A Comparison of Atmospheric Boundary Layer Height Determination Methods Using GNSS Radio Occultation Data
Abstract
:1. Introduction
2. Data and Methodology
2.1. COSMIC-2 and Spire
2.2. IGRA2
2.3. Methods for Deriving ABLH
2.3.1. MG Method
2.3.2. BP Method
- |A| > 50 km−1;
- zbpnmax < 3.5 km.
2.3.3. WCT Method
2.3.4. DPMF Method
2.4. Outliers Screening
3. Results and Analyses
3.1. Initial Analysis
3.2. Comparison of the RO- and RAOB-Derived ABLHs
3.3. Comparison of the RO-Derived ABLHs
3.4. Analysis on the Biases of the RO-Derived ABLHs
4. Discussion
5. Conclusions
- exhibited minimal errors, showing relatively small biases and RMSE values that closely aligned with the reference .
- occasionally exhibited some low values, causing a decrease in correlation, as well as increases in bias and RMSE.
- A seasonal analysis revealed that the bias in the ABLH estimations for , , , and exhibited no obvious seasonal variability. Notably, the biases of exhibited seasonal variability, with the highest biases being observed during JJA and the lowest during DJF.
- The WCT and DPMF methods could detect strong variations in the profiles near the Earth’s surface and considered them as ABLH. However, these variations were caused by errors. They should be used with caution due to the lower quality of the GNSS-RO bending angle or refractivity profiles near the Earth’s surface.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garratt, J.R. The Atmospheric Boundary Layer; Cambridge atmospheric and space science series; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Seibert, P.; Beyrich, F.; Gryning, S.-E.; Joffre, S.; Rasmussen, A.; Tercier, P. Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ. 2000, 34, 1001–1027. [Google Scholar] [CrossRef]
- Kotthaus, S.; Bravo-Aranda, J.A.; Collaud Coen, M.; Guerrero-Rascado, J.L.; Costa, M.J.; Cimini, D.; O’Connor, E.J.; Hervo, M.; Alados-Arboledas, L.; Jiménez-Portaz, M.; et al. Atmospheric boundary layer height from ground-based remote sensing: A review of capabilities and limitations. Atmos. Meas. Tech. 2023, 16, 433–479. [Google Scholar] [CrossRef]
- Schreiner, W.S.; Weiss, J.P.; Anthes, R.A.; Braun, J.; Chu, V.; Fong, J.; Hunt, D.; Kuo, Y.-H.; Meehan, T.; Serafino, W.; et al. COSMIC-2 Radio Occultation Constellation: First Results. Geophys. Res. Lett. 2020, 47, e2019GL086841. [Google Scholar] [CrossRef]
- Ho, S.-P.; Zhou, X.; Shao, X.; Zhang, B.; Adhikari, L.; Kireev, S.; He, Y.; Yoe, J.G.; Xia-Serafino, W.; Lynch, E. Initial Assessment of the COSMIC-2/FORMOSAT-7 Neutral Atmosphere Data Quality in NESDIS/STAR Using In Situ and Satellite Data. Remote Sens. 2020, 12, 4099. [Google Scholar] [CrossRef]
- Von Engeln, A.; Teixeira, J.; Wickert, J.; Buehler, S.A. Using CHAMP radio occultation data to determine the top altitude of the Planetary Boundary Layer. Geophys. Res. Lett. 2005, 32, L06815–L06818. [Google Scholar] [CrossRef]
- Sokolovskiy, S.; Kuo, Y.-H.; Rocken, C.; Schreiner, W.S.; Hunt, D.; Anthes, R.A. Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode. Geophys. Res. Lett. 2006, 33, L12813–L12816. [Google Scholar] [CrossRef]
- Guo, P.; Kuo, Y.-H.; Sokolovskiy, S.V.; Lenschow, D.H. Estimating Atmospheric Boundary Layer Depth Using COSMIC Radio Occultation Data. J. Atmos. Sci. 2011, 68, 1703–1713. [Google Scholar] [CrossRef]
- Chan, K.M.; Wood, R. The seasonal cycle of planetary boundary layer depth determined using COSMIC radio occultation data. J. Geophys. Res. Atmos. 2013, 118, 12, 422-12, 434. [Google Scholar] [CrossRef]
- Basha, G.; Ratnam, M.V. Identification of atmospheric boundary layer height over a tropical station using high-resolution radiosonde refractivity profiles: Comparison with GPS radio occultation measurements. J. Geophys. Res. Atmos. 2009, 114, D16101–D16111. [Google Scholar] [CrossRef]
- Ao, C.O.; Waliser, D.E.; Chan, S.K.; Li, J.-L.; Tian, B.; Xie, F.; Mannucci, A.J. Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J. Geophys. Res. Atmos. 2012, 117, D16117–D16134. [Google Scholar] [CrossRef]
- Sokolovskiy, S.V.; Rocken, C.; Lenschow, D.H.; Kuo, Y.-H.; Anthes, R.A.; Schreiner, W.S.; Hunt, D.C. Observing the moist troposphere with radio occultation signals from COSMIC. Geophys. Res. Lett. 2007, 34, L18802–L18807. [Google Scholar] [CrossRef]
- Xie, F.; Wu, D.L.; Ao, C.O.; Mannucci, A.J.; Kursinski, E.R. Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean. Atmos. Chem. Phys. 2012, 12, 903–918. [Google Scholar] [CrossRef]
- Ratnam, M.V.; Basha, S.G. A robust method to determine global distribution of atmospheric boundary layer top from COSMIC GPS RO measurements. Atmos. Sci. Lett. 2010, 11, 216–222. [Google Scholar] [CrossRef]
- Xu, X.; Li, Y.; Luo, J. Marine Boundary Layer Heights in the Tropical and Subtropical Oceans Derived from COSMIC-2 Radio Occultation Data. Adv. Atmos. Sci. 2023, 40, 1058–1072. [Google Scholar] [CrossRef]
- Yan, S.; Xiang, J.; Du, H. Determining Atmospheric Boundary Layer Height with the Numerical Differentiation Method Using Bending Angle Data from COSMIC. Adv. Atmos. Sci. 2019, 36, 303–312. [Google Scholar] [CrossRef]
- Zhou, J.; Xiang, J.; Huang, S. Marine Boundary Layer Height Obtained by New Numerical Regularization Method Based on GPS Radio Occultation Data. Sensors 2020, 20, 4762. [Google Scholar] [CrossRef]
- Ho, S.-p.; Peng, L.; Anthes, R.A.; Kuo, Y.-H.; Lin, H.-C. Marine Boundary Layer Heights and Their Longitudinal, Diurnal, and Interseasonal Variability in the Southeastern Pacific Using COSMIC, CALIOP, and Radiosonde Data. J. Clim. 2015, 28, 2856–2872. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Liu, C.-Y.; Huang, C.-Y.; Hsu, S.-C.; Li, H.-W.; Lin, P.-H.; Cheng, J.-P.; Huang, C.-Y. An Analysis Study of FORMOSAT-7/COSMIC-2 Radio Occultation Data in the Troposphere. Remote Sens. 2021, 13, 717. [Google Scholar] [CrossRef]
- Masters, D.; Nguyen, V.; Irisov, V.; Nogues-Correig, O.; Tan, L.; Yuasa, T.; Ringer, J.; Rocken, C.; Gorbunov, M. Commercial RO Becomes Reality: Rapid Growth, External Validation, and Operational Assimilation of Spire RO. In Proceedings of the 8th International Radio Occultation Working Group Meeting, Virtual Meeting, 7–13 April 2021. [Google Scholar]
- Gamage, N.; Hagelberg, C. Detection and Analysis of Microfronts and Associated Coherent Events Using Localized Transforms. J. Atmos. Sci. 1993, 50, 750–756. [Google Scholar] [CrossRef]
- Brooks, I.M. Finding Boundary Layer Top: Application of a Wavelet Covariance Transform to Lidar Backscatter Profiles. J. Atmos. Ocean. Technol. 2003, 20, 1092–1105. [Google Scholar] [CrossRef]
- Schreiner, B.; Kuo, B.; Rocken, C.; Sokolovskiy, S.; Hunt, D.; Ho, B.; Yue, X.; Wee, T.; Hudnut, K.; Sleziak-Sallee, M. COSMIC Data Analysis and Archive Center (CDAAC) Current Status and Future Plans; International Radio Occultation Working Group-4: Boulder, CO, USA, 2014. [Google Scholar]
- Basha, G.; Kishore, P.; Ratnam, M.V.; Ravindra Babu, S.; Velicogna, I.; Jiang, J.H.; Ao, C.O. Global climatology of planetary boundary layer top obtained from multi-satellite GPS RO observations. Clim. Dyn. 2019, 52, 2385–2398. [Google Scholar] [CrossRef]
- Irisov, V.; Nguyen, V.; Masters, D.; Sikarin, R.; Bloom, A.; Gorbunov, M.; Rocken, C. Comparison of Spire RO profiles Processed by UCAR and Spire. In Proceedings of the 8th International Radio Occultation Working Group Meeting, Virtual Meeting, 7–13 April 2021. [Google Scholar]
- Jing, X.; Ho, S.-P.; Shao, X.; Liu, T.-C.; Chen, Y.; Zhou, X. Spire RO Thermal Profiles for Climate Studies: Initial Comparisons of the Measurements from Spire, NOAA-20 ATMS, Radiosonde, and COSMIC-2. Remote Sens. 2023, 15, 3710. [Google Scholar] [CrossRef]
- Sokolovskiy, S. Effect of superrefraction on inversions of radio occultation signals in the lower troposphere. Radio Sci. 2003, 38, 1058–1071. [Google Scholar] [CrossRef]
- Xie, F.; Syndergaard, S.; Kursinski, E.R.; Herman, B.M. An Approach for Retrieving Marine Boundary Layer Refractivity from GPS Occultation Data in the Presence of Superrefraction. J. Atmos. Ocean. Technol. 2006, 23, 1629–1644. [Google Scholar] [CrossRef]
- Yu, X.; Xie, F.; Ao, C.O. Evaluating the lower-tropospheric COSMIC GPS radio occultation sounding quality over the Arctic. Atmos. Meas. Tech. 2018, 11, 2051–2066. [Google Scholar] [CrossRef]
- Johnston, B.R.; Randel, W.J.; Sjoberg, J.P. Evaluation of Tropospheric Moisture Characteristics Among COSMIC-2, ERA5 and MERRA-2 in the Tropics and Subtropics. Remote Sens. 2021, 13, 880. [Google Scholar] [CrossRef]
ABLH | Correlation Coefficient | Bias (km) | RMSE (km) |
---|---|---|---|
0.967 | 0.023 | 0.173 | |
0.968 | −0.066 | 0.180 | |
0.966 | 0.100 | 0.200 | |
0.969 | −0.086 | 0.186 | |
0.967 | 0.034 | 0.175 |
ABLH | Correlation Coefficient | Bias (km) | RMSE (km) |
---|---|---|---|
0.966 | 0.010 | 0.168 | |
0.968 | −0.088 | 0.190 | |
0.967 | 0.089 | 0.189 | |
0.686 | −0.243 | 0.562 | |
0.967 | 0.017 | 0.168 |
ABLH | Correlation Coefficient | Bias (km) | RMSE (km) |
---|---|---|---|
0.970 | 0.010 | 0.155 | |
0.970 | −0.199 | 0.185 | |
0.969 | 0.087 | 0.179 | |
0.814 | −0.204 | 0.437 | |
0.970 | 0.023 | 0.157 |
ABLH | Correlation Coefficient | Bias (km) | RMSE (km) |
---|---|---|---|
0.965 | 0.024 | 0.170 | |
0.964 | −0.073 | 0.185 | |
0.965 | 0.108 | 0.201 | |
0.828 | −0.164 | 0.406 | |
0.965 | 0.036 | 0.174 |
ABLH | Median (km) | Q1 (km) | Q3 (km) |
---|---|---|---|
1.689 | 1.220 | 2.138 | |
1.598 | 1.451 | 2.045 | |
1.820 | 1.345 | 2.283 | |
1.475 | 1.010 | 1.974 | |
1.686 | 1.867 | 2.145 |
ABLH | Median (km) | Q1 (km) | Q3 (km) |
---|---|---|---|
1.626 | 1.087 | 2.118 | |
1.536 | 1.017 | 2.027 | |
1.758 | 1.222 | 2.265 | |
1.407 | 0.892 | 1.882 | |
1.469 | 0.530 | 2.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, C.; Wang, X.; Li, H.; Zhou, K.; Zhang, J.; Li, Z.; Liu, D.; Yuan, H. A Comparison of Atmospheric Boundary Layer Height Determination Methods Using GNSS Radio Occultation Data. Atmosphere 2023, 14, 1654. https://doi.org/10.3390/atmos14111654
Qiu C, Wang X, Li H, Zhou K, Zhang J, Li Z, Liu D, Yuan H. A Comparison of Atmospheric Boundary Layer Height Determination Methods Using GNSS Radio Occultation Data. Atmosphere. 2023; 14(11):1654. https://doi.org/10.3390/atmos14111654
Chicago/Turabian StyleQiu, Cong, Xiaoming Wang, Haobo Li, Kai Zhou, Jinglei Zhang, Zhe Li, Dingyi Liu, and Hong Yuan. 2023. "A Comparison of Atmospheric Boundary Layer Height Determination Methods Using GNSS Radio Occultation Data" Atmosphere 14, no. 11: 1654. https://doi.org/10.3390/atmos14111654
APA StyleQiu, C., Wang, X., Li, H., Zhou, K., Zhang, J., Li, Z., Liu, D., & Yuan, H. (2023). A Comparison of Atmospheric Boundary Layer Height Determination Methods Using GNSS Radio Occultation Data. Atmosphere, 14(11), 1654. https://doi.org/10.3390/atmos14111654