Mixture Regression for Clustering Atmospheric-Sounding Data: A Study of the Relationship between Temperature Inversions and PM10 Concentrations
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Pre-Processing of Atmospheric-Sounding Data
2.3. SMIXS
2.4. Clustering Atmospheric-Sounding Data
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. BIC Plot
Cluster | 10 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|
Max. temp. () | 2.4 | 3.8 | 4.0 | 5.8 | 7.0 |
Cluster | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean slope | −0.04 | −0.03 | −0.02 | −0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.03 | 0.03 | 0.04 | 0.06 | 0.07 |
References
- Gramsch, E.; Cáceres, D.; Oyola, P.; Reyes, F.; Vásquez, Y.; Rubio, M.; Sánchez, G. Influence of surface and subsidence thermal inversion on PM2. 5 and black carbon concentration. Atmos. Environ. 2014, 98, 290–298. [Google Scholar] [CrossRef]
- Milionis, A.; Davies, T. Associations between atmospheric temperature inversions and vertical wind profiles: A preliminary assessment. Meteorol. Appl. 2002, 9, 223–228. [Google Scholar] [CrossRef]
- Glojek, K.; Močnik, G.; Alas, H.D.C.; Cuesta-Mosquera, A.; Drinovec, L.; Gregorič, A.; Ogrin, M.; Weinhold, K.; Ježek, I.; Müller, T.; et al. The impact of temperature inversions on black carbon and particle mass concentrations in a mountainous area. Atmos. Chem. Phys. 2022, 22, 5577–5601. [Google Scholar] [CrossRef]
- Xu, T.; Song, Y.; Liu, M.; Cai, X.; Zhang, H.; Guo, J.; Zhu, T. Temperature inversions in severe polluted days derived from radiosonde data in North China from 2011 to 2016. Sci. Total Environ. 2019, 647, 1011–1020. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Cheung, K.; Daher, N.; Kam, W.; Shafer, M.M.; Ning, Z.; Schauer, J.J.; Sioutas, C. Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles area. Atmos. Environ. 2011, 45, 2651–2662. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, Y.; Liu, B.; Li, H.; Jin, S.; Zhang, Y.; Fan, R.; Gong, W. Estimation of the vertical distribution of particle matter (PM 2.5) concentration and its transport flux from lidar measurements based on machine learning algorithms. Atmos. Chem. Phys. 2021, 21, 17003–17016. [Google Scholar] [CrossRef]
- Poberžnik, M.; Štrumbelj, E. The effects of air mass transport, seasonality, and meteorology on pollutant levels at the Iskrba regional background station (1996–2014). Atmos. Environ. 2016, 134, 138–146. [Google Scholar] [CrossRef]
- Wu, W.; Zha, Y.; Zhang, J.; Gao, J.; He, J. A temperature inversion-induced air pollution process as analyzed from Mie LiDAR data. Sci. Total Environ. 2014, 479, 102–108. [Google Scholar] [CrossRef]
- Janhäll, S.; Olofson, K.F.G.; Andersson, P.U.; Pettersson, J.B.; Hallquist, M. Evolution of the urban aerosol during winter temperature inversion episodes. Atmos. Environ. 2006, 40, 5355–5366. [Google Scholar] [CrossRef]
- Liu, B.; Ma, X.; Ma, Y.; Li, H.; Jin, S.; Fan, R.; Gong, W. The relationship between atmospheric boundary layer and temperature inversion layer and their aerosol capture capabilities. Atmos. Res. 2022, 271, 106121. [Google Scholar] [CrossRef]
- Li, H.; Liu, B.; Ma, X.; Ma, Y.; Jin, S.; Fan, R.; Wang, W.; Fang, J.; Zhao, Y.; Gong, W. The Influence of Temperature Inversion on the Vertical Distribution of Aerosols. Remote Sens. 2022, 14, 4428. [Google Scholar] [CrossRef]
- Liu, B.; Ma, Y.; Shi, Y.; Jin, S.; Jin, Y.; Gong, W. The characteristics and sources of the aerosols within the nocturnal residual layer over Wuhan, China. Atmos. Res. 2020, 241, 104959. [Google Scholar] [CrossRef]
- Shao, M.; Xu, X.; Lu, Y.; Dai, Q. Spatio-temporally differentiated impacts of temperature inversion on surface PM2. 5 in eastern China. Sci. Total Environ. 2023, 855, 158785. [Google Scholar] [CrossRef] [PubMed]
- Kikaj, D.; Vaupotič, J.; Chambers, S.D. Identifying persistent temperature inversion events in a subalpine basin using radon-222. Atmos. Meas. Tech. 2019, 12, 4455–4477. [Google Scholar] [CrossRef] [Green Version]
- Yin, P.Y.; Chang, R.I.; Day, R.F.; Lin, Y.C.; Hu, C.Y. Improving PM2. 5 concentration forecast with the identification of temperature inversion. Appl. Sci. 2022, 12, 71. [Google Scholar] [CrossRef]
- Łupikasza, E.B.; Niedźwiedź, T. Relationships between Vertical Temperature Gradients and PM10 Concentrations during Selected Weather Conditions in Upper Silesia (Southern Poland). Atmosphere 2022, 13, 125. [Google Scholar] [CrossRef]
- Huang, Q.; Chu, Y.; Li, Q. Climatology of low-level temperature inversions over China based on high-resolution radiosonde measurements. Theor. Appl. Climatol. 2021, 144, 415–429. [Google Scholar] [CrossRef]
- Bailey, A.; Chase, T.N.; Cassano, J.J.; Noone, D. Changing temperature inversion characteristics in the US Southwest and relationships to large-scale atmospheric circulation. JAMC 2011, 50, 1307–1323. [Google Scholar]
- Li, J.; Chen, H.; Li, Z.; Wang, P.; Cribb, M.; Fan, X. Low-level temperature inversions and their effect on aerosol condensation nuclei concentrations under different large-scale synoptic circulations. Adv. Atmos. Sci. 2015, 32, 898–908. [Google Scholar] [CrossRef]
- Guo, J.; Chen, X.; Su, T.; Liu, L.; Zheng, Y.; Chen, D.; Li, J.; Xu, H.; Lv, Y.; He, B.; et al. The climatology of lower tropospheric temperature inversions in China from radiosonde measurements: Roles of black carbon, local meteorology, and large-scale subsidence. J. Clim. 2020, 33, 9327–9350. [Google Scholar] [CrossRef]
- Kahl, J.D. Characteristics of the low-level temperature inversion along the Alaskan Arctic coast. Int. J. Climatol. 1990, 10, 537–548. [Google Scholar] [CrossRef]
- Milan, M.; Haimberger, L. Predictors and grouping for bias correction of radiosonde temperature observations. J. Geophys. Res. Atmos. 2015, 120, 10–736. [Google Scholar] [CrossRef]
- Kong, D.; Ning, G.; Wang, S.; Cong, J.; Luo, M.; Ni, X.; Ma, M. Clustering diurnal cycles of day-to-day temperature change to understand their impacts on air quality forecasting in mountain-basin areas. Atmos. Chem. Phys. 2021, 21, 14493–14505. [Google Scholar] [CrossRef]
- Truong, S.; Huang, Y.; Lang, F.; Messmer, M.; Simmonds, I.; Siems, S.; Manton, M. A climatology of the marine atmospheric boundary layer over the Southern Ocean from four field campaigns during 2016–2018. J. Geophys. Res. Atmos. 2020, 125, e2020JD033214. [Google Scholar] [CrossRef]
- Govender, P.; Sivakumar, V. Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmos. Pollut. Res. 2020, 11, 40–56. [Google Scholar] [CrossRef]
- Saeipourdizaj, P.; Musavi, S.; Gholampour, A.; Sarbakhsh, P. Clustering the Concentrations of PM10 and O3: Application of Spatiotemporal Model–Based Clustering. Environ. Model. Assess. 2022, 1–10. [Google Scholar] [CrossRef]
- Nidzgorska-Lencewicz, J.; Czarnecka, M. Thermal inversion and particulate matter concentration in Wrocław in the winter season. Atmosphere 2020, 11, 1351. [Google Scholar] [CrossRef]
- Czarnecka, M.; Nidzgorska-Lencewicz, J.; Rawicki, K. Temporal structure of thermal inversions in Łeba (Poland). Theor. Appl. Climatol. 2019, 136, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pérez, I.; Sánchez, M.; García, M.; Pardo, N. Boundaries of air mass trajectory clustering: Key points and applications. Int. J. Environ. Sci. Technol. 2017, 14, 653–662. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, A.; Dmitriev, E.; Maksimovich, E.; Delbarre, H.; Augustin, P.; Gengembre, C.; Fourmentin, M.; Locoge, N. Cluster analysis of atmospheric dynamics and pollution transport in a coastal area. Bound. Layer Meteorol. 2016, 161, 237–264. [Google Scholar] [CrossRef]
- Mlakar, P.; Nummi, T.; Oblak, P.; Pucer, J.F. SMIXS: Novel efficient algorithm for non-parametric mixture regression-based clustering. arXiv 2022, arXiv:2209.09030. [Google Scholar]
- Pucer Faganeli, J.; Štrumbelj, E. Impact of changes in climate on air pollution in Slovenia between 2002 and 2017. Environ. Pollut. 2018, 242, 398–406. [Google Scholar] [CrossRef]
- Bec, D.; Ciglenečki, D. P.D.L.M.G.M.K.T.K.M.L.L.M.M.M.M.R.R.Ž. Kakovost zraka v Sloveniji v letu 2021. Technical Report, ARSO. 2021. Available online: https://igs.org/news/igs-technical-report-2021/ (accessed on 1 January 2023).
- Largeron, Y.; Staquet, C. Persistent inversion dynamics and wintertime PM10 air pollution in Alpine valleys. Atmos. Environ. 2016, 135, 92–108. [Google Scholar] [CrossRef]
- Slovenian Environment Agency. 2022. Available online: https://www.arso.gov.si/en/ (accessed on 13 September 2022).
- Golden, J.; Serafin, R.; Lally, V.; Facundo, J. Atmospheric sounding systems. In Mesoscale Meteorology and Forecasting; Springer: Berlin/Heidelberg, Germany, 1986; pp. 50–70. [Google Scholar]
- Prasad, P.; Basha, G.; Ratnam, M.V. Is the atmospheric boundary layer altitude or the strong thermal inversions that control the vertical extent of aerosols? Sci. Total Environ. 2022, 802, 149758. [Google Scholar] [CrossRef]
- Haeger-Eugensson, M.; Holmer, B. Advection caused by the urban heat island circulation as a regulating factor on the nocturnal urban heat island. Int. J. Climatol. J. R. Meteorol. Soc. 1999, 19, 975–988. [Google Scholar] [CrossRef]
- European Council. Directive 2008/50/EC of the European Parliament and of the Council. Decision of Council. 2008. Available online: https://www.consilium.europa.eu/en/european-council/ (accessed on 1 January 2023).
- Nummi, T.; Salonen, J.; Koskinen, L.; Pan, J. A semiparametric mixture regression model for longitudinal data. J. Stat. Theory Pract. 2018, 12, 12–22. [Google Scholar] [CrossRef] [Green Version]
- McLachlan, G.J.; Lee, S.X.; Rathnayake, S.I. Finite mixture models. Annu. Rev. Stat. Its Appl. 2019, 6, 355–378. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Mlakar, P. The Use of Mixture Regression in Machine Learning. Ph.D. Thesis, Univerza v Ljubljani, Ljubljanatel, Slovenia, 2021. [Google Scholar]
- Lee, S.W.; Kim, S.; Lee, Y.S.; Choi, B.I.; Kang, W.; Oh, Y.K.; Park, S.; Yoo, J.K.; Lee, J.; Lee, S.; et al. Radiation correction and uncertainty evaluation of RS41 temperature sensors by using an upper-air simulator. Atmos. Meas. Tech. 2022, 15, 1107–1121. [Google Scholar] [CrossRef]
- Faganeli Pucer, J.; Pirš, G.; Štrumbelj, E. A Bayesian approach to forecasting daily air-pollutant levels. KAIS 2018, 57, 635–654. [Google Scholar] [CrossRef]
- Niedźwiedź, T.; Łupikasza, E.B.; Małarzewski, Ł.; Budzik, T. Surface-based nocturnal air temperature inversions in southern Poland and their influence on PM10 and PM2.5 concentrations in Upper Silesia. Theor. Appl. Climatol. 2021, 146, 897–919. [Google Scholar] [CrossRef]
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Instance | 206 | 189 | 204 | 183 | 204 | 179 | 179 | 184 | 159 | 160 | 174 | 176 |
Year | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|
Instance | 296 | 254 | 266 | 313 | 335 | 321 | 273 | 139 |
Cluster | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number | 147 | 231 | 286 | 211 | 121 | 209 | 189 | 133 | 169 | 99 | 141 | 62 | 98 | 57 | 44 |
Mean conc. (μg/) | 21 | 17 | 16 | 19 | 21 | 24 | 22 | 29 | 25 | 26 | 31 | 31 | 37 | 44 | 54 |
Median conc. (μg/) | 17 | 15 | 13 | 16 | 18 | 20 | 19 | 24 | 22 | 24 | 26 | 28 | 29 | 34 | 52 |
std. (μg/) | 15 | 11 | 11 | 11 | 11 | 16 | 12 | 17 | 15 | 11 | 18 | 15 | 20 | 25 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mlakar, P.; Faganeli Pucer, J. Mixture Regression for Clustering Atmospheric-Sounding Data: A Study of the Relationship between Temperature Inversions and PM10 Concentrations. Atmosphere 2023, 14, 481. https://doi.org/10.3390/atmos14030481
Mlakar P, Faganeli Pucer J. Mixture Regression for Clustering Atmospheric-Sounding Data: A Study of the Relationship between Temperature Inversions and PM10 Concentrations. Atmosphere. 2023; 14(3):481. https://doi.org/10.3390/atmos14030481
Chicago/Turabian StyleMlakar, Peter, and Jana Faganeli Pucer. 2023. "Mixture Regression for Clustering Atmospheric-Sounding Data: A Study of the Relationship between Temperature Inversions and PM10 Concentrations" Atmosphere 14, no. 3: 481. https://doi.org/10.3390/atmos14030481
APA StyleMlakar, P., & Faganeli Pucer, J. (2023). Mixture Regression for Clustering Atmospheric-Sounding Data: A Study of the Relationship between Temperature Inversions and PM10 Concentrations. Atmosphere, 14(3), 481. https://doi.org/10.3390/atmos14030481