Study on the Impact of Typhoon Maria (2018) on Suspended Sediment in Hangzhou Bay, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Typhoon “Maria”
2.3. Data
2.3.1. Wave and Current
2.3.2. Wind and Rainfall
2.3.3. GOCI Image
2.4. Methods
2.4.1. Remote Sensing Inversion Method of Suspended Sediment
2.4.2. Study Methods of Current
2.4.3. Study Methods of Wind Stress
3. Result and Analysis
3.1. The Distribution of SSC in HZB Induced by Typhoon Maria
3.2. The Response of SSC to Wind and Wave Height during “Maria”
3.3. The Impact of Rainfall on SSC
3.4. Influence of “Maria” on the Suspended Sediment Transport
3.4.1. Influence of Residual Current
3.4.2. Influence of Wind Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Byun, D.S.; Wang, X.H.; Zavatarelli, M.; Cho, Y.K. Effects of resuspended sediments and vertical mixing on phytoplankton spring bloom dynamics in a tidal estuarine embayment. J. Mar. Syst. 2007, 67, 102–118. [Google Scholar] [CrossRef]
- Doxaran, D.; Froidefond, J.M.; Castaing, P.; Babin, M. Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data. Estuar. Coast. Shelf Sci. 2009, 81, 321–332. [Google Scholar] [CrossRef]
- Mao, Z.; Chen, J.; Pan, D.; Tao, B.; Zhu, Q. A regional remote sensing algorithm for total suspended matter in the East China Sea. Remote Sens. Environ. 2012, 124, 819–831. [Google Scholar] [CrossRef]
- Chalov, S.; Prokopeva, K.; Habel, M. North to South Variations in the Suspended Sediment Transport Budget within Large Siberian River Deltas Revealed by Remote Sensing Data. Remote Sens. 2021, 13, 4549. [Google Scholar] [CrossRef]
- Chen, S.L.; Zhang, G.A.; Yang, S.L.; Yu, Z.Y. Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River estuary and its adjacent waters. Acta Geogr. Sin. 2004, 59, 260–266. [Google Scholar] [CrossRef]
- Zhu, Y.H. Spatiotemporal Dynamics and Driving Factors of Suspended Sediment Concentration in the Yellow River Eatuary and Its Adjacent Waters Based on GOCI Images. Master’s Thesis, East China Normal University, Shanghai, China, 2022. [Google Scholar]
- Yang, S.; Fan, J.; Shi, B.; Bouma, T.; Shi, F. Remote impacts of typhoons on the hydrodynamics, sediment transport and bed stability of an intertidal wetland in the Yangtze Delta. J. Hydrol. 2019, 575, 755–766. [Google Scholar] [CrossRef]
- Liu, H.; He, Q.; Wang, Z.; Weltje, G.; Zhang, J. Dynamics and spatial variability of near-bottom sediment exchange in the Yangtze Estuary, China. Estuar. Coast. Shelf Sci. 2010, 86, 322–330. [Google Scholar] [CrossRef]
- Thompson, C.; Kassem, H.; Williams, J. Nearshore sediment resuspension and bed morphology. J. Coast. Res. 2013, 65, 1593–1598. [Google Scholar] [CrossRef]
- Green, M.; Coco, G. Review of wave-driven sediment resuspension and transport in estuaries. Rev. Geophys. 2014, 52, 77–117. [Google Scholar] [CrossRef]
- Tang, R.; Shen, F.; Ge, J.Z.; Yang, S.L.; Gao, W.L. Investigating typhoon impact on SSC through hourly satellite and real-time field observations: A case study of the Yangtze Estuary. Cont. Shelf Res. 2021, 224, 104475. [Google Scholar] [CrossRef]
- Chau, P.M.; Wang, C.-K.; Huang, A.-T. The Spatial-Temporal Distribution of GOCI-Derived Suspended Sediment in Taiwan Coastal Water Induced by Typhoon Soudelor. Remote Sens. 2021, 13, 194. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, J.; Xie, D. Impact of SSC distribution in Hangzhou Bay after 1307 typhoon through satellite images. Hydro-Sci. Eng. 2021, 6, 9–16. [Google Scholar] [CrossRef]
- Li, L.; Shen, F.; He, Z.; Yu, Z. Suspended sediment dynamics in macrotidal turbid Hangzhou Bay during Typhoon Chan-hom. Front. Earth Sci. 2022, 10, 932149. [Google Scholar] [CrossRef]
- Rankey, E.C.; Enos, P.; Steffen, K.; Druke, D. Lack of impact of hurricane Michelle on tidal flats, Andros Island, Bahamas: Integrated remote sensing and field observations. J. Sediment. Res. 2004, 74, 654–661. [Google Scholar] [CrossRef]
- Xie, W.M.; He, Q.; Zhang, K.Q.; Guo, L.C.; Wang, X.Y.; Shen, J.; Cui, Z. Application of terrestrial laser scanner on tidal flat morphology at a typhoon event timescale. Geomorphology 2017, 292, 47–58. [Google Scholar] [CrossRef]
- Li, P.; Yang, S.L.; Milliman, J.D.; Xu, K.H.; Qin, W.H.; Wu, C.S.; Chen, Y.P.; Shi, B.W. Spatial, temporal, and human-induced variations in suspended sediment concentration in the surface waters of the Yangtze Estuary and adjacent coastal areas. Estuaries Coasts 2012, 35, 1316–1327. [Google Scholar] [CrossRef]
- Ren, J.B. Wave Dynamics and Its Impact on Sediment Transport under Typhoons in the Changjiang Estuary. Ph.D. Thesis, East China Normal University, Shanghai, China, 2020. [Google Scholar]
- Hu, Y.; Yu, Z.; Zhou, B.; Li, Y.; Yin, S.; He, X.; Peng, X.; Shum, C.K. Tidal-driven variation of suspended sediment in Hangzhou Bay based on GOCI data. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101920. [Google Scholar] [CrossRef]
- Li, Y.D.; Li, X.F. Remote sensing observations and numerical studies of a super typhoon-induced suspended sediment concentration variation in the East China Sea. Ocean Model. 2016, 104, 187–202. [Google Scholar] [CrossRef]
- Zhou, Y.; Xuan, J.; Huang, D. Tidal variation of total suspended solids over the Yangtze Bank based on the geostationary ocean color imager. Sci. China Earth Sci. 2020, 63, 1381–1389. [Google Scholar] [CrossRef]
- Su, J.; Wang, K. Changjiang River plume and suspended sediment transport in Hangzhou. Cont. Shelf Res. 1989, 9, 93–111. [Google Scholar] [CrossRef]
- Xie, D.; Wang, Z.; Gao, S.; De Vriend, H.J. Modeling the tidal channel morphodynamics in a macro-tidal embayment, Hangzhou Bay, China. Cont. Shelf Res. 2009, 29, 1757–1767. [Google Scholar] [CrossRef]
- Ding, P.X.; Hu, K.L.; Kong, Y.Z. Numerical simulation of storm induced erosion/ deposition in Changjiang estuary—A case study of typhoon Jelawat. J. Sediment Res. 2003, 6, 18–24. [Google Scholar] [CrossRef]
- Bian, C.W.; Jiang, W.S.; Song, D.H. Terrigenous transportation to the Okinawa Trough and the influence of typhoons on suspended sediment concentration. Cont. Shelf Res. 2010, 30, 1189–1199. [Google Scholar] [CrossRef]
- Achman, D.; Brownawell, B.; Zhang, L. Exchange of Polychlorinated Biphenyls between Sediment and Water in the Hudson River Estuary. Estuaries 1996, 19, 950–965. [Google Scholar] [CrossRef]
- Wang, H.B.; Yang, S.L.; Yang, H.F. A study of the surficial suspended sediment concertration in response to typhoons in the Yangtze Estuary. J. East China Norm. Univ. (Nat. Sci. Ed.) 2019, 2, 195–208. [Google Scholar]
- Lu, C.; Jia, X.; Han, Y.; Bai, Y. Numerical simulation of sudden silting in the Yangtze Estuary deepwater channel by the wave of typhoon. Adv. Water Sci. 2018, 29, 697–705. [Google Scholar]
- Christie, M.; Dyer, K.; Turner, P. Sediment Flux and Bed Level Measurements from a Macro Tidal Mudflat. Estuar. Coast. Shelf Sci. 1990, 49, 667–688. [Google Scholar] [CrossRef]
- Shen, Q.; Huang, W.; Qi, D. Integrated Modeling of Typhoon Damrey’s Effects on Sediment Resuspension and Transport in the North Passage of Changjiang Estuary, China. J. Waterw. Port Coast. Ocean. Eng. 2018, 144, 04018015. [Google Scholar] [CrossRef]
- Brand, A.; Lacy, J.; Hsu, K.; Hoover, D.; Gladding, S.; Stacey, M. Wind-enhanced resuspension in the shallow waters of South San Francisco Bay: Mechanisms and potential implications for cohesive sediment transport. J. Geophys. Res. 2010, 115, C11024. [Google Scholar] [CrossRef]
- Lawson, S.; Wiberg, P.; McGlathery, K.; Fugate, D. Wind-driven sediment suspension controls light availability in a shallow coastal lagoon. Estuaries Coasts 2007, 30, 102–112. [Google Scholar] [CrossRef]
- Miao, L.; Yang, S.; Zhu, Q. Variation of suspended sediment concentrations and transport in response to a storm and its dynamic mechanism—A study case of Nanhui tidal flat of the Yangtze River Delta. Haiyang Xuebao 2016, 38, 158–167. [Google Scholar]
- Zhang, M.C.; Guo, B.Y. Retrieval of Suspended Sediment Concentration in Zhoushan Coastal Area Satellite Based on GF-1. Ocean development and management. Ocean. Dev. Manag. 2018, 35, 126–131. [Google Scholar]
- Wang, K. Study on the Spatial-Temporal Features of Disastrous Marine Dynamic Process and Its Effects on Hazard-Bearing Body under the Influence of Typhoon. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2020. [Google Scholar]
- Xu, S. Sediment Dynamical Processes in the South Passage of the Yangtze Estuary during the Typhoon Lan. Master’s Thesis, East China Normal University, Shanghai, China, 2020. [Google Scholar]
- Choi, J.K.; Park, Y.J.; Ahn, J.H.; Lim, H.S.; Eom, J.; Ryu, J.H. GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity. J. Geophys. Res. Oceans 2012, 117, 4357–4360. [Google Scholar] [CrossRef]
- Deng, S.B.; Chen, Q.J.; Du, H.J.; Xu, H. Image Processing Method in ENVI (Second Edition); Higher Education Press: Beijing, China, 2014; pp. 308–310. [Google Scholar]
- Jiang, B.B.; Zhang, X.Y.; Huang, D.S. Retrieving high concentration of suspended sediments based on GOCI: An example of coastal water around Hangzhou Bay, China. J. Zhejiang Univ. (Sci. Ed.) 2015, 42, 213–220. [Google Scholar]
- He, X.; Bai, Y.; Pan, D.; Huang, N.; Dong, X.; Chen, J. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters. Remote Sens. Environ. 2013, 133, 225–239. [Google Scholar] [CrossRef]
- He, X.; Bai, Y.; Pan, D.; Tang, J.; Wang, D. Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters. Opt. Express 2012, 20, 20754. [Google Scholar] [CrossRef]
- Robinson, I.S. Chapter 7 Tidally Induced Residual Flows. In Oceanography; Elsevier: Amsterdam, The Netherlands, 1983; pp. 321–356. [Google Scholar]
- Kurt, J.; George, L.; Marlene, A. Strongly-sheared wind-forced currents in the nearshore regions of the central Southern California Bight. Cont. Shelf Res. 2015, 106, 1–16. [Google Scholar] [CrossRef]
- Chen, Y.J.; Cheng, P. Characteristics and dynamics of tidal residual circulations in the eastern China seas. Mar. Sci. Bull. 2021, 40, 398. [Google Scholar]
- Zhao, B.R.; Fang, G.H.; Cao, D.M. Characteristics of tidal residual currents and their relations with coastal current transports in the Bohai Sea, Yellow Sea and East China Sea. Stud. Mar. Sin. 1995, 36, 1–11. [Google Scholar]
- Talley, L.D.; Pickard, G.L.; Emery, W.J.; Swift, J.H. Descriptive Physical Oceanography (Sixth Edition); Academic Press: London, UK, 2011; pp. 197–200. [Google Scholar]
- Cai, L.; Tang, D.; Li, X.; Zheng, H.; Shao, W. Remote sensing of spatial-temporal distribution of suspended sediment and analysis of related environmental factors in Hangzhou Bay, China. Remote Sens. Lett. 2015, 6, 597–603. [Google Scholar] [CrossRef]
- Zhao, G.B.; Bian, C.W.; Xu, J.P. A field study of shear stress and suspended sediment concentration in the bottom boundary layer under the influences of tidal currents and wind waves. Period. Ocean. Univ. China 2019, 49, 83–91. [Google Scholar]
- Du, Y.; Lin, H.; He, S.; Wang, D.; Wang, Y.P.; Zhang, J. Tide-Induced Variability and Mechanisms of Surface Suspended Sediment in the Zhoushan Archipelago along the Southeastern Coast of China Based on GOCI Data. Remote Sens. 2021, 13, 929. [Google Scholar] [CrossRef]
Time | Image Name | Tidal Range/cm | |
---|---|---|---|
8/7/2018 (3 days before typhoon) | 8:00 | COMS_GOCI_L1B_GA_20180708001640 | 356 |
11:00 | COMS_GOCI_L1B_GA_20180708031640 | ||
15:00 | COMS_GOCI_L1B_GA_20180708071640 | ||
10/7/2018 (1 day before typhoon) | 8:00 | COMS_GOCI_L1B_GA_20180710001643 | 450 |
10:00 | COMS_GOCI_L1B_GA_20180710021642 | ||
15:00 | COMS_GOCI_L1B_GA_20180710071642 | ||
12/7/2018 (1 day after typhoon) | 8:00 | COMS_GOCI_L1B_GA_20180712001640 | 535 |
9:00 | COMS_GOCI_L1B_GA_20180712011640 | ||
12:00 | COMS_GOCI_L1B_GA_20180712041640 | ||
13/7/2018 (2 days after typhoon) | 8:00 | COMS_GOCI_L1B_GA_20180713001643 | 630 |
11:00 | COMS_GOCI_L1B_GA_20180713031643 | ||
13:00 | COMS_GOCI_L1B_GA_20180713051643 |
Station | Location | Region | Depth |
---|---|---|---|
S1 | South bank | <7 m | |
S2 | North bank | <14 m | |
S3 | North bank | <8 m | |
S4 | Yangshan | <9 m | |
S5 | Zhoushan | <14m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Z.; Guo, B.; Mantravadi, V.S.; Wang, J.; Che, Y. Study on the Impact of Typhoon Maria (2018) on Suspended Sediment in Hangzhou Bay, China. Atmosphere 2023, 14, 721. https://doi.org/10.3390/atmos14040721
Ji Z, Guo B, Mantravadi VS, Wang J, Che Y. Study on the Impact of Typhoon Maria (2018) on Suspended Sediment in Hangzhou Bay, China. Atmosphere. 2023; 14(4):721. https://doi.org/10.3390/atmos14040721
Chicago/Turabian StyleJi, Zhaokang, Biyun Guo, Venkata Subrahmanyam Mantravadi, Jushang Wang, and Yingliang Che. 2023. "Study on the Impact of Typhoon Maria (2018) on Suspended Sediment in Hangzhou Bay, China" Atmosphere 14, no. 4: 721. https://doi.org/10.3390/atmos14040721
APA StyleJi, Z., Guo, B., Mantravadi, V. S., Wang, J., & Che, Y. (2023). Study on the Impact of Typhoon Maria (2018) on Suspended Sediment in Hangzhou Bay, China. Atmosphere, 14(4), 721. https://doi.org/10.3390/atmos14040721