Prediction of Extremely Severe Cyclonic Storm “Fani” Using Moving Nested Domain
Abstract
:1. Introduction
2. Case Study and Methodology
2.1. Brief Description of the Tropical Cyclone Fani
- It is considered one of the longest (about 8 days and 9 h) tropical cyclones in the history of the North Indian Ocean [9] and the tenth most severe tropical cyclone in the month of May in the last 52 years [58]. Moreover, it developed near the equator, which is a very rare phenomenon over the North Indian Ocean.
- During landfall, Fani was in the ESCS stage (wind speed was more than 90 knots). It brought heavy rainfall and strong winds to the landfall regions and damaged many infrastructures and properties.
- It caused about 89 fatalities. The projected economic loss was more than 8.1 billion US dollars, and affected areas included the states of Odisha, West Bengal, and Andhra Pradesh in India, as well as East India and Bangladesh.
- Tropical cyclone Fani is considered one of the three worst storms in the past 150 years to make landfall on the Odisha coast causing massive financial losses and social impacts [59].
2.2. Data and Methodology
3. Results and Discussions
3.1. Forecast of Track and Intensity
3.2. Performance of Model on Forecast of Storm Structure
4. Conclusions
- The use of the moving nested domain method in WRF-ARW accurately simulates the track of the storm Fani with both flux parameterization schemes. Comparison between the two schemes indicates that the FLUX-1 experiment better simulates the storm track than the FLUX-2 experiment. Track errors in the FLUX-1 experiment are approximately 47 km, 123 km, 96 km, and 27 km on day 1 to day 4, respectively.
- The FLUX-1 experiment more accurately predicts the time and location of Fani’s landfall, with the landfall time in this experiment matching well with the observation and a landfall location error of approximately 37 km.
- The FLUX-1 experiment provides a better forecast of rapid intensification and dissipation patterns. The forecast of the first 60 hours’ intensity is better represented in the FLUX-1 experiment, while the forecast of remaining hours’ intensity is better represented in the FLUX-2 experiment.
- The structure of Fani, in terms of relative humidity, maximum reflectivity, and temperature anomaly, is well simulated in both experiments.
5. Limitation and Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Webster, P.J.; Holland, G.J.; Curry, J.A.; Chang, H.R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 2005, 309, 1844–1846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balaji, M.; Chakraborty, A.; Mandal, M. Changes in tropical cyclone activity in North Indian Ocean during satellite era (1981–2014). Int. J. Climatol. 2018, 38, 2819–2837. [Google Scholar] [CrossRef]
- Albert, J.; Krishnan, A.; Bhaskaran, P.K.; Singh, K.S. Role and influence of key atmospheric parameters in large-scale environmental flow associated with tropical cyclogenesis and ENSO in the North Indian Ocean basin. Clim. Dyn. 2021, 58, 17–34. [Google Scholar] [CrossRef]
- Nayak, S.; Takemi, T. Robust responses of typhoon hazards in northern Japan to global warming climate: Cases of landfalling typhoons in 2016. Meteorol. Appl. 2020, 27, e1954. [Google Scholar] [CrossRef]
- Nayak, S.; Takemi, T. Typhoon induced precipitation characterization over northern Japan: A case study for typhoons in 2016. Prog. Earth Planet. Sci. 2020, 7, 39. [Google Scholar] [CrossRef]
- Morimoto, J.; Aiba, M.; Furukawa, F.; Mishima, Y.; Yoshimura, N.; Nayak, S.; Takemi, T.; Haga, C.; Matsui, T.; Nakamura, F. Risk assessment of forest disturbance by typhoons with heavy precipitation in northern Japan. For. Ecol. Manag. 2021, 479, 118521. [Google Scholar] [CrossRef]
- Nayak, S.; Takemi, T. Dynamical downscaling of Typhoon Lionrock (2016) for assessing the resulting hazards under global warming. J. Meteorol. Soc. Jpn. 2019, 97, 69–88. [Google Scholar] [CrossRef] [Green Version]
- Nayak, S.; Takemi, T. Quantitative estimations of hazards resulting from Typhoon Chanthu (2016) for assessing the impact in current and future climate. Hydrol. Res. Lett. 2019, 13, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.S.; Albert, J.; Bhaskaran, P.K.; Alam, P. Assessment of extremely severe cyclonic storms over Bay of Bengal and performance evaluation of ARW model in the prediction of track and intensity. Theor. Appl. Climatol. 2021, 143, 1181–1194. [Google Scholar] [CrossRef]
- Prasad, K.; Rao, Y.R. Simulation Studies on Cyclone Track Prediction by Quasi-Lagrangian Model (QLM) in Some Historical and Recent Cases in the Bay of Bengal, Using Global Re-Analysis and Forecast Grid Point Data Sets; SAARC Meteorological Research Centre: Dhaka, Bangladesh, 2006. [Google Scholar]
- Sudha Rani, N.N.V.; Satyanarayana, A.N.V.; Bhaskaran, P.K. Coastal vulnerability assessment studies over India: A review. Nat. Hazards 2015, 77, 405–428. [Google Scholar] [CrossRef]
- Sahoo, B.; Bhaskaran, P.K. Assessment on historical cyclone tracks in the Bay of Bengal, east coast of India. Int. J. Climatol. 2016, 36, 95–109. [Google Scholar] [CrossRef]
- Albert, J.; Bhaskaran, P.K. Ocean heat content and its role in tropical cyclogenesis for the Bay of Bengal basin. Clim. Dyn. 2020, 55, 3343–3362. [Google Scholar] [CrossRef]
- Mohandas, S.; Ashrit, R. Sensitivity of different convective parameterization schemes on tropical cyclone prediction using a mesoscale model. Nat. Hazards 2014, 73, 213–235. [Google Scholar] [CrossRef]
- Srinivas, C.V.; Bhaskar Rao, D.; Yesubabu, V.; Baskaran, R.; Venkatraman, B. Tropical cyclone predictions over the Bay of Bengal using the high-resolution Advanced Research Weather Research and Forecasting (ARW) model. Q. J. R. Meteorol. Soc. 2013, 139, 1810–1825. [Google Scholar] [CrossRef]
- Steptoe, H.; Savage, N.H.; Sadri, S.; Salmon, K.; Maalick, Z.; Webster, S. Tropical cyclone simulations over Bangladesh at convection permitting 4.4 km & 1.5 km resolution. Sci. Data 2021, 8, 62. [Google Scholar]
- Deshpande, M.; Pattnaik, S.; Salvekar, P.S. Impact of physical parameterization schemes on numerical simulation of super cyclone Gonu. Nat. Hazards 2010, 55, 211–231. [Google Scholar] [CrossRef]
- Osuri, K.K.; Mohanty, U.C.; Routray, A.; Kulkarni, M.A.; Mohapatra, M. Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian Ocean. Nat. Hazards 2012, 63, 1337–1359. [Google Scholar] [CrossRef]
- Singh, K.S.; Mandal, M. Sensitivity of mesoscale simulation of Aila Cyclone to the parameterization of physical processes using WRF Model. In Monitoring and Prediction of Tropical Cyclones in the Indian Ocean and Climate Change; Springer: Dordrecht, The Netherlands, 2014; pp. 300–308. [Google Scholar]
- Singh, K.S.; Bhaskaran, P.K. Impact of PBL and convection parameterization schemes for prediction of severe land-falling Bay of Bengal cyclones using WRF-ARW model. J. Atmos. Sol.-Terr. Phys. 2017, 165, 10–24. [Google Scholar] [CrossRef]
- Vinodkumar; Chandrasekhar, A.; Alapaty, K.; Niyogi, D. The impacts of indirect soil moisture assimilation and direct surface temperature and humidity assimilation on a mesoscale model simulation of an Indian monsoon depression. J. Appl. Meteorol. Climatol. 2008, 47, 1393–1412. [Google Scholar] [CrossRef]
- Srinivas, C.V.; Yesubabu, V.; Venkatesan, R.; Ramakrishna, S.S. Impact of assimilation of conventional and satellite meteorological observations on the numerical simulation of a Bay of Bengal tropical cyclone of November 2008 near Tamilnadu using WRF model. Meteorol. Atmos. Phys. 2010, 110, 19–44. [Google Scholar] [CrossRef]
- Rakesh, V.; Singh, R.; Pal, P.K.; Joshi, P.C. Impacts of satellite observed winds and total precipitable water on WRF short-range forecasts over the Indian region during the 2006 summer monsoon. Weather Forecast. 2009, 24, 1706–1731. [Google Scholar] [CrossRef]
- Rakesh, V.; Singh, R.; Pal, P.K.; Joshi, P.C. Impact of satellite soundings on the simulation of heavy rainfall associated with tropical depressions. Nat. Hazards 2011, 58, 945–980. [Google Scholar] [CrossRef]
- Osuri, K.K.; Mohanty, U.C.; Routray, A.; Mohapatra, M. The impact of satellite-derived wind data assimilation on track, intensity and structure of tropical cyclones over the North Indian Ocean. Int. J. Remote Sens. 2012, 33, 1627–1652. [Google Scholar] [CrossRef]
- Routray, A.; Mohanty, U.C.; Osuri, K.K.; Kar, S.C.; Niyogi, D. Impact of satellite radiance data on simulations of Bay of Bengal tropical cyclones using the WRF-3DVAR modeling system. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2285–2303. [Google Scholar] [CrossRef]
- Osuri, K.K.; Nadimpalli, R.; Mohanty, U.C.; Niyogi, D. Prediction of rapid intensification of tropical cyclone Phailin over the Bay of Bengal using the HWRF modelling system. Q. J. R. Meteorol. Soc. 2017, 143, 678–690. [Google Scholar] [CrossRef]
- Singh, K.S.; Bhaskaran, P.K. Impact of lateral boundary and initial conditions in the prediction of Bay of Bengal cyclones using WRF model and its 3D-VAR data assimilation system. J. Atmos. Sol.-Terr. Phys. 2018, 175, 64–75. [Google Scholar] [CrossRef]
- Singh, K.S.; Bhaskaran, P.K. Prediction of land-falling Bay of Bengal cyclones during 2013 using the high resolution Weather Research and Forecasting model. Meteorol. Appl. 2020, 27, e1850. [Google Scholar] [CrossRef] [Green Version]
- Nadimpalli, R.; Srivastava, A.; Prasad, V.S.; Osuri, K.K.; Das, A.K.; Mohanty, U.C.; Niyogi, D. Impact of INSAT-3D/3DR radiance data assimilation in predicting tropical cyclone Titli over the Bay of Bengal. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6945–6957. [Google Scholar] [CrossRef]
- Singh, K.S.; Tyagi, B. Impact of data assimilation and air-sea flux parameterization schemes on the prediction of cyclone Phailin over the Bay of Bengal using the WRF-ARW model. Meteorol. Appl. 2019, 26, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.S.; Mandal, M.; Bhaskaran, P.K. Impact of radiance data assimilation on the prediction performance of cyclonic storm SIDR using WRF-3DVAR modelling system. Meteorol. Atmos. Phys. 2019, 131, 11–28. [Google Scholar] [CrossRef]
- Lok, C.C.; Chan, J.C.; Toumi, R. Importance of Air-Sea Coupling in Simulating Tropical Cyclone Intensity at Landfall. Adv. Atmos. Sci. 2022, 39, 1777–1786. [Google Scholar] [CrossRef]
- Ricchi, A.; Bonaldo, D.; Cioni, G.; Carniel, S.; Miglietta, M.M. Simulation of a flash-flood event over the Adriatic Sea with a high-resolution atmosphere-ocean-wave coupled system. Sci. Rep. 2021, 11, 9388. [Google Scholar] [CrossRef]
- Warner, J.C.; Armstrong, B.; He, R.; Zambon, J.B. Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean. Model. 2010, 35, 230–244. [Google Scholar] [CrossRef] [Green Version]
- Andreas, E.L. The Impact of Sea Spray on Air-Sea Fluxes in Coupled Atmosphere-Ocean Models; Regions Research and Engineering Laboratory: Hanover, NH, USA, 2002. [Google Scholar]
- Chelton, D.B.; Esbensen, S.K.; Schlax, M.G.; Thum, N.; Freilich, M.H.; Wentz, F.J.; Gentemann, C.L.; McPhaden, M.J.; Schopf, P.S. Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Clim. 2001, 14, 1479–1498. [Google Scholar] [CrossRef]
- O’Neill, L.W.; Esbensen, S.K.; Thum, N.; Samelson, R.M.; Chelton, D.B. Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J. Clim. 2010, 23, 559–581. [Google Scholar] [CrossRef] [Green Version]
- Crnivec, N.; Smith, R.K.; Kilroy, G. Dependence of tropical cyclone intensification rate on sea-surface temperature. Q. J. R. Meteorol. Soc. 2016, 142, 1618–1627. [Google Scholar] [CrossRef]
- Kanada, S.; Tsujino, S.; Aiki, H.; Yoshioka, M.K.; Miyazawa, Y.; Tsuboki, K.; Takayabu, I. Impacts of SST patterns on rapid intensification of Typhoon Megi (2010). J. Geophys. Res. Atmos. 2017, 122, 13–245. [Google Scholar] [CrossRef] [Green Version]
- Meroni, A.N.; Parodi, A.; Pasquero, C. Role of SST patterns on surface wind modulation of a heavy midlatitude precipitation event. J. Geophys. Res. Atmos. 2018, 123, 9081–9096. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.G.; Surgi, N.; Tuleya, R.; Janjic, Z. NCEP’s two-way-interactive-moving-nest NMM-WRF modeling system for hurricane forecasting. In Proceedings of the 27th Conference on Hurricanes and Tropical Meteorology, Monterey, CA, USA, 23–24 April 2006. [Google Scholar]
- Wu, Z.; Zhang, Y.; Xie, Y.; Zhang, L.; Zheng, H. Radiance-based assessment of bulk microphysics models with seven hydrometeor species in forecasting Super-typhoon Lekima (2019) near landfall. Atmos. Res. 2022, 273, 106173. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Zhang, L.; Zheng, H. Improving the WRF Forecast of Landfalling Tropical Cyclones over the Asia-Pacific Region by Constraining the Cloud Microphysics Model with GPM Observations. Geophys. Res. Lett. 2022, 49, e2022GL100053. [Google Scholar] [CrossRef]
- Liao, X.; Li, T.; Ma, C. Moist Static Energy and Secondary Circulation Evolution Characteristics during the Rapid Intensification of Super Typhoon Yutu (2007). Atmosphere 2022, 13, 1105. [Google Scholar] [CrossRef]
- Chen, X.; Xue, M.; Fang, J. Rapid intensification of Typhoon Mujigae (2015) under different sea surface temperatures: Structural changes leading to rapid intensification. J. Atmos. Sci. 2018, 75, 4313–4335. [Google Scholar] [CrossRef]
- Ye, L.; Li, Y.; Gao, Z. Evaluation of Air–Sea Flux Parameterization for Typhoon Mangkhut Simulation during Intensification Period. Atmosphere 2022, 13, 2133. [Google Scholar] [CrossRef]
- Sanders, F.; Gyakum, J.R. Synoptic-dynamic climatology of the “bomb”. Mon. Weather. Rev. 1980, 108, 1589–1606. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Chu, P.C.; Guan, C.; Fu, H.; Chao, G.; Han, G.; Li, W. Impact of sea spray on the Yellow and East China Seas thermal structure during the passage of Typhoon Rammasun (2002). J. Geophys. Res. Ocean. 2017, 122, 7783–7802. [Google Scholar] [CrossRef]
- Andreas, E.L.; Persson, P.O.G.; Hare, J.E. A bulk turbulent air–sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr. 2008, 38, 1581–1596. [Google Scholar] [CrossRef]
- Black, P.G.; D’Asaro, E.A.; Drennan, W.M.; French, J.R.; Niiler, P.P.; Sanford, T.B.; Terrill, E.J.; Walsh, E.J.; Zhang, J.A. Air–sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bull. Am. Meteorol. Soc. 2007, 88, 357–374. [Google Scholar] [CrossRef] [Green Version]
- Donelan, M.A.; Drennan, W.M.; Katsaros, K.B. The air–sea momentum flux in conditions of Wind Sea and swell. J. Phys. Oceanogr. 1997, 27, 2087–2099. [Google Scholar] [CrossRef]
- Fairall, C.W.; Banner, M.L.; Peirson, W.L.; Asher, W.; Morison, R.P. Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res. Ocean. 2009, 114, C10001, 1–19. [Google Scholar] [CrossRef]
- Obermann, A.; Edelmann, B.; Ahrens, B. Influence of sea surface roughness length parameterization on Mistral and Tramontane simulations. Adv. Sci. Res. 2016, 13, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Kueh, M.T.; Chen, W.M.; Sheng, Y.F.; Lin, S.C.; Wu, T.R.; Yen, E.; Tsai, Y.L.; Lin, C.Y. Effects of horizontal resolution and air–sea flux parameterization on the intensity and structure of simulated Typhoon Haiyan (2013). Nat. Hazards Earth Syst. Sci. 2019, 19, 1509–1539. [Google Scholar] [CrossRef] [Green Version]
- Powell, M.D.; Vickery, P.J.; Reinhold, T.A. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 2003, 422, 279–283. [Google Scholar] [CrossRef]
- Deshpande, M.; Singh, V.K.; Ganadhi, M.K.; Roxy, M.K.; Emmanuel, R.; Kumar, U. Changing status of tropical cyclones over the north Indian Ocean. Clim. Dyn. 2021, 57, 3545–3567. [Google Scholar] [CrossRef]
- Kumar, S.; Lal, P.; Kumar, A. Turbulence of tropical cyclone 'Fani' in the Bay of Bengal and Indian subcontinent. Nat. Hazards 2020, 103, 1613–1622. [Google Scholar] [CrossRef]
- Chatterjee, S. Analytical Study of North Indian Oceanic Cyclonic Disturbances with Special Reference to Extremely Severe Cyclonic Storm Fani: Meteorological Variability, India’s Preparedness with Terrible Aftermath. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 1–24. [Google Scholar]
- Nolan, D.S.; McNoldy, B.D.; Yunge, J. Evaluation of the surface wind field over land in WRF simulations of Hurricane Wilma (2005). Part I: Model initialization and simulation validation. Mon. Weather. Rev. 2021, 149, 679–695. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF; National Center for Atmospheric Research: Boulder, CO, USA, 2008; Version 3. [Google Scholar]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Lin, Y.L.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Appl. Meteorol. Climatol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multi parameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116, D12109. [Google Scholar] [CrossRef] [Green Version]
- Rennie, M.P.; Isaksen, L.; Weiler, F.; de Kloe, J.; Kanitz, T.; Reitebuch, O. The impact of Aeolus wind retrievals on ECMWF global weather forecasts. Q. J. R. Meteorol. Soc. 2021, 147, 3555–3586. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C.S. WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal. Appl. Energy 2014, 117, 116–126. [Google Scholar] [CrossRef]
- Demuth, J.L.; De Maria, M.; Knaff, J.A.; Vonder Haar, T.H. Evaluation of Advanced Microwave Sounding Unit tropical-cyclone intensity and size estimation algorithms. J. Appl. Meteorol. 2004, 43, 282–296. [Google Scholar] [CrossRef]
- Mei, W.; Pasquero, C.; Primeau, F. The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett. 2012, 39, L07801, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, J.; De Maria, M.; Knaff, J.A. A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Weather Forecast. 2010, 25, 220–241. [Google Scholar] [CrossRef]
- Shu, S.; Ming, J.; Chi, P. Large-scale characteristics and probability of rapidly intensifying tropical cyclones in the western North Pacific basin. Weather Forecast. 2012, 27, 411–423. [Google Scholar] [CrossRef]
- Wang, Y.; Rao, Y.; Tan, Z.M.; Schönemann, D. A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the western North Pacific. Mon. Weather. Rev. 2015, 143, 3434–3453. [Google Scholar] [CrossRef]
Dynamical Core | Non-Hydrostatic, WRF-ARW (Version 4.2) |
---|---|
Initial condition | GFS analysis (0.25° × 0.25°) |
Model resolution | 15 km × 15 km (D1; fixed domain) and 3 km × 3 km (D2; moving nested domain) |
Model time steps | 75 s (D1) and 15 s (D2) |
Vertical levels | 51 (first vertical level at 995 hPa with high resolution in the boundary layer) |
Cumulus parameterization | KF (used for outer domain only) [62] |
Microphysics | Lin [63] |
PBL scheme | YSU scheme [64] |
Short and long wave radiation | RRTM [65], Dudhia [66] |
Surface layer | Noah Land Surface model [67] |
Enthalpy coefficient | FLUX-1: experiment (Donelan Cd (drag coefficient for momentum) + constant Z0q for alternative Ck (exchange coefficient for temp and moisture)) FLUX-2: experiment (Donelan Cd + Garratt Ck) Garratt formulation, slightly different forms for heat and moisture. |
Number of grid points | 232 × 265 (D1) and 326 × 321 (D2) |
Forecast length and initialization | 4 days 12 h, 0000 UTC of 29 April 2019 |
Vortex interval | 15 min |
Track level | 850 hPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, K.S.; Nayak, S.; Maity, S.; Nayak, H.P.; Dutta, S. Prediction of Extremely Severe Cyclonic Storm “Fani” Using Moving Nested Domain. Atmosphere 2023, 14, 637. https://doi.org/10.3390/atmos14040637
Singh KS, Nayak S, Maity S, Nayak HP, Dutta S. Prediction of Extremely Severe Cyclonic Storm “Fani” Using Moving Nested Domain. Atmosphere. 2023; 14(4):637. https://doi.org/10.3390/atmos14040637
Chicago/Turabian StyleSingh, Kuvar Satya, Sridhara Nayak, Suman Maity, Hara Prasad Nayak, and Soma Dutta. 2023. "Prediction of Extremely Severe Cyclonic Storm “Fani” Using Moving Nested Domain" Atmosphere 14, no. 4: 637. https://doi.org/10.3390/atmos14040637
APA StyleSingh, K. S., Nayak, S., Maity, S., Nayak, H. P., & Dutta, S. (2023). Prediction of Extremely Severe Cyclonic Storm “Fani” Using Moving Nested Domain. Atmosphere, 14(4), 637. https://doi.org/10.3390/atmos14040637