Short-Term Rainfall Forecasting by Combining BP-NN Algorithm and GNSS Technique for Landslide-Prone Areas
Abstract
:1. Introduction
2. Study Area and Data Description
2.1. Study Area
2.2. Data Description
- (1)
- GNSS data
- (2)
- Radiosonde data
- (3)
- ECMWF data
3. Methodology
3.1. Retrieval of GNSS-Derived PWV
3.2. Establishment of High-Precision Regional Tm Model
3.3. Short-Term Rainfall Forecasting Model for a Landslide-Prone Area
3.3.1. General Steps for the Short-Term Rainfall Forecasting Model
3.3.2. Determination of Key Parameters for the BP-NN Algorithm
3.4. Evaluation Index
4. Result and Discussion
4.1. Validation of the GNSS-Derived ZTD
4.2. Validation of the Regional High-Precision Tm Model
4.3. Validation of the GNSS-Derived PWV
4.4. Validation of the Rainfall Forecast Model Using the BP-NN Algorithm
- (1)
- Determination of the rainfall threshold
- (2)
- Simulated result of the rainfall forecast model
- (3)
- Forecast result of the rainfall forecast model
4.5. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le Breton, M.; Bontemps, N.; Guillemot, A.; Baillet, L.; Larose, É. Landslide monitoring using seismic ambient noise correlation: Challenges and applications. Earth Sci. Rev. 2021, 216, 103518. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, H.; Yang, D.; Liu, Z.; Ma, S.; Pei, Y.; Zhang, J.; Tang, B. Deformation responses of landslides to seasonal rainfall based on InSAR and wavelet analysis. Landslides 2022, 19, 199–210. [Google Scholar] [CrossRef]
- Abraham, M.T.; Satyam, N.; Bulzinetti, M.A.; Pradhan, B.; Pham, B.T.; Segoni, S. Using field-based monitoring to enhance the performance of rainfall thresholds for landslide warning. Water 2020, 12, 3453. [Google Scholar] [CrossRef]
- Moya-Álvarez, A.S.; Martínez-Castro, D.; Kumar, S.; Estevan, R.; Silva, Y. Response of the WRF model to different resolutions in the rainfall forecast over the complex Peruvian orography. Theor. Appl. Climatol. 2019, 137, 2993–3007. [Google Scholar] [CrossRef]
- Ma, Y.; Chandrasekar, V.; Chen, H.; Cifelli, R. Quantifying the potential of AQPI gap-filling radar network for streamflow simulation through a WRF-hydro experiment. J. Hydrometeorol. 2021, 22, 1869–1882. [Google Scholar] [CrossRef]
- Pal, S.; Dominguez, F.; Dillon, M.E.; Alvarez, J.; Garcia, C.M.; Nesbitt, S.W.; Gochis, D. Hydrometeorological observations and modeling of an extreme rainfall event using WRF and WRF-hydro during the RELAMPAGO field campaign in Argentina. J. Hydrometeorol. 2021, 22, 331–351. [Google Scholar] [CrossRef]
- Li, H.; Choy, S.; Wang, X.; Liang, H.; Zhang, K. Monitoring the Migration of Water Vapor Using Ground-Based GNSS Tropospheric Products. IEEE Geosci. Remote Sens. Lett. 2023. [Google Scholar] [CrossRef]
- Manandhar, S.; Dev, S.; Lee, Y.H.; Meng, Y.S.; Winkler, S. A data-driven approach to detecting precipitation from meteorological sensor data. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 3872–3875. [Google Scholar]
- Benevides, P.; Catalao, J.; Miranda, P.M.A. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall. Nat. Hazards Earth Syst. Sci. 2015, 15, 2605–2616. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Y.; Ma, X.; Yao, W.; Yao, Y.; Li, X. An Improved Rainfall Forecasting Model Based on GNSS Observations. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4891–4900. [Google Scholar] [CrossRef]
- Li, H.; Choy, S.; Zaminpardaz, S.; Carter, B.; Sun, C.; Purwar, S.; Liang, H.; Li, L.; Wang, X. Investigating the Inter-Relationships among Multiple Atmospheric Variables and Their Responses to Precipitation. Atmosphere 2023, 14, 571. [Google Scholar] [CrossRef]
- Li, H.; He, Y.; Xu, Q.; Deng, J.; Li, W.; Wei, Y. Detection and segmentation of loess landslides via satellite images: A two-phase framework. Landslides 2022, 19, 673–686. [Google Scholar] [CrossRef]
- Li, H.; He, Y.; Xu, Q.; Deng, J.; Li, W.; Wei, Y.; Zhou, J. Sematic segmentation of loess landslides with STAPLE mask and fully connected conditional random field. Landslides 2023, 20, 367–380. [Google Scholar] [CrossRef]
- Hashim, F.R.; Daud, N.N.; Ahmad, K.A.; Adnan, J.; Rizman, Z.I. Prediction of rainfall based on weather parameter using artificial neural network. J. Fundam. Appl. Sci. 2017, 9, 493–502. [Google Scholar] [CrossRef]
- Srivastava, T.; Kumar, P.; Singh, B.P. Rainfall Forecast of Kumarganj area using artificial neural network (ANN) models. Soc. Sci. Dev. Agric. Technol. Meerut(U. P.) INDIA 2017, 12, 1375–1379. [Google Scholar]
- Guan, Z.; Tian, Z.; Xu, Y.; Dai, H. Rainfall predict and comparing research based on Arcgis and BP neural network. 2016 3rd International Conference on Materials Engineering. Manuf. Technol. Control. 2016. [Google Scholar] [CrossRef]
- Benevides, P.; Catalao, J.; Nico, G. Neural Network Approach to Forecast Hourly Intense Rainfall Using GNSS Precipitable Water Vapor and Meteorological Sensors. Remote Sens. 2019, 11, 966. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Zhang, K.; Wu, S.; Xu, Y.; Liu, Y.; Qiu, C.; Zhang, J.; Fu, E.; Li, L. A neural network-based approach for the detection of heavy precipitation using GNSS observations and surface meteorological data. J. Atmos. Sol. Terr. Phys. 2021, 225, 105763. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B. IERS Conventions. IERS Tech. Note 2010, 36, 1–95. [Google Scholar]
- Durre, I.; Vose, R.S.; Wuertz, D.B. Overview of the integrated global radiosonde archive. J. Clim. 2006, 19, 53–68. [Google Scholar] [CrossRef]
- Campanelli, M.; Nakajima, T.; Khatri, P.; Takamura, T.; Uchiyama, A.; Estelles, V.; Liberti, G.L.; Malvestuto, V. Retrieval of characteristic parameters for water vapour transmittance in the development of ground-based sun–sky radiometric measurements of columnar water vapour. Atmos. Meas. Tech. 2014, 7, 1075–1087. [Google Scholar] [CrossRef]
- Herring, T.A.; King, R.W.; McClusky, S.C. Introduction to GAMIT/GLOBK, 10.4. Massachusetts Institute of Technology: Cambridge, MA, USA.
- Li, X.; Dick, G.; Ge, M.; Heise, S.; Wickert, J.; Bender, M. Real-time GPS sensing of atmospheric water vapor: Precise point positioning with orbit, clock, and phase delay corrections. Geophys. Res. Lett. 2014, 41, 3615–3621. [Google Scholar] [CrossRef]
- Saastamoinen, J. Contributions to the theory of atmospheric refraction. Bull. Géodésique 1972, 105, 279–298. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. 1992, 97, 15787. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, B.; Xu, C.; Yan, F. Improved one/multi-parameter models that consider seasonal and geographic variations for estimating weighted mean temperature in ground-based GPS meteorology. J. Geod. 2014, 88, 273–282. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteorol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Yao, Y.B.; Zhang, B.; Yue, S.Q.; Xu, C.Q.; Peng, W.F. Global empirical model for mapping zenith wet delays onto precipitable water. J. Geod. 2013, 87, 439–448. [Google Scholar] [CrossRef]
- YAO, Y.; SUN, Z.; XU, C.; XU, X. Global Weighted Mean Temperature Model Considering Nonlinear Vertical Reduction. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 106–111. [Google Scholar]
- Böhm, J.; Heinkelmann, R.; Schuh, H. Short note: A global model of pressure and temperature for geodetic applications. J. Geod. 2007, 81, 679–683. [Google Scholar] [CrossRef]
- Lagler, K.; Schindelegger, M.; Böhm, J.; Krásná, H.; Nilsson, T. GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys. Res. Lett. 2013, 40, 1069–1073. [Google Scholar] [CrossRef]
- Böhm, J.; Möller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut. 2015, 19, 433–441. [Google Scholar] [CrossRef]
- Landskron, D.; Böhm, J. VMF3/GPT3: Refined discrete and empirical troposphere mapping functions. J. Geod. 2018, 92, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-W.; Choi, B.I.; Woo, S.-B.; Kim, J.C.; Kim, Y.-G. Calibration of a radiosonde humidity sensor at low temperature and low pressure. Metrologia 2019, 56, 055008. [Google Scholar] [CrossRef]
- Yu, Y. Intelligent Reliability Analysis with Incomplete Covariates; Queensland University of Technology: Brisbane, Queensland, 2012. [Google Scholar]
- Yu, F.; Xu, X. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Appl. Energy 2014, 134, 102–113. [Google Scholar] [CrossRef]
- Kung, S.Y.; Hwang, J.N. An Algebraic Projection Analysis for Optimal Hidden Units Size and Learning Rates in Back-Propagation Learning. Proc. IEEE Int. Conf. Neural Netw. 1988, 1, 363–370. [Google Scholar]
- Sun, Z.; Zhang, B.; Yao, Y. A global model for estimating tropospheric delay and weighted mean temperature developed with atmospheric reanalysis data from 1979 to 2017. Remote Sens. 2019, 11, 1893. [Google Scholar] [CrossRef]
- Huang, L.; Liu, L.; Chen, H.; Jiang, W. An improved atmospheric weighted mean temperature model and its impact on GNSS precipitable water vapor estimates for China. GPS Solut. 2019, 23, 51. [Google Scholar] [CrossRef]
- Huang, L.; Peng, H.; Liu, L.; Li, C.; Kang, C.; Xie, S. An empirical atmospheric weighted mean temperature model considering the lapse rate function for China. Acta Geod. Et Cartogr. Sin. 2020, 49, 432–442. [Google Scholar]
- Ding, M. A neural network model for predicting weighted mean temperature. J. Geod. 2018, 92, 1187–1198. [Google Scholar] [CrossRef]
Observations | Satellite system | GPS |
Data frequency | L1 + L2 | |
Sampling interval | 30 s | |
Height cut-off angle | 10° | |
Error model | Satellite orbit | Precision track (5 min) |
Satellite clock | Precision clock (30 s) | |
Relativistic effect | Model correction | |
Ionospheric delay | Ionosphere free combination | |
Zenith hydrostatic delay | Saastamoinen model | |
Zenith wet delay | Parameter estimation | |
Tropospheric mapping function | GMF | |
Tide correction | Solid tides, sea tides, and polar tides (IERS 2010 [19]) | |
Satellite antenna phase center deviation | igs14.atx (consider PCO, PCV) correction | |
Receiver antenna phase center deviation | igs14.atx (consider PCO, PCV) correction | |
Antenna phase wrap | Model correction | |
Parameters to be estimated | Station coordinates | Static |
Receiver clock | White noise | |
Zenith wet delay | Random walk | |
Ambiguity | Floating point solution |
Scheme | Simulation Experiment | Forecasting Experiment |
---|---|---|
1 | G01, G02, GZ3 | T01 |
2 | G01, G02, T01 | GZ3 |
3 | G01, T01, GZ3 | G02 |
4 | T01, G02, GZ3 | G01 |
Input | Pressure, Temperature, PWV, and rainfall data from the previous hour | |
Output | Rainfall data for the next hour |
Model | Bevis | GPT2w | GPT3w | GTm-I | GTm-H |
RMS | 5.84 | 3.29 | 5.21 | 4.46 | 3.43 |
Bias | 4.30 | 0.83 | −3.00 | −2.21 | −0.96 |
Model | GTrop | IGPT2w | NNTm | CTm | RTm |
RMS | 3.27 | 3.42 | 3.18 | 2.90 | 2.86 |
Bias | 0.59 | 1.01 | 2.43 | 0.55 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Ma, Y.; Liu, J.; Liu, Y.; Ren, W.; Zhao, Q. Short-Term Rainfall Forecasting by Combining BP-NN Algorithm and GNSS Technique for Landslide-Prone Areas. Atmosphere 2023, 14, 1309. https://doi.org/10.3390/atmos14081309
Li Z, Ma Y, Liu J, Liu Y, Ren W, Zhao Q. Short-Term Rainfall Forecasting by Combining BP-NN Algorithm and GNSS Technique for Landslide-Prone Areas. Atmosphere. 2023; 14(8):1309. https://doi.org/10.3390/atmos14081309
Chicago/Turabian StyleLi, Zufeng, Yongjie Ma, Jing Liu, Yang Liu, Wei Ren, and Qingzhi Zhao. 2023. "Short-Term Rainfall Forecasting by Combining BP-NN Algorithm and GNSS Technique for Landslide-Prone Areas" Atmosphere 14, no. 8: 1309. https://doi.org/10.3390/atmos14081309
APA StyleLi, Z., Ma, Y., Liu, J., Liu, Y., Ren, W., & Zhao, Q. (2023). Short-Term Rainfall Forecasting by Combining BP-NN Algorithm and GNSS Technique for Landslide-Prone Areas. Atmosphere, 14(8), 1309. https://doi.org/10.3390/atmos14081309