The Combined Effect of Atmospheric and Solar Activity Forcings on the Hydroclimate in Southeastern Europe
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results and Discussion
3.1. Relationship between Solar Activity and Hydroclimatic Variables
3.2. Atmospheric and Solar Activity Forcings on the Danube Discharge
- I.
- Analysis of the information provided for Q by four predictors together (GBOI, NAOI, PHDI, and SSN) for annual and seasonal values (Figure 10a);
- II.
- The analysis provided for Q of three predictors under different combinations, namely:
- (a)
- Terrestrial variables (GBOI, NAOI, PHDI) (Figure 10b);
- (b)
- The two large-scale terrestrial variables (GBOI, NAOI) together with the SSN (Figure 10c);
- (c)
- One variable at a large scale (GBOI) and one at a regional scale (PHDI) with the SSN (Figure 10d);
- (d)
- The same as (c) but with the NAOI instead of the GBOI (Figure 10e).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, T.; Zhou, J.; Zhang, C.; Fu, W. Streamflow Forecasting Using Empirical Wavelet Transform and Artificial Neural Networks. Water 2017, 9, 406. [Google Scholar] [CrossRef]
- Weijs, S.V.; Foroozand, H.; Kumar, A. Dependency and redundancy: How information theory untangles three variable interactions in environmental data. Water Resour. Res. 2018, 54, 7143–7148. [Google Scholar] [CrossRef]
- Serykh, I.V.; Sonechkin, D.M. El Niño–Global Atmospheric Oscillation as the Main Mode of Interannual Climate Variability. Atmosphere 2021, 12, 1443. [Google Scholar] [CrossRef]
- Daglis, I.A.; Chang, L.C.; Dasso, S.; Gopalswamy, N.; Khabarova, O.V.; Kilpua, E.; Lopez, R.; Marsh, D.; Matthes, K.; Nandy, D.; et al. Predictability of variable solar–terrestrial coupling. Ann. Geophys. 2021, 39, 1013–1035. [Google Scholar] [CrossRef]
- Dobrica, V.; Demetrescu, C. Oscillations at sub-centennial time scales in the space climate of the last 150 years. Rev. Roum. Géophysique 2021, 65, 71–77. [Google Scholar] [CrossRef]
- Demetrescu, C.; Dobrica, V.; Maris, G. On the long-term variability of the heliosphere—Magnetosphere environment. Adv. Space Res. 2010, 46, 1299–1312. [Google Scholar] [CrossRef]
- Dobrica, V.; Demetrescu, C.; Maris, G. On the response of the European climate to the solar/geomagnetic long-term activity. Ann. Geophys. 2010, 53, 39–48. [Google Scholar]
- Le Mouël, J.L.; Lopes, F.; Courtillot, V. A solar signature in many climate indices. J. Geoph. Res. Atmos. 2019, 124, 2600–2619. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Roy, I. Solar cyclic variability can modulate winter Arctic climate. Sci. Rep. 2018, 8, 4864. [Google Scholar] [CrossRef]
- Zhao, R.; Biswas, A.; Zhou, Y.; Zhou, Y.; Shi, Z.; Li, H. Identifying localized and scale-specific multivariate controls of soil organic matter variations using multiple wavelet coherence. Sci. Total Environ. 2018, 643, 548–558. [Google Scholar] [CrossRef]
- Chham, E.; Milena-Pérez, A.; Piñero-García, F.; Hernández-Ceballos, M.A.; Orza, J.A.; Brattich, E.; El Bardouni, T.; Ferro-García, M.A. Sources of the seasonal-trend behaviour and periodicity modulation of 7Be air concentration in the atmospheric surface layer observed in southeastern Spain. Atmos. Environ. 2019, 15, 148–158. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C.; Kottegoda, N.; Rosso, R. Extremes in Nature: An Approach Using Copulas. In Water Science and Technology Library; Springer: Dordrecht, The Netherlands, 2007; Volume 56. [Google Scholar]
- Sonechkin, D.M.; Vakulenko, N.V. Polyphony of Short-Term Climatic Variations. Atmosphere 2021, 12, 1145. [Google Scholar] [CrossRef]
- Ianovici, V.; Mihailescu, V.; Badea, L.; Moraru, T.; Tufescu, V.; Iancu, M.; Herbst, C.; Grumazescu, H. Geografia Vaii Dunarii romanesti. Ed. Acad. Republicii Social. Rom. 1969, 2, 782. [Google Scholar]
- Stănescu, V.A.; Ungureanu, V.; Domokos, M. Regionalization of the Danube catchment for the estimation of the distribution functions of annual peak discharges. J. Hydrol. Hydromech. 2001, 49, 407–427. [Google Scholar]
- Stănescu, V.A. Regional Analysis of The Annual Peak Discharges in the Danube Catchment; Follow–up volume No.VII to the Danube Monograph. Regional Cooperation of the Danube Countries; Administrația Națională de Meteorologie: Bucharest, Romania, 2004; p. 64. [Google Scholar]
- Pekarova, P.; Pekar, J. Long-term discharge prediction for the Turnu Severin station (the Danube) using a linear autoregressive model. Hydrol. Process. 2006, 20, 1217–1228. [Google Scholar] [CrossRef]
- Rimbu, N.; Dima, M.; Lohmann, G.; Stefan, S. Impacts of the North Atlantic Oscillation and the El Niño–Southern Oscillation on Danube river flow variability. Geophys. Res. Lett. 2004, 31, L23203. [Google Scholar] [CrossRef]
- Dobrica, V.; Demetrescu, C.; Mares, I.; Mares, C. Long-term evolution of the Lower Danube discharge and corresponding climate variations: Solar signature imprint. Theor. Appl. Climatol. 2018, 133, 985–996. [Google Scholar] [CrossRef]
- Pekárová, P.; Miklánek, P. (Eds.) Flood Regime of Rivers in the Danube River Basin; Follow–up volume IX of the Regional Co-operation of the Danube Countries in IHP UNESCO; IH SAS: Bratislava, Slovakia, 2019; Volume 215, p. 527. [Google Scholar] [CrossRef]
- Mares, I.; Dobrica, V.; Demetrescu, C.; Mares, C. Hydrological response in the Danube lower basin to some internal and external climate forcing factors. Hydrol. Earth. Syst. Sci. Discuss. 2016, preprint. [Google Scholar]
- Mares, C.; Mares, I.; Mihailescu, M. Identification of extreme events using drought indices and their impact on the Danube lower basin discharge. Hydrol. Process. 2016, 30, 3839–3854. [Google Scholar] [CrossRef]
- Mares, I.; Mares, C.; Dobrica, V.; Demetrescu, C. Comparative study of statistical methods to identify a predictor for discharge at Orsova in the Lower Danube Basin. Hydrol. Sci. J. 2020, 65, 371–386. [Google Scholar] [CrossRef]
- Mares, I.; Dobrica, V.; Mares, C.; Demetrescu, C. Assessing the solar variability signature in climate variables by information theory and wavelet coherence. Sci. Rep. 2021, 11, 11337. [Google Scholar] [CrossRef] [PubMed]
- Mares, I.; Mares, C.; Dobrica, V.; Demetrescu, C. Selection of Optimal Palmer Predictors for Increasing the Predictability of the Danube Discharge: New Findings Based on Information Theory and Partial Wavelet Coherence Analysis. Entropy 2022, 24, 1375. [Google Scholar] [CrossRef] [PubMed]
- Mares, C.; Mares, I.; Dobrica, V.; Demetrescu, C. Discriminant Analysis of the Solar Input on the Danube’s Discharge in the Lower Basin. Atmosphere 2023, 14, 1281. [Google Scholar] [CrossRef]
- Scafetta, N. Global temperatures and sunspot numbers. Are they related? Yes, but non linearly. A reply to Gil-Alana et al. (2014). Phys. A Stat. Mech. Appl. 2014, 413, 329–342. [Google Scholar] [CrossRef]
- Halberg, F.; Cornélissen, G.; Bernhardt, K.H.; Sampson, M.; Schwartzkopff, O.; Sonntag, D. Egeson’s (George’s) transtridecadal weather cycling and sunspots. Hist. Geo Space Sci. 2010, 1, 49–61. [Google Scholar] [CrossRef]
- Zhao, J.; Han, Y.-B.; Li, Z.-A. The effect of solar activity on the annual precipitation in the Beijing area. Chinese J. Astron. Astroph. 2004, 4, 189–197. [Google Scholar] [CrossRef]
- Dobrica, V.; Demetrescu, C.; Boroneant, C.; Maris, G. Solar and geomagnetic activity effects on climate at regional and global scales: Case study—Romania. J. Atmos. Solar-Terrestr. Phys. 2009, 71, 1727–1735. [Google Scholar] [CrossRef]
- Mauas, P.J.D.; Buccino, A.P.; Flamenco, E. Long-term solar activity influences on South american rivers. J. Atmos. Sol. Terr. Phys. 2011, 73, 377–382. [Google Scholar] [CrossRef]
- Briciu, A.-E.; Mihaila, D. Wavelet analysis of some rivers in SE Europe and selected climate indices. Environ. Monit. Assess. 2014, 186, 6263–6286. [Google Scholar] [CrossRef]
- Compagnucci, R.H.; Berman, A.L.; Herrera, V.V.; Silvestri, G. Are southern South American Rivers linked to the solar variability? Int. J. Clim. 2014, 34, 1706–1714. [Google Scholar] [CrossRef]
- Sunkara, S.L.; Tiwari, R.K. Wavelet analysis of the singular spectral reconstructed time series to study the imprints of solar–ENSO–geomagnetic activity on Indian climate. Nonlin. Processes Geoph. 2016, 23, 361–374. [Google Scholar] [CrossRef]
- Matveev, S.M.; Chendev, Y.G.; Lupo, A.R.; Hubbart, J.A.; Timashchuk, D.A. Climatic Changes in the East-European Forest-Steppe and Effects on Scots Pine Productivity. Pure Appl. Geophys. 2017, 174, 427–443. [Google Scholar] [CrossRef]
- Laurenz, L.; Lüdecke, H.J.; Lüning, S. Influence of solar activity changes on European rainfall. J. Atmos. Sol. Terr. Phys. 2019, 185, 29–42. [Google Scholar] [CrossRef]
- Bierkens, M.F.P.; van Beek, L.P.H. Seasonal Predictability of European Discharge: NAO and Hydrological Response Time. J. Hydrometeor. 2009, 10, 953–968. [Google Scholar] [CrossRef]
- Su, L.; Miao, C.; Duan, Q.; Lei, X.; Li, H. Multiple-wavelet coherence of world’s large rivers with meteorological factors and ocean signals. J. Geoph. Res. Atmos. 2019, 124, 4932–4954. [Google Scholar] [CrossRef]
- Dai, Z.J.; Du, J.Z.; Tang, Z.H.; Ou, S.Y.; Brody, S.; Mei, X.F.; Jing, J.T.; Yu, S.B. Detection of Linkage Between Solar and Lunar Cycles and Runoff of the World’s Large Rivers. Earth Space Sci. 2019, 6, 914–930. [Google Scholar] [CrossRef]
- Ballinger, A.P.; Schurer, A.P.; O’Reilly, C.H.; Hegerl, G.C. The importance of accounting for the North Atlantic Oscillation when applying observational constraints to European climate projections. Geophys. Res. Lett. 2023, 50, e2023GL103431. [Google Scholar] [CrossRef]
- Bednorz, E.; Czernecki, B.; Tomczyk, A.M.; Półrolniczak, M. If not NAO then what?—Regional circulation patterns governing summer air temperatures in Poland. Theor. Appl. Climatol. 2019, 136, 1325–1337. [Google Scholar] [CrossRef]
- Hurrell, J.W. Decadal trends in the North Atlantic oscillation:Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef]
- Ambaum, M.H.P.; Hoskins, B.J.; Stephenson, D.B. Arctic Oscillation or North Atlantic Oscillation? J. Clim. 2001, 14, 3495–3507. [Google Scholar] [CrossRef]
- Mares, I.; Mares, C.; Stanciu, P. Climate Variability of the Discharge Level in the Danube Lower Basin and Teleconnection with NAO. Conference on Water Observation and Information System for Decision Support, Balwois. 2006. Available online: https://balwois.com/wp-content/uploads/old_proc/ffp-672.pdf (accessed on 1 September 2023).
- Mares, I.; Mares, C.; Mihailescu, M. NAO impact on the summer moisture variability across Europe. Phis. Chem. Earth. 2002, 27, 1013–1017. [Google Scholar] [CrossRef]
- Folland, C.K.; Knight, J.; Linderholm, H.W.; Fereday, D.; Ineson, S.; Hurrell, J.W. The summer North Atlantic oscillation: Past, present, and future. J. Clim. 2009, 22, 1082–1103. [Google Scholar] [CrossRef]
- Bladé, I.; Liebmann, B.; Fortuny, D.; van Oldenborgh, G.J. Observed and simulated impacts of the summer NAO in Europe: Implications for projected drying in the Mediterranean region. Clim. Dyn. 2012, 39, 709–727. [Google Scholar] [CrossRef]
- Mellado-Cano, J.; Barriopedro, D.; García-Herrera, R.; Trigo, R.M. New observational insights into the atmospheric circulation over the Euro-Atlantic sector since 1685. Clim. Dyn. 2020, 54, 823–841. [Google Scholar] [CrossRef]
- Lled_o, L.; Cionni, I.; Torralba, V.; Bretonni_ere, P.-A.; Sams_o, M. Seasonal prediction of Euro-Atlantic teleconnections from multiple systems. Environ. Res. Lett. 2020, 15, 074009. [Google Scholar] [CrossRef]
- Mares, I.; Mares, C.; Mihailescu, M. Stochastic modeling of the connection between sea level pressure and discharge in the Danube lower basin by means of Hidden Markov Model. EGU Gen. Assem. Conf. Abstr. 2013, 15, 7606. [Google Scholar]
- Yin, Z.Y. Spatial pattern of temporal trends in moisture conditions in the southeastern United States. Geogr. Ann. Ser. A Phys. Geogr. 1993, 75, 1–11. [Google Scholar] [CrossRef]
- Loboda, N.S.; Bozhok, Y.V. Electronic book with full papers. In Proceedings of the XXVIIІ Conference of the Danubian Countries on Hydrological Forecasting and Hydrological Bases of Water Management, Kyiv, Ukraine, 6–8 November 2019. [Google Scholar]
- Nakicenovic, N.; Alcamo, J.; Grubler, A.; Riahi, K.; Roehrl, R.A.; Rogner, H.-H.; Victor, N. Special Report on Emissions Scenarios (SRES), A Special Report of Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000; ISBN 0-521-80493-0. [Google Scholar]
- Wu, Y.; Zhang, L.; Zhang, Z.; Ling, J.; Yang, S.; Si, J.; Zhan, H.; Chen, W. Influence of solar activity and large-scale climate phenomena on extreme precipitation events in the Yangtze River Economic Belt. Stoch. Env. Res. Risk Assess. 2023. [Google Scholar] [CrossRef]
- Tomasino, M.; Zanchettin, D.; Traverso, P. Long-range forecastsof River Po discharges based on predictable solar activity and a fuzzy neural network model. Hydrol. Sci. J. 2004, 49, 673–684. [Google Scholar] [CrossRef]
- Landscheidt, T. River Po discharges and cycles of solar activity. Hydrol. Sci. J. 2000, 45, 491–493. [Google Scholar] [CrossRef]
- Wrzesiński, D.; Sobkowiak, L.; Mares, I.; Dobrica, V.; Mares, C. Variability of River Runoff in Poland and Its Connection to Solar Variability. Atmosphere 2023, 14, 1184. [Google Scholar] [CrossRef]
- Zanchettin, D.; Rubino, A.; Traverso, P.; Tomasino, M. Impact of variations in solar activity on hydrological decadal patterns in northern Italy. J. Geophys. Res. 2008, 13, 889. [Google Scholar] [CrossRef]
- Massei, N.; Laignel, B.; Deloffre, J.; Mesquita, J.; Motelay, A.; Lafite, R.; Durand, A. Long-term hydrological changes of the Seine River flow (France) and their relation to the North Atlantic Oscillation over the period 1950–2008. Int. J. Clim. 2010, 30, 2146–2154. [Google Scholar] [CrossRef]
- Fu, C.; James, A.L.; Wachowiak, M.P. Analyzing the combined influence of solar activity and El Niño on streamflow across southern Canada. Water Resour. Res. 2012, 48, W05507. [Google Scholar] [CrossRef]
- Antico, A.; Torres, M.E. Evidence of a decadal solar signal in the Amazon River: 1903 to 2013. Geophys. Res. Lett. 2015, 42, 782–787. [Google Scholar] [CrossRef]
- Dong, L.; Fu, C.; Liu, J.; Zhang, P. Combined Effects of Solar Activity and El Niño on Hydrologic Patterns in the Yoshino River Basin, Japan. Water Resour. Manag. 2018, 32, 2421. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Moore, J.; Grinsted, A.; Jevrejeva, S. Is there evidence for sunspot forcing of climate at multi-year and decadal periods? Geophys. Res. Lett. 2006, 33, L17705. [Google Scholar] [CrossRef]
- Schulte, J.; Najjar, R.G.; Li, M. The influence of climate modes on streamflow in the Mid-Atlantic region of the United States. J. Hydrol. Reg. Stud. 2016, 5, 80–99. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Guiasu, S. Information Theory with Applications; McGraw-Hill Inc.: London, UK, 1977. [Google Scholar]
- Timme, N.; Alford, W.; Flecker, B.; Beggs, J.M. Synergy, redundancy, and multivariate information measures: An experimentalist’s perspective. J. Comput. Neurosci. 2014, 36, 119–140. [Google Scholar] [CrossRef] [PubMed]
- Ball, K.R.; Grant, C.; Mundy, W.R.; Shafer, T.J. A multivariate extensionof mutual information for growing neural networks. Neural Netw. 2017, 95, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Timme, N.M.; Lapish, C. A tutorial for information theory in neuroscience. Eneuro 2018, 5, 1–40. [Google Scholar] [CrossRef]
- Hsieh, W.W.; Tang, B. Applying neural network models to prediction and data analysis in meteorology and oceanography. Bull. Am. Meteorol. Soc. 1998, 79, 1855–1870. [Google Scholar] [CrossRef]
- Schulte, J. Global Wavelet Coherence, MATLAB Central File Exchange. Available online: https://www.mathworks.com/matlabcentral/fileexchange/54682-global-wavelet-coherence (accessed on 9 February 2023).
- Hu, W.; Si, B.C. Technical Note: Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences. Hydrol. Earth Syst. Sci. 2016, 20, 3183–3191. [Google Scholar] [CrossRef]
- Hu, W.; Si, B.C. Technical Note: Improved partial wavelet coherency for understanding scale-specific and localized bivariate relationships in geosciences. Hydrol. Earth Syst. Sci. 2021, 25, 321–331. [Google Scholar] [CrossRef]
- Khan, S.; Ganguly, A.R.; Bandyopadhyay, S.; Saigal, S.; Erickson III, D.J.; Protopopescu, V.; Ostrouchov, G. Nonlinear statistics reveals stronger ties between ENSO and the tropical hydrological cycle. Geophys. Res. Lett. 2006, 33, L24402. [Google Scholar] [CrossRef]
- Wrzesiński, D. Uncertainty of flow regime characteristics of rivers in Europe. Quaest. Geogr. 2013, 32, 43–53. [Google Scholar] [CrossRef]
- Gong, W.; Yang, D.; Gupta, H.V.; Nearing, G. Estimating information entropy for hydrological data: One-dimensional case. Water Res. 2014, 50, 5003–5018. [Google Scholar] [CrossRef]
- Vu, T.M.; Mishra, A.K.; Konapala, G. Information Entropy Suggests Stronger Nonlinear Associations between Hydro-Meteorological Variables and ENSO. Entropy 2018, 20, 38. [Google Scholar] [CrossRef] [PubMed]
- Mares, C.; Mares, I.; Dobrica, V.; Demetrescu, C. Quantification of the direct solar impact on some components of the hydroclimatic system. Entropy 2021, 23, 691. [Google Scholar] [CrossRef]
- Smith, R. A Mutual Information Approach to Calculating Nonlinearity. Stat 2015, 4, 291–303. [Google Scholar] [CrossRef]
- Yoon, S.; Lee, T. Investigation of hydrological variability in the Korean Peninsula with the ENSO teleconnections. Proc. Int. Assoc. Hydrol. Sci. 2016, 374, 165–173. [Google Scholar] [CrossRef]
- Hotelling, H. Relations Between Two Sets of Variates. Biometrika 1936, 28, 321–377. [Google Scholar] [CrossRef]
- Lorenz, E.N. Empirical orthogonal functions and statistical weather prediction. In Statistical Forecasting Project; Department of Meteorology, Massachusetts Institute of Technology: Cambridge, MA, USA, 1956; p. 49. [Google Scholar]
- Hasselmann, K. PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res. 1988, 93, 11015–11021. [Google Scholar] [CrossRef]
- Hsieh, W.W. Nonlinear canonical correlation analysis of the tropical Pacific climate variability using a neural network approach. J. Clim. 2001, 14, 2528–2539. [Google Scholar] [CrossRef]
- Hsieh, W.W. Nonlinear principal component analysis of noisy data. Neural Netw. 2007, 20, 434–443. [Google Scholar] [CrossRef]
- Hsieh, W.W. Nonlinear multivariate and time series analysis by neural network methods. Rev. Geophys. 2004, 42, RG1003. [Google Scholar] [CrossRef]
- Widmann, M. One-Dimensional CCA and SVD, and Their Relationship to Regression Maps. J. Clim. 2005, 18, 2785–2792. [Google Scholar] [CrossRef]
- Krzanowski, W.J. Principles of Multivariate Analysis: A User’s Perspective; Oxford University Press: New York, NY, USA, 1988. [Google Scholar]
- Seber, G.A.F. Multivariate Observations; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1984. [Google Scholar]
- Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed.; McGraw-Hill: New York, NY, USA, 1984. [Google Scholar]
- Saltzman, B. A survey of statistical–dynamical models of the terrestrial climate. In Advances in Geophysics; Academic Press: New York, NY, USA; San Francisco, CA, USA; London, UK, 1978; Volume 20, pp. 183–304. [Google Scholar]
- Ogurtsov, M.G.; Raspopov, O.M.; Oinonen, M.; Jungner, H.; Lindholme, M. Possible Manifestation of Nonlinear Effects When Solar Activity Affects Climate Changes. Geomagn. Aeron. 2010, 50, 15–20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mares, I.; Dobrica, V.; Demetrescu, C.; Mares, C. The Combined Effect of Atmospheric and Solar Activity Forcings on the Hydroclimate in Southeastern Europe. Atmosphere 2023, 14, 1622. https://doi.org/10.3390/atmos14111622
Mares I, Dobrica V, Demetrescu C, Mares C. The Combined Effect of Atmospheric and Solar Activity Forcings on the Hydroclimate in Southeastern Europe. Atmosphere. 2023; 14(11):1622. https://doi.org/10.3390/atmos14111622
Chicago/Turabian StyleMares, Ileana, Venera Dobrica, Crisan Demetrescu, and Constantin Mares. 2023. "The Combined Effect of Atmospheric and Solar Activity Forcings on the Hydroclimate in Southeastern Europe" Atmosphere 14, no. 11: 1622. https://doi.org/10.3390/atmos14111622
APA StyleMares, I., Dobrica, V., Demetrescu, C., & Mares, C. (2023). The Combined Effect of Atmospheric and Solar Activity Forcings on the Hydroclimate in Southeastern Europe. Atmosphere, 14(11), 1622. https://doi.org/10.3390/atmos14111622