
- Caraka, R.; Lee, Y.; Kurniawan, R.; Herliansyah, R.; Kaban, P.; Nasution, B.; Gio, P.; Chen, R.; Toharudin, T.; Pardamean, B. Impact of COVID-19 large scale restriction on environment and economy in Indonesia. Glob. J. Environ. Sci. Manag. 2020, 6, 65–84. [Google Scholar] [CrossRef]
- Fernandes, N. Economic Effects of Coronavirus Outbreak (COVID-19) on the World Economy. IESE Bus. Sch. Work. Pap. Ser. 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3557504 (accessed on 23 March 2023). [CrossRef]
- Yuan, Q.; Qi, B.; Hu, D.; Wang, J.; Zhang, J.; Yang, H.; Zhang, S.; Liu, L.; Xu, L.; Li, W. Spatiotemporal variations and reduction of air pollutants during the COVID-19 pandemic in a megacity of Yangtze River Delta in China. Sci. Total Environ. 2020, 751, 141820. [Google Scholar] [CrossRef]
- He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Ropkins, K.; Tate, J.E. Early observations on the impact of the COVID-19 lockdown on air quality trends across the UK. Sci. Total Environ. 2020, 754, 142374. [Google Scholar] [CrossRef]
- Jin, Q.; Luo, Y.; Meng, X.; Feng, M.; Huang, C. Short- and long-term impacts of the COVID-19 epidemic on urban PM2.5 variations: Evidence from a megacity, Chengdu. Atmos. Environ. 2023, 294, 119479. [Google Scholar] [CrossRef]
- Nguyen, T.P.M.; Bui, T.H.; Nguyen, M.K.; Vu, V.T.; Pham, H.L. Impact of COVID-19 partial lockdown on PM2.5, SO2, NO2, O3, and trace elements in PM2.5 in Hanoi, Vietnam. Environ. Sci. Pollut. Res. 2021, 29, 41875–41885. [Google Scholar] [CrossRef]
- Tan, Z.-Y.; Li, X.-H.; Gao, M.-L.; Jiang, L.-G. The Environmental Story During the COVID-19 Lockdown: How Human Activities Affect PM2.5 Concentration in China? IEEE Geosci. Remote Sens. Lett. 2020, 19, 1001005. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Jia, Y.-H.; Wang, K. Prediction of development trend of COVID-19 in Wuhan based on SEIR model. Shandong Med. J. 2020, 60, 1–4. [Google Scholar]
- Jiang, Y.; Xu, J. The association between COVID-19 deaths and short-term ambient air pollution/meteorological condition exposure: A retrospective study from Wuhan, China. Air Qual. Atmos. Health 2020, 14, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Fu, Y.; Sun, Y.; Zhang, C.; Wang, Y.; Lichtfouse, E. High resolution mapping of nighttime light and air pollutants during the COVID-19 lockdown in Wuhan. Environ. Chem. Lett. 2021, 19, 3477–3485. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Kong, L.; Yao, T.; Chen, X.; Du, W. Does lock-down of Wuhan effectively restrict early geographic spread of novel coronavirus epidemic during chunyun in China? A spatial model study. BMC Public Health 2021, 21, 825. [Google Scholar] [CrossRef]
- Zhang, L.; Li, D.; Ren, J. Analysis of COVID-19 by Discrete Multi-stage Dynamics System with Time Delay. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 658–666. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.-L.; Qing, W.-N. New implications of air pollution control in China: Based on natural experiments during the COVID-19 lockdown in Wuhan. China Popul. Resour. Environ. 2021, 31, 14–23. [Google Scholar]
- Tian, H.; Liu, Y.; Li, Y.; Wu, C.-H.; Chen, B.; Kraemer, M.U.G.; Li, B.; Cai, J.; Xu, B.; Yang, Q.; et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 2020, 368, 638–642. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, H.; Lei, M.; Zhang, L. The impact of the COVID-19 outbreak on the air quality in China: Evidence from a quasi-natural experiment. J. Clean. Prod. 2021, 296, 126475. [Google Scholar] [CrossRef]
- Alonso, C.; Raynor, P.C.; Davies, P.R.; Torremorell, M. Concentration, Size Distribution, and Infectivity of Airborne Particles Carrying Swine Viruses. PLoS ONE 2015, 10, e01356752015. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Elankumaran, S.; Marr, L.C. Concentrations and size distributions of airborne influenza A viruses measured indoors at a health centre, a day-care centre and on aeroplanes. J. R. Soc. Interface 2011, 8, 1176–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Du, G. COVID-19 may transmit through aerosol. Ir. J. Med. Sci. 2020, 189, 1143–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Y.; Pan, J.; Wang, W.; Liu, Z.; Kan, H.; Qiu, Y.; Meng, X.; Wang, W. Association of particulate matter pollution and case fatality rate of COVID-19 in 49 Chinese cities. Sci. Total Environ. 2020, 741, 140396. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Pan, J.; Liu, Z.; Meng, X.; Wang, W.; Kan, H.; Wang, W. Temporal association between particulate matter pollution and case fatality rate of COVID-19 in Wuhan. Environ. Res. 2020, 189, 109941. [Google Scholar] [CrossRef]
- Marinello, S.; Butturi, M.A.; Gamberini, R. How changes in human activities during the lockdown impacted air quality parameters: A review. Environ. Prog. Sustain. Energy 2021, 40, e136722021. [Google Scholar] [CrossRef]
- Wyche, K.; Nichols, M.; Parfitt, H.; Beckett, P.; Gregg, D.; Smallbone, K.; Monks, P. Changes in ambient air quality and atmospheric composition and reactivity in the South East of the UK as a result of the COVID-19 lockdown. Sci. Total Environ. 2020, 755, 142526. [Google Scholar] [CrossRef]
- Kumari, P.; Toshniwal, D. Impact of lockdown on air quality over major cities across the globe during COVID-19 pandemic. Urban Clim. 2020, 34, 100719. [Google Scholar] [CrossRef]
- Fan, C.; Li, Y.; Guang, J.; Li, Z.; Elnashar, A.; Allam, M.; De Leeuw, G. The Impact of the Control Measures during the COVID-19 Outbreak on Air Pollution in China. Remote Sens. 2020, 12, 1613. [Google Scholar] [CrossRef]
- Sharma, S.; Zhang, M.; Anshika; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef]
- Saxena, A.; Raj, S. Impact of lockdown during COVID-19 pandemic on the air quality of North Indian cities. Urban Clim. 2021, 35, 100754. [Google Scholar] [CrossRef]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef] [PubMed]
- Zoran, M.-A.; Savastru, R.-S.; Savastru, D.-M.; Tautan, M.-N. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan Italy. Sci. Total Environ. 2020, 738, 139825. [Google Scholar] [CrossRef]
- Viatte, C.; Petit, J.-E.; Yamanouchi, S.; Van Damme, M.; Doucerain, C.; Germain-Piaulenne, E.; Gros, V.; Favez, O.; Clarisse, L.; Coheur, P.-F.; et al. Ammonia and PM2.5 Air Pollution in Paris during the 2020 COVID Lockdown. Atmosphere 2021, 12, 160. [Google Scholar] [CrossRef]
- Ghosal, R.; Saha, E. Impact of the COVID-19 induced lockdown measures on PM2.5 concentration in USA. Atmos. Environ. 2021, 254, 118388. [Google Scholar] [CrossRef]
- Bashir, M.-F.; Ma, B.-J.; Bilal; Komal, B.; Bashir, M.-A.; Farooq, T.-H.; Iqbal, N.; Bashir, M. Correlation between environ-mental pollution indicators and COVID-19 pandemic: A brief study in Californian context. Environ Res. 2020, 187, 109652. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.-Y. Nonlinear impact of COVID-19 on pollutions—Evidence from Wuhan, New York, Milan, Madrid, Bandra, London, Tokyo and Mexico City. Sustain. Cities Soc. 2021, 65, 102629. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.M.; Malik, F.; Anjum, M.S.; Siddiqui, G.F.; Anwar, M.N.; Lam, S.S.; Nizami, A.-S.; Khokhar, M.F. Exploring the linkage between PM2.5 levels and COVID-19 spread and its implications for socio-economic circles. Environ. Res. 2020, 193, 110421. [Google Scholar] [CrossRef] [PubMed]
- Hasnain, A.; Hashmi, M.; Bhatti, U.; Nadeem, B.; Wei, G.; Zha, Y.; Sheng, Y. Assessment of Air Pollution before, during and after the COVID-19 Pandemic Lockdown in Nanjing, China. Atmosphere 2021, 12, 743. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Yang, L.; Zhou, Q.; Zhang, X.; Xing, W.; Hayakawa, K.; Toriba, A.; Tang, N. Impact of COVID-19 Outbreak on the Long-Range Transport of Common Air Pollutants in KUWAMS. Chem. Pharm. Bull. 2021, 69, 237–245. [Google Scholar] [CrossRef]
- RICHARD, T.-A.; Francisco, C.; Jhojan, P.-R.; Carlos, A.-M.; Rodrigo, S.; Laura, G.; Mauricio, O.; Nicolás, P.; Manuel, A.-L.-G. Air pollution and COVID-19 lockdown in a large South American city: Santiago Metropolitan Area Chile. Urban Clim. 2021, 36, 100803. [Google Scholar]
- Berman, J.D.; Ebisu, K. Changes in U.S. air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 139864. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-T.; Cai, X.-B.; Dong, J.-D.; Chen, F.; Chen, X.-L. The impact of COVID-19 control measures on atmospheric pollutant concentrations indifferent epidemic areas of China. J. Cent. China Norm. Univ. 2020, 54, 1051–1058. [Google Scholar]
- Wu, L.-B.; Ren, F.-Z.; Xu, S.-D. Impact of First-level Response to COVID-19 on the Reduction of Urban Air Pollutants in China. J. Environ. Econ. 2020, 5, 1–20. [Google Scholar]
- Wang, A.-P.; Zhu, B.; Qin, W.; Qin, Y.-H.; Yang, X.; Li, X.-H. Air quality in Nanjing during COVID-19 lockdown period. China Environ. Sci. 2021, 41, 3088–3095. [Google Scholar]
- Chen, H.; Huo, J.; Fu, Q.; Duan, Y.; Xiao, H.; Chen, J. Impact of quarantine measures on chemical compositions of PM2.5 during the COVID-19 epidemic in Shanghai, China. Sci. Total Environ. 2020, 743, 140758. [Google Scholar] [CrossRef]
- Zheng, H.; Kong, S.; Chen, N.; Yan, Y.; Qi, S. Significant changes in the chemical compositions and sources of PM2.5 in Wuhan since the city lockdown as COVID-19. Sci. Total Environ. 2020, 739, 140000. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Shen, N.-C.; Li, L.-J.; Wu, G.-F.; Tao, J.; Zhao, W.-J. Analysis of Changes and Factors Influencing Air Pollutants in the Beijing-Tianjin-Hebei Region During the COVID-19 Pandemic. Environ. Sci. 2021, 42, 1205–1214. [Google Scholar]
- Zhang, K.; de Leeuw, G.; Yang, Z.; Chen, X.; Jiao, J. The Impacts of the COVID-19 Lockdown on Air Quality in the Guan Zhong Basin China. Remote Sens. 2020, 12, 3042. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Z.; Gao, Y.; Zhang, M. Impacts of the meteorological condition versus emissions reduction on the PM2.5 concentration over Beijing–Tianjin–Hebei during the COVID-19 lockdown. Atmos. Ocean. Sci. Lett. 2020, 14, 100014. [Google Scholar] [CrossRef]
- Wen, L.; Yang, C.; Liao, X.; Zhang, Y.; Chai, X.; Gao, W.; Guo, S.; Bi, Y.; Tsang, S.-Y.; Chen, Z.-F.; et al. Investigation of PM2.5 pollution during COVID-19 pandemic in Guangzhou, China. J. Environ. Sci. 2022, 115, 443–452. [Google Scholar] [CrossRef]
- Gao, M.; Yang, H.; Xiao, Q.; Goh, M. COVID-19 lockdowns and air quality: Evidence from grey spatiotemporal forecasts. Socio-Econ. Plan. Sci. 2022, 83, 101228. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Wu, C.; Zhang, J. Comparision about how to get rid of abnormal data in metrology & measurement. Metrol. Meas. Tech. 2007, 34, 26–27. [Google Scholar]
- Sun, D.; Yang, S.; Wang, T.; Shu, L.; Qu, Y. Characteristics of O3 and PM2.5 and its impact factors in Yangtze River Delta. J. Meteorol. Sci. 2019, 39, 164–177. [Google Scholar]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef] [Green Version]
- Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid., J.-S. Multiangle implementation of atmospheric correction (MAIAC): 2 Aerosol algorithm. J. Geophys. Res. 2011, 127, 385–393. [Google Scholar] [CrossRef]
- Han, X.; Cui, X.; Ding, L.; Li, Z. Establishment of PM2.5 Prediction Model Based on MAIAC AOD Data of High Resolution Remote Sensing Images. Int. J. Pattern Recognit. Artif. Intell. 2019, 33, 19540091–195400915. [Google Scholar] [CrossRef]
- Liang, F.; Xiao, Q.; Wang, Y.; Lyapustin, A.; Li, G.; Gu, D.; Pan, X.; Liu, Y. MAIAC-based long-term spatiotemporal trends of PM2.5 in Beijing, China. Sci. Total Environ. 2018, 616–617, 1589–1598. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, W.; Fan, M.; Wei, J.; Tan, Y.; Wang, Q. Evaluation of MAIAC aerosol retrievals over China. Atmos. Environ. 2019, 202, 8–16. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, X.; Sayer, A.M.; Levy, R.; Zhang, Q.; Xue, Y.; Tong, S.; Bi, J.; Huang, L.; Liu, Y. Satellite-Based Spatiotemporal Trends in PM 2.5 Concentrations: China, 2004–2013. Environ. Health Perspect. 2016, 124, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-B.; Fang, C.-L. Spatial-temporal characteristics and determinants of PM2.5 in the Bohai Rim Urban Agglomeration. Chemosphere 2016, 148, 148–162. [Google Scholar] [CrossRef]
- Mirzaei, M.; Amanollahi, J.; Tzanis, C.G. Evaluation of linear, nonlinear, and hybrid models for predicting PM2.5 based on a GTWR model and MODIS AOD data. Air Qual. Atmos. Health 2019, 12, 1215–1224. [Google Scholar] [CrossRef]
- Erkin, N.; Simayi, M.; Ablat, X.; Yahefu, P.; Maimaiti, B. Predicting spatiotemporal variations of PM2.5 concentrations during spring festival for county-level cities in China using VIIRS-DNB data. Atmos. Environ. 2023, 294, 119484. [Google Scholar] [CrossRef]
- He, Q.; Huang, B. Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model. Environ. Pollut. 2018, 236, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Pete, S.; Joe, W. The impact of pre-selected variance inflation factor thresholds on the stability and predictive power of logistic regression models in credit scoring. Ima J. Manag. Math. 2015, 31, 17–37. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Levy, R.C.; Mattoo, S.; Remer, L.A.; Munchak, L.A. A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS dark target retrieval algorithm. Atmos. Meas. Tech. 2016, 9, 3293–3308. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, H. A machine learning-based framework for high resolution mapping of PM2.5 in Tehran, Iran, using MAIAC AOD data. Adv. Space Res. 2022, 69, 3333–3349. [Google Scholar] [CrossRef]
- He, Q.-Q.; Huang, B.-B. Satellite-based mapping of daily high-resolution ground P PM2.5 in China via space-time regression modeling. Remote Sens. Environ. 2018, 206, 72–83. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Hammer, M.S.; Bindle, L.; Brauer, M.; Brook, J.R.; Garay, M.J.; Hsu, N.C.; Kalashnikova, O.V.; Kahn, R.A.; Lee, C.; et al. Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty. Environ. Sci. Technol. 2021, 55, 15287–15300. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote Sens. Environ. 2020, 252, 112136. [Google Scholar] [CrossRef]
Year | Spring | Summer | Autumn | Winter | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
variable | coefficient | VIF | sig | coefficient | VIF | sig | coefficient | VIF | sig | coefficient | VIF | sig | coefficient | VIF | sig |
AOD | 0.34 | 1.23 | 0.001 | 0.35 | 2.28 | 0.001 | 037 | 1.18 | 0.001 | 0.37 | 1.11 | 0.001 | 0.30 | 1.29 | 0.001 |
BLH | −0.09 | 3.91 | 0.028 | −0.02 | 3.92 | 0.036 | - | - | - | −0.12 | 10.42 | 0.040 | −0.18 | 22.31 | 0.025 |
RH | 0.02 | 3.61 | 0.066 | - | - | - | 0.05 | 2.05 | 0.074 | - | - | - | 0.03 | 16.11 | 0.039 |
SP | 0.19 | 2.17 | 0.025 | 0.19 | 5.25 | 0.021 | 0.16 | 3.16 | 0.056 | 0.17 | 4.42 | 0.041 | 0.11 | 3.35 | 0.019 |
TEM | −0.16 | 4.18 | 0.019 | −0.27 | 4.65 | 0.044 | −0.23 | 3.34 | 0.046 | −0.16 | 48.13 | 0.091 | −0.08 | 2.54 | 0.056 |
TP | −0.03 | 1.40 | 0.121 | - | - | - | −0.01 | 1.95 | 0.092 | −0.11 | 2.08 | 0.088 | - | - | - |
WS | −0.05 | 1.86 | 0.003 | −0.07 | 3.09 | 0.002 | −0.08 | 1.20 | 0.006 | −0.05 | 1.41 | 0.008 | −0.09 | 3.31 | 0.001 |
NDVI | −0.05 | 1.42 | 0.001 | - | - | - | −0.06 | 1.15 | 0.001 | −0.02 | 1.34 | 0.001 | - | - | - |
DEM | −0.09 | 1.30 | 0.001 | −0.11 | 1.19 | 0.001 | −0.07 | 1.06 | 0.001 | −0.09 | 1.10 | 0.001 | −0.06 | 1.06 | 0.001 |
Variable | MIN | MAX | AVG | SD |
---|---|---|---|---|
PM2.5 (µg/m3) | 4.8~6.2 | 74.2~95.1 | 27.9~28.9 | 10.9~17.4 |
AOD (unitless) | 0.02~0.07 | 0.84~0.95 | 0.35~0.38 | 0.17~0.21 |
TEM (K) | 267.6~276.5 | 303.5~315.3 | 292.4~297.6 | 44.1~69.8 |
TP (mm) | 0~0.8 | 62.1~88.2 | 4.3~5.8 | 2.7~2.8 |
SP (hpa) | 821.1~868.3 | 1044.3~1069.4 | 962.2~1002.9 | 32.5~38.1 |
RH (%) | 3~9 | 83~100 | 41~61 | 17~21 |
WS (m/s) | 0~0.6 | 4.6~5.8 | 1.4~2.4 | 0.9~1.2 |
BLH (m) | 282.1~375.9 | 2115.7~2803.1 | 999.5~1041.7 | 335.2~375.1 |
NDVI (unitless) | −0.02~0.09 | 0.91~0.92 | 0.59~0.62 | 0.15~0.17 |
ELEVATION (m) | 77.5 | 6233.8 | 1995.3 | 1324.3 |
Province | 2019 | 2020 | 2021 |
---|---|---|---|
Chongqing | 38.8 | 30.8 | 33.7 |
Sichuan | 34.6 | 28.9 | 31.1 |
Guizhou | 29.1 | 24.5 | 26.4 |
Yunnan | 25.9 | 21.9 | 23.1 |
Southwest | 32.1 | 26.5 | 28.6 |
Season | Year | Chongqing | Sichuan | Guizhou | Yunnan | Southwest |
---|---|---|---|---|---|---|
Spring | 2019 | 36.3 | 34.1 | 27.5 | 32.1 | 32.5 |
2020 | 24.6 | 24.8 | 25.9 | 30.3 | 26.4 | |
2021 | 31.3 | 32.6 | 26.6 | 31.8 | 30.6 | |
Summer | 2019 | 22.0 | 20.9 | 17.1 | 15.3 | 18.9 |
2020 | 19.4 | 17.9 | 14.3 | 13.8 | 16.3 | |
2021 | 21.2 | 19.8 | 16.9 | 14.4 | 18.1 | |
Autumn | 2019 | 30.5 | 28.4 | 23.0 | 18.4 | 25.1 |
2020 | 26.2 | 24.2 | 19.7 | 16.8 | 21.7 | |
2021 | 28.2 | 26.3 | 21.8 | 17.1 | 23.3 | |
Winter | 2019 | 48.1 | 45.5 | 34.0 | 24.5 | 38.0 |
2020 | 31.3 | 32.1 | 32.0 | 23.7 | 29.8 | |
2021 | 39.5 | 38.5 | 34.6 | 24.2 | 34.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhou, J.; Wang, J.; Feng, Z. Study on Spatial Changes in PM2.5 before and after the COVID-19 Pandemic in Southwest China. Atmosphere 2023, 14, 671. https://doi.org/10.3390/atmos14040671
Li X, Zhou J, Wang J, Feng Z. Study on Spatial Changes in PM2.5 before and after the COVID-19 Pandemic in Southwest China. Atmosphere. 2023; 14(4):671. https://doi.org/10.3390/atmos14040671
Chicago/Turabian StyleLi, Xing, Jingchun Zhou, Jinliang Wang, and Zhanyong Feng. 2023. "Study on Spatial Changes in PM2.5 before and after the COVID-19 Pandemic in Southwest China" Atmosphere 14, no. 4: 671. https://doi.org/10.3390/atmos14040671
APA StyleLi, X., Zhou, J., Wang, J., & Feng, Z. (2023). Study on Spatial Changes in PM2.5 before and after the COVID-19 Pandemic in Southwest China. Atmosphere, 14(4), 671. https://doi.org/10.3390/atmos14040671