Dynamic Response of Atmospheric and Ocean Parameters and Their Relation to Typhoon Haikui (2012) Using Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Typhoon Haikui Track Details
Data
- (1)
- Daily SST data were from NOAA SST/OISST_AVHRR. OISST is the abbreviation of optimum interpolation sea surface temperature [8]. It is ideal for research activities where complete, daily SST data is more desirable than one with missing data due to orbital gaps or environmental conditions precluding SST retrieval. The data has a spatial grid resolution of 0.25°.
- (2)
- Daily averaged wind data were from MERRA Daily Averaged v5.2.0. MERRA is a NASA reanalysis for the satellite era using a new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context [28].
- (3)
- Wind stress data were from ASCAT, the Advanced SCATterometer. ASCAT scatterometer represents the latest implementation of space-borne microwave wind-measuring scatterometry. The Advanced SCATterometer (ASCAT) is on board the Metop-A satellite. The prime objective of ASCAT is to measure wind speed and direction over the ocean. The instrumental description of ASCAT can be obtained from [29,30]. ASCAT uses an objective method to estimate daily averaged wind and wind stress fields over global oceans with spatial resolutions of 0.25°.
- (4)
- Daily precipitation data were collected from the merged GPCP (Global Precipitation Climatology Project). GPCP was established by the World Climate Research Program (WCRP) and Global Energy and Water Exchange (GEWEX) to develop a complete understanding of spatial and temporal patterns of global precipitation. GPCP provides community global precipitation products with satellite and daily rain gauge information [31].
- (5)
- The most typical optical sensors are used in the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor used for chlorophyll surveys with global algorithms [32]. Weekly chlorophyll data were from MODIS Aqua Chlorophyll-a level 3. The NASA Aqua satellite carries the MODIS sensor to observe chlorophyll-a concentrations in global oceans. The Level 3 standard mapped image (SMI) chlorophyll-a dataset has a weekly temporal resolution [32].
- (6)
- Weekly SSH data were acquired from AVISO TOPEX/ERS/Jason1 merged. The “sea surface height” [33,34,35] is a sea surface height anomaly, in which “sea surface height” at a point is defined as the deviation from a 7-year mean (1993–1999). AVISO has been distributing Topex/Poseidon and ERS altimetric data worldwide since 1992, and Jason-1 and Envisat since 2002. The data has a 1/3-degree spacing with weekly temporal resolution.
3. Results and Discussion
3.1. Variation in SST (Contour) and Wind (Vector) during Typhoon Haikui
3.2. Dynamic Response of Atmosphere–Ocean Parameters and Relations between them
3.3. Cumulative Precipitation of Haikui Typhoon Period
3.4. Post Dynamic Effect of Typhoon Haikui on the Ocean Surface
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palmén, E. On the formation and structure of tropical hurricanes. Geophysica 1948, 3, 26–38. [Google Scholar]
- Ho, C.R.; Chsng, Y.C.; Lee, Y.H.; Zheng, Z.W.; Huang, S.J.; Kuo, N.J. A Study of Typhoon Intensity Change Using Satellite Remote Sensing Data, NSC 98-2611-019-017-MY3; National Science Council of Taiwan: Taiwan, China, 2011. [Google Scholar]
- Lin, I.-I.; Liu, W.T.; Wu, C.; Chiang, J.C.H.; Sui, C. Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys. Res. Lett. 2003, 30, 1131–1134. [Google Scholar] [CrossRef]
- Xiao-xia, Y.; Dan, T. Location of sea surface temperature cooling induced by typhoon in the South China Sea. JTO 2010, 29, 26–31. [Google Scholar]
- Schade, L.R.; Emenuel, K.A. The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model. J. Atmos. Sci. 1999, 56, 642–651. [Google Scholar] [CrossRef]
- Ma, Y.; Hua, F.; Chen, L. Numerical Study on the Effect of Variations in Sea Surface Temperature on Intensity of Typhoon Haitang. Adv. Mar. Sci. 2007, 25, 453–459. [Google Scholar]
- Chen, Y.J.; Xie, Q.; Meng, W.G.; Yuan, J.N.; Wang, D.X. A Numerical Study of the Influence of Sea Surface Temperature with Different Temporal Resolutions on Typhoon DUJUAN over the South China Sea. J. Trop. Meteorol. 2010, 16, 195–200. [Google Scholar]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Emanuel, K.A. Thermodynamic control of hurricane intensity. Nature 1999, 401, 665–669. [Google Scholar] [CrossRef]
- Rodgers, E.B.; Adler, R.F.; Pierce, H.F. Contribution of tropical cyclones to the North Atlantic climatological rainfall as observed from satellites. Meteorology 2001, 40, 1785–1800. [Google Scholar] [CrossRef]
- Lina, Y.; Guirong, H.; Qin, D.; Yiwei, L.; Suya, C. The Analysis of Precipitation enhancement after Typhoon Haikui (1211) Landfalls. In Proceedings of the 31st Annual meeting of Chinese Meteorological Society, Nanjing, China, 16–19 October 2014; pp. 1–4. [Google Scholar]
- Haghroosta, T.; Ismail, W.R. Changes in Sea Surface Temperature and Precipitation Rate during Typhoons in the South China Sea. Int. J. Environ. Sci. Dev. 2013, 4, 390–392. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.Y.; Liu, Y.Q.; Zhang, L.Q. An Analysis on the Impact of Severe Tropical Storm “Maria” on the Torrential Heavy Rain in Shaogun. Guangdong Meteorol. 2001, 3, 5–7. [Google Scholar]
- Li, L.; Xu, J.; Jing, C.; Wu, R.; Guo, X. Annual variation of sea surface height, dynamic topography and circulation in the South China Sea. Sci. China 2003, 46, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Subrahmanyam, M.V. Impact of typhoon on the north-west Pacific sea surface temperature: A case study of Typhoon Kaemi (2006). Nat. Hazards 2015, 78, 569–582. [Google Scholar] [CrossRef]
- Sverdrup, H.U.; Johnson, M.W.; Fleming, R.H. The Oceans: Their Physics, Chemistry, and General Biology; Prentice-Hall: Englewood Cliffs, NJ, USA, 1942; 1087p. [Google Scholar]
- Fennel, W. Theory of the Benguela Upwelling System. J. Phys. Oceanogr. 1999, 29, 177–190. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, Y.; Wang, J.; Gong, W. Influence of a River Plume on Coastal Upwelling Dynamics: Importance of Stratification. J. Phys. Oceanogr. 2019, 49, 2345–2363. [Google Scholar] [CrossRef]
- Jullien, S.; Menkes, C.; Marchesiello, P.; Jourdain, N.; Lengaigne, M.; Koch-Larrouy, A.; Lefèvre, J.; Vincent, E.; Faure, V. Impact of Tropical Cyclones on the Heat Budget of the South Pacific Ocean. J. Phys. Oceanogr. 2012, 42, 1882–1906. [Google Scholar] [CrossRef] [Green Version]
- Fu, D.Y.; Ding, Y.Z.; Liu, D.Z.; Pan, D.L. Delayed effect of typhoon on marine chlorophyll-a concentration. J. Trop. Oceanogr. 2009, 28, 15–21. [Google Scholar]
- Hung, C.-C.; Gong, G.-C. Biogeochemical Responses in the Southern East Chin Sea after Typhoon. Oceanography 2011, 24, 42–51. [Google Scholar] [CrossRef]
- Chang, J.; Chung, C.C.; Gong, G.C. Influences of cyclones on chlorophyll a concentrations and Synechococcus abundance in a subtropical western Pacific coastal ecosystem. Mar. Ecol. Prog. Ser. 1996, 140, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.-L.; Cheney, R.E. Application of satellite altimetry to ocean circulation studies: 1987–1994. Rev. Geophys. 1995, 33, 213. [Google Scholar] [CrossRef]
- Jacobs, G.A. Sea surface height variations in the Yellow and East China Seas: 1. Linear response to local wind stress. J. Geophys. Res. Earth Surf. 1998, 103, 18459–18477. [Google Scholar] [CrossRef]
- Mei, W.; Primeau, F.; McWilliams, J.C.; Pasquero, C. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean. Proc. Natl. Acad. Sci. USA 2013, 110, 15207–15210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, L.; Xiaohe, C.; Jinyu, Z. Analysis of typhoon HAIKUI’s track and intensity. J. Minjiang Univ. 2013, 34, 128–131. [Google Scholar]
- Chu, J.-H.; Sampson, C.R.; Levine, A.S.; Fukada, E. The Joint Typhoon Warning Center Tropical Cyclone Best-Tracks, 1945–2000; Rep. NRL/MR/7540-02-16; U.S. Naval Research Laboratory: Washington, DC, USA, 2002; 22p. [Google Scholar]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.-K.; et al. MERRA: NASA’s Modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Figa-Saldaña, J.; Wilson, J.J.W.; Attema, E.; Gelsthorpe, R.; Drinkwater, M.R.; Stoffelen, A. The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers. Can. J. Remote Sens. 2002, 28, 404–412. [Google Scholar] [CrossRef]
- Gelsthorpe, R.V.; Schied, E.; Wilson, J.J.W. ASCAT—Metop’s Advanced Scatterometer; ESA Publications Bulletin: Noordwijk, The Netherland, 2000. [Google Scholar]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global Precipitation at One-Degree Daily Resolution from Multi Satellite Observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef]
- Esaias, W.; Abbott, M.; Barton, I.; Brown, O.B.; Campbell, J.W.; Carder, K.L.; Clark, D.K.; Evans, R.H.; Hoge, F.E.; Gordon, H.R.; et al. An overview of MODIS capabilities for ocean science observations. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1250–1265. [Google Scholar] [CrossRef] [Green Version]
- Shaw, P.-T.; Chao, S.-Y.; Fu, L.-L. Sea surface height variations in the South China Sea from satellite altimetry. Oceanol. Acta 1999, 22, 117. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.-R.; Zheng, Q.; Soong, Y.S.; Kuo, N.-J.; Hu, J.-H. Seasonal variability of sea surface height in the South China Sea observed with TOPEX/Poseidon altimeter data. J. Geophys. Res. Earth Surf. 2000, 105, 13981–13990. [Google Scholar] [CrossRef]
- Qinyu, L.; Yinglai, J.; Xiaohua, W.; Haijun, Y. On the annual cycle characteristics of the sea surface height in the South China Sea. Adv. Atmos. Sci. 2001, 18, 613622. [Google Scholar] [CrossRef]
- Talley, L.D.; Pickard, G.L.; Emery, W.J.; Switft, J.H. Switft Descriptive Physical Oceanography: An Introduction, 6th ed.; Elsevier: London, UK, 2011; Volume 69–145, pp. 194–200. [Google Scholar]
- Mei, W.; Pasquero, C.; Primeau, F. The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett. 2012, 39, L07801. [Google Scholar] [CrossRef] [Green Version]
- Bender, M.A.; Ginis, I.; Kurihara, Y. Numerical simulations of tropical cyclone-ocean interaction with a high resolution coupled model. J. Geophys. Res. 1993, 98, 23245–23263. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, D.L. The impact of the storm-induced SST cooling on hurricane intensity. Adv. Atmos. Sci. 2006, 23, 14–22. [Google Scholar] [CrossRef] [Green Version]
- YongQiang, C.; DanLing, T. Remote Sensing Analysis of Impact of Typhoon on Environment in the Sea Area South of Hainan Island. Procedia Environ. Sci. 2011, 10, 1621–1629. [Google Scholar] [CrossRef] [Green Version]
- Stewart, R.H. Introduction to Physical Oceanography; Texas A & M University: College Station, TX, USA, 2008. [Google Scholar]
- Chelton, D.B.; Esbensen, S.K.; Schlax, M.G.; Thum, N.; Freilich, M.H.; Wentz, F.J.; Gentemann, C.L.; McPhaden, M.J.; Schopf, P.S. Observations of Coupling between Surface Wind Stress and Sea Surface Temperature in the Eastern Tropical Pacific. J. Clim. 2001, 14, 1479–1498. [Google Scholar] [CrossRef]
- Gill, A.E. Atmosphere–Ocean Dynamics; Academic Press: Cambridge, MA, USA, 1982; 662p. [Google Scholar]
- Cushman-Roisin, B. Introduction to Geophysical Fluid Dynamics; Prentice Hall: Hoboken, NJ, USA, 1994; 320p. [Google Scholar]
- Pickett, M.H. Ekman transport and pumping in the California Current based on the U.S. Navy’s high-resolution atmospheric model (COAMPS). J. Geophys. Res. Atmos. 2003, 108, 3327. [Google Scholar] [CrossRef]
- Tsai, Y.; Chern, C.-S.; Wang, J. The upper ocean response to a moving typhoon. J. Oceanogr. 2008, 64, 115–130. [Google Scholar] [CrossRef]
- Siswanto, E.; Morimoto, A.; Kojima, S. Enhancement of phytoplankton primary productivity in the southern East China Sea following episodic typhoon passage. Geophys. Res. Lett. 2009, 36, L11603. [Google Scholar] [CrossRef]
- Chang, Y.; Liao, H.T.; Lee, M.A.; Chan, J.W.; Shieh, W.J.; Lee, K.T.; Wang, G.H.; Lan, Y.C. Multisatellite observation on upwelling after the passing of Typhoon Hai-Tang in the southern East China Sea. Geophys. Res. Lett. 2008, 35, L03612. [Google Scholar] [CrossRef]
- Lonfat, M.; Marks, F.D., Jr.; Chen, S.S. Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A Global Perspective. Mon. Weather Rev. 2004, 132, 1645–1660. [Google Scholar] [CrossRef]
- Prat, O.P.; Nelson, B.R. Precipitation Contribution of Tropical Cyclones in the Southeastern United States from 1998 to 2009 Using TRMM Satellite Data. J. Clim. 2012, 26, 1047–1062. [Google Scholar] [CrossRef]
- Yunhui, C.; Ming, W.; Wu Fan, T.C.; Xuecheng, Q. Analysis of the Cause of Precipitation Difference Induced by the Typhoons “Jelawat” and “Haikui” with Similar Tracks. Meteorol. Disaster Reduct. Res. 2014, 37, 18–23. [Google Scholar]
- Chen, S.S.; Knaff, J.A.; Marks, F.D., Jr. Effects of Vertical Wind Shear and Storm Motion on Tropical Cyclone Rainfall Asymmetries Deduced from TRMM. Mon. Weather Rev. 2006, 134, 3190–3208. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, C. Improved scheme of axisymmetric typhoon bogus model and its impact on numerical simulation of No.0425 Typhoon. J. Trop. Meteor. 2007, 23, 237–245. (In Chinese) [Google Scholar]
- Price, J.F. Upper ocean response to a hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef]
- Hu, J.; Kawamura, H. Detection of cyclonic eddy generated by looping tropical cyclone in the northern South China Sea a case study. Acta Oceanol. Sin. 2004, 23, 213–224. [Google Scholar]
- Yang, Y.; Xian, T.; Sun, L.; Fu, Y.; Xun, S. Impacts of sequential typhoons on sea surface temperature and sea surface height in September 2008. Acta Oceanol. Sin. 2012, 34, 71–78. [Google Scholar]
- Feng, G.; Subrahmanyam, M.V. Chlorophyll variations over coastal area of China due to typhoon Rananim. IJMS 2018, 47, 804–811. [Google Scholar]
- Yang, D.F.L.; Gao, Z.H.; Qin, J.; Huo, S.X.; Li, Z.Q. The Complementary Mechanism of Nutrient Silicon in the Earth Ecosystem. Adv. Mar. Sci. 2006, 24, 407–412. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Subrahmanyam, M.V.; Wang, L.; Guo, B. Dynamic Response of Atmospheric and Ocean Parameters and Their Relation to Typhoon Haikui (2012) Using Satellite Data. Atmosphere 2023, 14, 518. https://doi.org/10.3390/atmos14030518
Zhu W, Subrahmanyam MV, Wang L, Guo B. Dynamic Response of Atmospheric and Ocean Parameters and Their Relation to Typhoon Haikui (2012) Using Satellite Data. Atmosphere. 2023; 14(3):518. https://doi.org/10.3390/atmos14030518
Chicago/Turabian StyleZhu, Wangyuan, Mantravadi Venkata Subrahmanyam, Liuzhu Wang, and Biyun Guo. 2023. "Dynamic Response of Atmospheric and Ocean Parameters and Their Relation to Typhoon Haikui (2012) Using Satellite Data" Atmosphere 14, no. 3: 518. https://doi.org/10.3390/atmos14030518
APA StyleZhu, W., Subrahmanyam, M. V., Wang, L., & Guo, B. (2023). Dynamic Response of Atmospheric and Ocean Parameters and Their Relation to Typhoon Haikui (2012) Using Satellite Data. Atmosphere, 14(3), 518. https://doi.org/10.3390/atmos14030518