Response of Extratropical Transitioning Tropical Cyclone Size to Ocean Warming: A Case Study for Typhoon Songda in 2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Configuration
2.2. Determination of the Onset and Completion of ET
2.3. Momentum Equation for Tangential Wind
3. Results
3.1. Verification of Simulations
3.2. The Onset and Completion of ET
3.3. The Impact of the Projected Higher SST on Cyclone Size
3.4. The Mechanism for Variations of Cyclone Size (R17) Evolution with Different SST Scenarios
3.4.1. Before ET (Stage 1)
3.4.2. During ET (Stage 2)
3.4.3. About to Complete ET (Stage 3) and after ET (Stage 4)
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Source ID | Institution ID | Nominal Resolution (km) |
---|---|---|
ACCESS-CM2 | CSIRO-ARCCSS | 250 |
ACCESS-ESM1-5 | CSIRO | 250 |
BCC-CSM2-MR | BCC | 100 |
CAMS-CSM1-0 | CAMS | 100 |
CanESM5 | CCCma | 100 |
CESM2 | NCAR | 100 |
CESM2-WACCM | NCAR | 100 |
CNRM-CM6-1 | CNRM-CM6.1 | 100 |
CNRM-CM6-1-HR | CNRM-CM6.1 | 25 |
CNRM-ESM2-1 | CNRM-ESM2.1 | 100 |
EC-Earth3-Veg | EC-Earth-Consortium | 100 |
FGOALS-f3-L | CAS | 100 |
GFDL-CM4 | NOAA-GFDL | 25 |
GFDL-ESM4 | NOAA-GFDL | 50 |
IPSL-CM6A-LR | IPSL | 100 |
MIROC-ES2L | MIROC | 100 |
MIROC6 | MIROC | 100 |
MRI-ESM2-0 | MRI | 100 |
NESM3 | NUIST | 100 |
NorESM2-LM | NCC | 100 |
UKESM1-0-LL | MOHC | 100 |
References
- Jones, S.C.; Harr, P.A.; Abraham, J.; Bosart, L.F.; Bowyer, P.J.; Evans, J.L.; Hanley, D.E.; Hanstrum, B.N.; Hart, R.E.; Lalaurette, F.; et al. The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Weather Forecast. 2003, 18, 1052–1092. [Google Scholar] [CrossRef]
- Kitabatake, N. Climatology of Extratropical Transition of Tropical Cyclones in the Western North Pacific Defined by Using Cyclone Phase Space. J. Meteorol. Soc. Jpn. 2011, 89, 309–325. [Google Scholar] [CrossRef] [Green Version]
- Studholme, J.; Hodges, K.I.; Brierley, C.M. Objective determination of the extratropical transition of tropical cyclones in the Northern Hemisphere. Tellus A 2015, 67, 24474. [Google Scholar] [CrossRef]
- Bieli, M.; Camargo, S.J.; Sobel, A.H.; Evans, J.L.; Hall, T. A Global Climatology of Extratropical Transition. Part I: Characteristics across Basins. J. Clim. 2019, 32, 3557–3582. [Google Scholar] [CrossRef]
- Bieli, M.; Camargo, S.J.; Sobel, A.H.; Evans, J.L.; Hall, T. A Global Climatology of Extratropical Transition. Part II: Statistical Performance of the Cyclone Phase Space. J. Clim. 2019, 32, 3583–3597. [Google Scholar] [CrossRef]
- Evans, C.; Wood, K.M.; Aberson, S.D.; Archambault, H.M.; Milrad, S.M.; Bosart, L.F.; Corbosiero, K.L.; Davis, C.A.; Pinto, J.R.D.; Doyle, J.; et al. The Extratropical Transition of Tropical Cyclones. Part I: Cyclone Evolution and Direct Impacts. Mon. Weather Rev. 2017, 145, 4317–4344. [Google Scholar] [CrossRef] [Green Version]
- Harr, P.A.; Elsberry, R.L. Extratropical transition of tropical cyclones over the western north pacific. Part I: Evolution of structural characteristics during the transition process. Mon. Weather Rev. 2000, 128, 2613–2633. [Google Scholar] [CrossRef]
- Harr, P.A.; Elsberry, R.L.; Hogan, T.F. Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics. Mon. Weather Rev. 2000, 128, 2634–2653. [Google Scholar] [CrossRef]
- Klein, P.M.; Harr, P.A.; Elsberry, R.L. Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Weather Forecast. 2000, 15, 373–395. [Google Scholar] [CrossRef]
- Evans, C.; Hart, R.E. Analysis of the wind field evolution associated with the extratropical transition of Bonnie (1998). Mon. Weather Rev. 2008, 136, 2047–2065. [Google Scholar] [CrossRef] [Green Version]
- Atallah, E.H.; Bosart, L.R. The extratropical transition and precipitation distribution of hurricane Floyd (1999). Mon. Weather Rev. 2003, 131, 1063–1081. [Google Scholar] [CrossRef]
- Colle, B.A. Numerical Simulations of the extratropical transition of Floyd (1999): Structural evolution and responsible mechanisms for the heavy rainfall over the northeast United States. Mon. Weather Rev. 2003, 131, 2905–2926. [Google Scholar] [CrossRef]
- Liu, M.F.; Smith, J.A. Extreme Rainfall from Landfalling Tropical Cyclones in the Eastern United States: Hurricane Irene (2011). J. Hydrometeorol. 2016, 17, 2883–2904. [Google Scholar] [CrossRef]
- Jung, C.Y.; Lackmann, G.M. Extratropical Transition of Hurricane Irene (2011) in a Changing Climate. J. Clim. 2019, 32, 4847–4871. [Google Scholar] [CrossRef]
- Galarneau, T.J.; Davis, C.A.; Shapiro, M.A. Intensification of Hurricane Sandy (2012) through Extratropical Warm Core Seclusion. Mon. Weather Rev. 2013, 141, 4296–4321. [Google Scholar] [CrossRef]
- Shin, J.H.; Zhang, D.L. The Impact of Moist Frontogenesis and Tropopause Undulation on the Intensity, Size, and Structural Changes of Hurricane Sandy (2012). J. Atmos. Sci. 2017, 74, 893–913. [Google Scholar] [CrossRef]
- Shin, J.H. Vortex Spinup Process in the Extratropical Transition of Hurricane Sandy (2012). J. Atmos. Sci. 2019, 76, 3589–3610. [Google Scholar] [CrossRef]
- Liu, M.F.; Vecchi, G.A.; Smith, J.A.; Murakami, H. The Present-Day Simulation and Twenty-First-Century Projection of the Climatology of Extratropical Transition in the North Atlantic. J. Clim. 2017, 30, 2739–2756. [Google Scholar] [CrossRef]
- Michaelis, A.C.; Lackmann, G.M. Climatological Changes in the Extratropical Transition of Tropical Cyclones in High-Resolution Global Simulations. J. Clim. 2019, 32, 8733–8753. [Google Scholar] [CrossRef]
- Bieli, M.; Sobel, A.H.; Camargo, S.J.; Murakami, H.; Vecchi, G.A. Application of the Cyclone Phase Space to Extratropical Transition in a Global Climate Model. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001878. [Google Scholar] [CrossRef]
- Liu, M.; Yang, L.; Smith, J.A.; Vecchi, G.A. Response of Extreme Rainfall for Landfalling Tropical Cyclones Undergoing Extratropical Transition to Projected Climate Change: Hurricane Irene (2011). Earths Future 2020, 8, e2019EF001360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, C.Y.; Lackmann, G.M. The Response of Extratropical Transition of Tropical Cyclones to Climate Change: Quasi-Idealized Numerical Experiments. J. Clim. 2021, 34, 4361–4381. [Google Scholar] [CrossRef]
- Michaelis, A.C.; Lackmann, G.M. Storm-Scale Dynamical Changes of Extratropical Transition Events in Present-Day and Future High-Resolution Global Simulations. J. Clim. 2021, 34, 5037–5062. [Google Scholar] [CrossRef]
- Nakamura, R.; Mall, M. Pseudo Global Warming Sensitivity Experiments of Subtropical Cyclone Anita (2010) Under RCP 8.5 Scenario. J. Geophys. Res. Atmos. 2021, 126, e2021JD035261. [Google Scholar] [CrossRef]
- Baatsen, M.; Haarsma, R.J.; Van Delden, A.J.; de Vries, H. Severe Autumn storms in future Western Europe with a warmer Atlantic Ocean. Clim. Dyn. 2015, 45, 949–964. [Google Scholar] [CrossRef]
- Kim, H.S.; Vecchi, G.A.; Knutson, T.R.; Anderson, W.U.; Delworth, T.L.; Rosati, A.; Zeng, F.R.; Zhao, M. Tropical Cyclone Simulation and Response to CO2 Doubling in the GFDL CM2.5 High-Resolution Coupled Climate Model. J. Clim. 2014, 27, 8034–8054. [Google Scholar] [CrossRef]
- Sun, Y.; Zhong, Z.; Li, T.; Yi, L.; Hu, Y.J.; Wan, H.C.; Chen, H.S.; Liao, Q.F.; Ma, C.; Li, Q.H. Impact of Ocean Warming on Tropical Cyclone Size and Its Destructiveness. Sci. Rep. 2017, 7, 8154. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhong, Z.; Li, T.; Yi, L.; Camargo, S.J.; Hu, Y.J.; Liu, K.F.; Chen, H.S.; Liao, Q.F.; Shi, J. Impact of ocean warming on tropical cyclone track over the western north pacific: A numerical investigation based on two case studies. J. Geophys. Res. Atmos. 2017, 122, 8617–8630. [Google Scholar] [CrossRef]
- Xu, Z.M.; Sun, Y.; Li, T.; Zhong, Z.; Liu, J.; Ma, C. Tropical Cyclone Size Change under Ocean Warming and Associated Responses of Tropical Cyclone Destructiveness: Idealized Experiments. J. Meteorol. Res. 2020, 34, 163–175. [Google Scholar] [CrossRef]
- Stansfield, A.M.; Reed, K.A. Tropical Cyclone Precipitation Response to Surface Warming in Aquaplanet Simulations With Uniform Thermal Forcing. J. Geophys. Res. Atmos. 2021, 126, e2021JD035197. [Google Scholar] [CrossRef]
- Busireddy, N.K.R.; Ankur, K.; Osuri, K.K.; Niyogi, D. Modelled impact of ocean warming on tropical cyclone size and destructiveness over the Bay of Bengal: A case study on FANI cyclone. Atmos. Res. 2022, 279, 106355. [Google Scholar] [CrossRef]
- Chih, C.H.; Chou, K.H.; Wu, C.C. Idealized simulations of tropical cyclones with thermodynamic conditions under reanalysis and CMIP5 scenarios. Geosci. Lett. 2022, 9, 33. [Google Scholar] [CrossRef]
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Rabinovich, A.B.; Šepić, J.; Thomson, R.E. Strength in Numbers: The Tail End of Typhoon Songda Combines with Local Cyclones to Generate Extreme Sea Level Oscillations on the British Columbia and Washington Coasts during Mid-October 2016. J. Phys. Oceanogr. 2023, 53, 131–155. [Google Scholar] [CrossRef]
- Schar, C.; Frei, C.; Luthi, D.; Davies, H.C. Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett. 1996, 23, 669–672. [Google Scholar] [CrossRef]
- Frei, C.; Schar, C.; Luthi, D.; Davies, H.C. Heavy precipitation processes in a warmer climate. Geophys. Res. Lett. 1998, 25, 1431–1434. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Kimura, F.; Kitoh, A. Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J. Hydrol. 2007, 333, 144–154. [Google Scholar] [CrossRef]
- Hart, R.E. A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Weather Rev. 2003, 131, 585–616. [Google Scholar] [CrossRef]
- Evans, J.L.; Hart, R.E. Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Weather Rev. 2003, 131, 909–925. [Google Scholar] [CrossRef]
- Yau, M.K.; Liu, Y.B.; Zhang, D.L.; Chen, Y.S. A multiscale numerical study of Hurricane Andrew (1992). part VI: Small-scale inner-core structures and wind streaks. Mon. Weather Rev. 2004, 132, 1410–1433. [Google Scholar] [CrossRef]
- Tsuji, H.; Itoh, H.; Nakajima, K. Mechanism Governing the Size Change of Tropical Cyclone-Like Vortices. J. Meteorol. Soc. Jpn. 2016, 94, 219–236. [Google Scholar] [CrossRef] [Green Version]
- Katsube, K.; Inatsu, M. Response of Tropical Cyclone Tracks to Sea Surface Temperature in the Western North Pacific. J. Clim. 2016, 29, 1955–1975. [Google Scholar] [CrossRef]
- Ge, X.Y.; Guan, L.; Yan, Z.Y. Impacts of raindrop evaporative cooling on tropical cyclone secondary eyewall formation. Dyn. Atmos. Oceans 2018, 82, 54–63. [Google Scholar] [CrossRef]
- Chavas, D.R.; Lin, N.; Dong, W.H.; Lin, Y.L. Observed Tropical Cyclone Size Revisited. J. Clim. 2016, 29, 2923–2939. [Google Scholar] [CrossRef]
- Dong, Y.; Armour, K.C.; Zelinka, M.D.; Proistosescu, C.; Battisti, D.S.; Zhou, C.; Andrews, T. Intermodel Spread in the Pattern Effect and Its Contribution to Climate Sensitivity in CMIP5 and CMIP6 Models. J. Clim. 2020, 33, 7755–7775. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Z.; Tang, X. Response of Extratropical Transitioning Tropical Cyclone Size to Ocean Warming: A Case Study for Typhoon Songda in 2016. Atmosphere 2023, 14, 639. https://doi.org/10.3390/atmos14040639
Miao Z, Tang X. Response of Extratropical Transitioning Tropical Cyclone Size to Ocean Warming: A Case Study for Typhoon Songda in 2016. Atmosphere. 2023; 14(4):639. https://doi.org/10.3390/atmos14040639
Chicago/Turabian StyleMiao, Ziwei, and Xiaodong Tang. 2023. "Response of Extratropical Transitioning Tropical Cyclone Size to Ocean Warming: A Case Study for Typhoon Songda in 2016" Atmosphere 14, no. 4: 639. https://doi.org/10.3390/atmos14040639
APA StyleMiao, Z., & Tang, X. (2023). Response of Extratropical Transitioning Tropical Cyclone Size to Ocean Warming: A Case Study for Typhoon Songda in 2016. Atmosphere, 14(4), 639. https://doi.org/10.3390/atmos14040639