Chemical Composition and Source of PM2.5 during Winter Heating Period in Guanzhong Basin
Abstract
:1. Introduction
2. Experimental Methods
2.1. Sampling
- (1)
- XA is located in the south of Xi’an city, mainly in the commercial and living areas, and is close to the intersection of three highways.
- (2)
- XASP is located in the north of Xi’an city, mainly in the living areas, and is close to one circling expressway in Xi’an.
- (3)
- BJ is located in the center of Baoji city and is very close to city expressways.
- (4)
- XYXP is located in the area surrounded by chemical industries.
- (5)
- WNHZ is near Shaanxi Chemical Industry Group Co., Ltd. Staff Hospital, surrounded by Shaanxi Chemical Industry Group and other industries.
- (6)
- HC is 50 m northeast of Helimeijiao Co., Ltd., surrounded by many coking and coal-coking industries.
2.2. SPAMS and Data Analysis
3. Results
3.1. PM2.5 Pollution Overview
3.2. Source Identification of PM2.5
Cites | Sources | Time Periods | References | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Coal | Vehicle | SI | BB | Industry | Dust | Cooking | Other | |||
XASZ, Xi’an | 10.8 ± 2.40 | 37.5 ± 19.2 | 15.7 ± 7.10 | 9.70 ± 8.90 | 11.9 ± 2.00 | 9.20 ± 5.50 | 0.800 ± 0.900 | 4.30 ± 1.40 | This study | |
XASP, Xi’an | 12.1 ± 3.70 | 36.6 ± 13.9 | 12.1 ± 5.30 | 12.5 ± 12.0 | 9.20 ± 2.40 | 7.70 ± 2.20 | 1.80 ± 1.50 | 8.00 ± 3.50 | ||
BJ, Baoji | 10.2 ± 2.10 | 28.8 ± 13.1 | 16.2 ± 5.70 | 14.0 ± 12.1 | 15.9 ± 4.60 | 7.40 ± 3.90 | 4.10 ± 4.20 | 3.40 ± 1.40 | ||
XYXP, Xianyang | 26.5 ± 6.50 | 13.4 ± 3.20 | 8.10 ± 3.70 | 16.6 ± 8.40 | 21.0 ± 2.60 | 7.00 ± 2.20 | 1.60 ± 1.00 | 5.90 ± 3.90 | ||
WNHZ, Weinan | 23.8 ± 4.40 | 19.1 ± 4.60 | 13.3 ± 5.50 | 8.60 ± 6.60 | 23.3 ± 2.60 | 6.50 ± 2.20 | 0.900 ± 0.600 | 4.30 ± 1.40 | ||
HC, Hancheng | 38.8 ± 9.00 | 19.3 ± 5.20 | 6.50 ± 3.90 | 5.60 ± 4.40 | 18.3 ± 4.00 | 5.90 ± 2.20 | 1.40 ± 1.70 | 4.20 ± 2.00 | ||
Baoji | 19.9 | 6.70 | 38.5 a | 14.3 | / | 20.5 | / | / | March 2012–February 2013 | (Xiao, Wang et al., 2014) [46] |
Baoji | 11.39 | 12.72 | 37.10 a | 14.97 | 10.12 | 13.69 | / | / | November 2018–January 2019 | (Cao and Cui 2021) [15] |
Weinan | 38.48 | 5.02 | 19.19 a | 15.04 | 9.28 | 5.0 | 7.98 | 27 November 2017–8 December 2017 | (Zhu, Cao et al., 2019) [48] | |
Tongchuan | 12.87 | 24.18 | 30.88 a | 20.81 | 1.76 | 9.48 | / | / | November 2018–January 2019 | (Cao and Cui 2021) [15] |
Xianyang | 13.04 | 10.79 | 34.44 a | 21.83 | 10.54 | 9.36 | / | / | November 2018–January 2019 | (Cao and Cui 2021) [15] |
Xi’an | 20.61 | 10.48 | 28.88 a | 24.42 | 3.14 | 12.46 | / | November 2018–January 2019 | (Cao and Cui 2021) [15] | |
Xi’an | 31.2 | 19.3 | 20.9 a | 6.00 | 9.80 | 12.8 | / | / | 1 January 2006–28 February 2006 | (Xu, Cao et al., 2016) [23] |
Xi’an | 27.6 | 20.9 | 23.2 a | 5.10 | 11.5 | 11.7 | / | / | 2 January 2008–29 February 2008 | (Xu, Cao et al., 2016) [23] |
Xi’an | 24.1 | 21.3 | 17.5 a | 5.10 | 12.6 | 19.4 | / | / | 1 January 2010–28 February 2010 | (Xu, Cao et al., 2016) [23] |
3.3. Factors Contributing to PM2.5 Pollution
4. Conclusions
- (1)
- XASZ: “vehicle exhausts, BB, and dust” versus “vehicle exhausts, industrial emissions and SI”;
- (2)
- XASP: “vehicle exhausts, BB, and coal combustion” versus “vehicle exhausts, SI, and coal combustion”;
- (3)
- BJ: “BB, vehicle exhausts, and SI” versus “vehicle exhausts, SI, and industrial emissions”;
- (4)
- XYXP: “BB, industrial emissions, and coal combustion” versus “coal combustion, industrial emissions, and vehicle exhausts”.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, R.; Zhao, Z.; Kan, H. Heavy smog and hospital visits in Beijing, China. Am. J. Respir. Crit. Care Med. 2013, 188, 1170–1171. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Pui, D.Y.; Chen, S.C.; Zuo, Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.L.; Dominici, F.; Ebisu, K.; Zeger, S.L.; Samet, J.M. Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environ. Health Perspect. 2007, 115, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.J.; Shen, Z.X.; Chow, J.C.; Watson, J.G.; Lee, S.C.; Tie, X.X.; Ho, K.F.; Wang, G.H.; Han, Y.M. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities. J. Air Waste Manag. Assoc. 2012, 62, 1214–1226. [Google Scholar] [CrossRef]
- Ye, B.; Ji, X.; Yang, H.; Yao, X.; Chan, C.K.; Cadle, S.H.; Chan, T.; Mulawa, P.A. Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period. Atmos. Environ. 2003, 37, 499–510. [Google Scholar] [CrossRef]
- Rodrıguez, S.; Querol, X.; Alastuey, A.; Viana, M.M.; Alarcon, M.; Mantilla, E.; Ruiz, C.R. Comparative PM10–PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Sci. Total Environ. 2004, 328, 95–113. [Google Scholar] [CrossRef]
- Li, G.; Fang, C.; Wang, S.; Sun, S. The effect of economic growth, urbanization, and industrialization on fine particulate matter (PM2.5) concentrations in China. Environ. Sci. Technol. 2016, 50, 11452–11459. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Cao, F. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 2015, 5, 14884. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Available online: https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/index (accessed on 31 December 2020).
- Wang, M.; Zhang, Z.; Yuan, Q.; Li, X.; Han, S.; Lam, Y.; Cui, L.; Huang, Y.; Cao, J.; Lee, S.C. Slower than expected reduction in annual PM2.5 in Xi’an revealed by machine learning-based meteorological normalization. Sci. Total Environ. 2022, 841, 156740. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ren, Y.; Xia, B. PM2.5 and O3 concentration estimation based on interpretable machine learning. Atmos. Pollut. Res. 2023, 14, 101866. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, H.; Liang, D. Spatiotemporal variations and connections of single and multiple meteorological factors on PM2.5 concentrations in Xi’an, China. Atmos. Environ. 2022, 275, 119015. [Google Scholar] [CrossRef]
- Cao, J.J.; Cui, L. Current status, characteristics and causes of particulate air pollution in the Fenwei plain, China: A review. J. Geophys. Res. Atmos. 2021, 126, e2020JD034472. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, J.; Huang, R.; Yang, F.; Wang, Q.; Wang, Y. Characterization, mixing state, and evolution of urban single particles in Xi’an (China) during wintertime haze days. Sci. Total Environ. 2016, 573, 937–945. [Google Scholar] [CrossRef]
- Li, N.; Long, X.; Tie, X.; Cao, J.; Huang, R.; Zhang, R.; Feng, T.; Liu, S.; Li, G. Urban dust in the Guanzhong basin of China, part II: A case study of urban dust pollution using the WRF-Dust model. Sci. Total Environ. 2016, 541, 1614–1624. [Google Scholar] [CrossRef]
- Shen, Z.; Cao, J.; Liu, S.; Zhu, C.; Wang, X.; Zhang, T.; Xu, H.; Hu, T. Chemical composition of PM10 and PM2.5 collected at ground level and 100 meters during a strong winter-time pollution episode in Xi’an, China. J. Air Waste Manag. Assoc. 2011, 61, 1150–1159. [Google Scholar] [CrossRef]
- Wang, D.; Hu, J.; Xu, Y.; Lv, D.; Xie, X.; Kleeman, M.; Xing, J.; Zhang, H.; Ying, Q. Source contributions to primary and secondary inorganic particulate matter during a severe wintertime PM2.5 pollution episode in Xi’an, China. Atmos. Environ. 2014, 97, 182–194. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Jiang, J.; Duan, L.; Ge, S.; Zhang, Q.; Deng, J.; Wang, S.; Hao, J. Semi-coke briquettes: Towards reducing emissions of primary PM2.5, particulate carbon and carbon monoxide from household coal combustion in China. Sci. Rep. 2016, 6, 19306. [Google Scholar] [CrossRef]
- Lu, P.; Deng, S.; Li, G.; Tuheti, A.; Liu, J. Regional Transport of PM2.5 from Coal-Fired Power Plants in the Fenwei Plain, China. Int. J. Environ. Res. Public Health 2023, 20, 2170. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, R.; Wang, J.; Wang, Y.; Donahue, N.M.; Tang, R.; Dong, Z.; Li, X.; Wang, L.; Han, Y.; et al. The seasonal variation, characteristics and secondary generation of PM2.5 in Xi’an, China, especially during pollution events. Environ. Res. 2022, 212, 113388. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Cao, J.; Chow, J.C.; Huang, R.J.; Shen, Z.; Chen, L.A.; Ho, K.; Watson, J.G. Inter-annual variability of wintertime PM2.5 chemical composition in Xi’an, China: Evidences of changing source emissions. Sci. Total Environ. 2016, 545, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Shen, Z.X.; Su, H.; Liu, S.X.; Zhou, J.M.; Zhao, Z.Z.; Wang, Q.Y.; Prevot, A.S.H.; Cao, J.J. Effects of Aerosol Water Content on the formation of secondary inorganic aerosol during a Winter Heavy PM2.5 Pollution Episode in Xi’an, China. Atmos. Environ. 2021, 252, 118304. [Google Scholar] [CrossRef]
- Zhong, J.; Zhang, X.; Wang, Y.; Wang, J.; Shen, X.; Zhang, H.; Wang, T.; Xie, Z.; Liu, C.; Zhang, H.; et al. The two-way feedback mechanism between unfavorable meteorological conditions and cumulative aerosol pollution in various haze regions of China. Atmos. Chem. Phys. 2019, 19, 3287–3306. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Cao, J.; Zhang, L.; Wu, T.; Zhang, Q.; Yin, X.; Lei, Y.; Huang, Y.; Huang, R.; et al. Particulate matters emitted from maize straw burning for winter heating in rural areas in Guanzhong Plain, China: Current emission and future reduction. Atmos. Res. 2017, 184, 66–76. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Li, S.; Sun, H.; Mu, Z.; Zhang, L.; Li, Y.; Chen, Q. Study on the oxidation potential of the water-soluble components of ambient PM2.5 over Xi’an, China: Pollution levels, source apportionment and transport pathways. Environ. Int. 2020, 136, 105515. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Cao, J.; Shen, Z.; Ho, S.S.H.; Tie, X.; Zhao, S.; Xu, H.; Zhang, B.; Huang, R. PM2.5 from the Guanzhong Plain: Chemical composition and implications for emission reductions. Atmos. Environ. 2016, 147, 458–469. [Google Scholar] [CrossRef]
- Shi, J.; Liu, S.; Qu, Y.; Zhang, T.; Dai, W.; Zhang, P.; Li, R.; Zhu, C.; Cao, J. Variations of the urban PM2.5 chemical components and corresponding light extinction for three heating seasons in the Guanzhong Plain, China. J. Environ. Manag. 2023, 327, 116821. [Google Scholar] [CrossRef]
- Chen, D.; He, J.; Zhang, G. The Influence of Different Air Masses on the Single Particle Aerosol Physical and Chemical Characteristics in Heshan Atmospheric Supersite of Guangdong. Ecol. Environ. Sci. 2015, 24, 63–69. [Google Scholar] [CrossRef]
- Song, X.H.; Hopke, P.K.; Fergenson, D.P.; Prather, K.A. Classification of single particles analyzed by ATOFMS using an artificial neural network, ART-2A. Anal. Chem. 1999, 71, 860–865. [Google Scholar] [CrossRef]
- Chen, D.; Li, M.; Huang, B.; Jiang, B.; Zhang, T.; Jiang, M.; Xie, M.; Zhong, L.; Bi, X.; Lv, X.; et al. The pollution characteristics and source apportionment of regional atmospheric fine particles. China Environ. Sci. 2016, 36, 651–659. [Google Scholar]
- Liu, J.; Gao, J.; Zhang, Y.C. Results comparison of different source apportionment methods during APEC summit in Beijing. China Environ. Sci. 2020, 40, 938–947. [Google Scholar] [CrossRef]
- Zhuang, W.; Wang, J.; Lei, Z. Source Apportionment of Fine Particles during Dust Storm Period in Beijing in 2017. Adv. Environ. Prot. 2018, 8, 192–198. [Google Scholar] [CrossRef]
- Mou, G.; Liu, H.; Li, W.; Wang, F.; Wang, Y. Study on the Pollution Characteristics of Mineral Dust Particle in PM2.5 in the North Area of Xi’an in Autumn. Environ. Monit. Forewarning 2017, 9, 48–53. [Google Scholar]
- Yan, L.; Liu, H.; Huang, X.; Gao, J.; Zhang, W. Characteristics and Source Apportionment of Fine Particles in Xi’an Using a Single Particle Aerosol Mass Spectrometer (SPAMS) during Heavy Pollution. Res. Environ. Sci. 2018, 31, 1841–1848. [Google Scholar] [CrossRef]
- Sodeman, D.A.; Toner, S.M.; Prather, K.A. Determination of single particle mass spectral signatures from light-duty vehicle emissions. Environ. Sci. Technol. 2005, 39, 4569–4580. [Google Scholar] [CrossRef]
- Bi, X.; Zhang, G.; Li, L.; Wang, X.; Li, M.; Sheng, G.; Fu, J.; Zhou, Z. Mixing state of biomass burning particles by single particle aerosol mass spectrometer in the urban area of PRD, China. Atmos. Environ. 2011, 45, 3447–3453. [Google Scholar] [CrossRef]
- Chen, Y.; Wenger, J.C.; Yang, F.; Cao, J.; Huang, R.; Shi, G.; Zhang, S.; Tian, M.; Wang, H. Source characterization of urban particles from meat smoking activities in Chongqing, China using single particle aerosol mass spectrometry. Environ. Pollut. 2017, 228, 92–101. [Google Scholar] [CrossRef]
- Li, L.; Li, M.; Huang, Z.; Gao, W.; Nian, H.; Fu, Z.; Gao, J.; Chai, F.; Zhou, Z. Ambient particle characterization by single particle aerosol mass spectrometry in an urban area of Beijing. Atmos. Environ. 2014, 94, 323–331. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Zhang, H.; Li, L.; Huang, Z.; Gao, W.; Chen, D.; Fu, Z.; Nian, H.; Zou, L.; et al. Comparative analysis of chemical composition and sources of aerosol particles in urban Beijing during clear, hazy, and dusty days using single particle aerosol mass spectrometry. J. Clean. Prod. 2016, 112, 1319–1329. [Google Scholar] [CrossRef]
- Xu, J.; Li, M.; Shi, G.; Wang, H.; Ma, X.; Wu, J.; Shi, X.; Feng, Y. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer. Sci. Total Environ. 2017, 598, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, H.; Li, X.; Li, Y.; Wen, J.; Zhang, J.; Shi, X.; Li, M.; Wang, W.; Shi, G.; et al. Refined source apportionment of coal combustion sources by using single particle mass spectrometry. Sci. Total Environ. 2018, 627, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ma, S.; Gao, B.; Li, X.; Zhang, Y.; Cai, J.; Li, M.; Yao, L.; Hunag, B.; Zheng, M. Single particle mass spectral signatures from vehicle exhaust particles and the source apportionment of on-line PM2.5 by single particle aerosol mass spectrometry. Sci. Total Environ. 2017, 593, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, Q.; Cao, J.; Huang, R.-J.; Chen, W.; Han, Y.; Xu, H.; Liu, S.; Zhou, Y.; Wang, P.; et al. Long-term trends in visibility and impacts of aerosol composition on visibility impairment in Baoji, China. Atmos. Res. 2014, 149, 88–95. [Google Scholar] [CrossRef]
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef]
- Zhu, Y.; Cao, N.; Wei, Z.; Zhang, Y.J. Pollution Characteristics and Sources of Fine Particles During a Heavy Haze Episode in Winter: A Case Study of Weinan City. IOP Conf. Ser.: Earth Environ. Sci. 2019, 281, 012012. Available online: https://iopscience.iop.org/article/10.1088/1755-1315/281/1/012012/pdf (accessed on 17 September 2023). [CrossRef]
- Wang, G.; Zhang, R.; Gomez, M.E.; Yang, L.; Zamora, M.L.; Hu, M.; Lin, Y.; Peng, J.; Guo, S.; Meng, J.; et al. Persistent sulfate formation from London Fog to Chinese haze. Proc. Natl. Acad. Sci. USA 2016, 113, 13630–13635. [Google Scholar] [CrossRef]
- Lv, L.; Wei, P.; Hu, J.; Chen, Y.; Shi, Y. Source apportionment and regional transport of PM2.5 during haze episodes in Beijing combined with multiple models. Atmos. Res. 2022, 266, 105957. [Google Scholar] [CrossRef]
Site Name | City | Type | Latitude and Longitude | Period |
---|---|---|---|---|
XA | Xi’an | Urban | 34.350827° N, 108.949636° E | 10 February 2023–3 March 2023 |
XASP | Xi’an | Urban | 34.158501° N, 108.889947° E | 10 February 2023–3 March 2023 |
BJ | Baoji | Urban | 34.359815° N, 107.154069° E | 8 February 2023–1 March 2023 |
XYXP | Xianyang | Suburban | 34.2780437° N, 108.489325° E | 1 December 2022–26 December 2022 |
WNHZ | Weinan | Suburban | 34.4831258° N, 109.7050045° E | 28 December 2022–19 January 2023 |
HC | Hancheng | Suburban | 35.6394631° N, 110.5818309° E | 30 January 2023–21 February 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Tao, Y.; Zheng, H.; Wang, M.; Li, S.; Xu, Y.; Li, M. Chemical Composition and Source of PM2.5 during Winter Heating Period in Guanzhong Basin. Atmosphere 2023, 14, 1640. https://doi.org/10.3390/atmos14111640
Cao L, Tao Y, Zheng H, Wang M, Li S, Xu Y, Li M. Chemical Composition and Source of PM2.5 during Winter Heating Period in Guanzhong Basin. Atmosphere. 2023; 14(11):1640. https://doi.org/10.3390/atmos14111640
Chicago/Turabian StyleCao, Lei, Yanan Tao, Hao Zheng, Mei Wang, Shiying Li, Yongjiang Xu, and Mei Li. 2023. "Chemical Composition and Source of PM2.5 during Winter Heating Period in Guanzhong Basin" Atmosphere 14, no. 11: 1640. https://doi.org/10.3390/atmos14111640
APA StyleCao, L., Tao, Y., Zheng, H., Wang, M., Li, S., Xu, Y., & Li, M. (2023). Chemical Composition and Source of PM2.5 during Winter Heating Period in Guanzhong Basin. Atmosphere, 14(11), 1640. https://doi.org/10.3390/atmos14111640