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Canonical Correlation Analysis (CCA) 
 

Statistical analysis for data size reduction was first introduced by Hotelling [1]. 
Then, this analysis was applied by Lorenz [2] for linear processes of weather and climate 
and by Hasselmann [3] and Hsieh [4,5] for nonlinear climate processes. Hsieh [6] consid-
ers the nonlinear connection of two data sets as a generalization of Canonical Correla-
tion Analysis (CCA), which he calls nonlinear CCA (NLCCA) and solves it with a neural 
network method. Widmann [7], when a time series is linearly estimated from a time-
dependent vector, considers that CCA is equivalent to multiple linear regression (MLR). 

 Canonical correlation analysis assesses the relationship between two sets of 
variables or two vectors (X and Y) whose components are the predictor random varia-
bles and the predictand random variables: 

X=(X1,... , Xn); 
Y=(Y1,... , Ym) (in general n<= m). 
If there are correlations between these variables, the CCA does nothing but find lin-

ear combinations of Xi and Yj, for which the correlations (with each other) are maximal. 
Nowadays, several CCAs have been used in various applications, especially for lin-

ear relationships between phenomena. The computational algorithm is given in 
MATLAB routines by the routine "canoncorr", which computes the linear combinations 
(varieties) U and V of the sets of variables X and Y [8, 9]; thus: 

U=(X-mean(X))*A; 
V=(Y-mean(Y))*B. 
Where A and B are sample canonical coefficients for X input variables and Y input 

variables, respecively. 
In [6], the foundations of nonlinear linkages in CCA by making neural predictions 

with this technique were described. 
Here, we use the algorithm [5] only to the extent that we can specify the nature of 

the relationships between the vectors of the data sets and their components. Hsieh states 
that if the nonlinear approach has a significant advantage over the linear approach, it is 
seen in the nature of the relationships between the data sets. The nonlinear approach is 
generally inefficient if the data sets are short and noisy or when the relationships be-
tween data sets are linear. But it can be said that both forms of linkages are found in na-
ture, and when we roughly approximate nonlinear linkages by linear ones, nature is mu-
tilated. 

In the following, the type of curve connecting two time series was determined. 
Some links are linear others curvilinear as in Figures S1-S5. Testing to see if the nonline-
ar link between the two series is chaotic is performed [10] following Papoulis [11] by cal-
culating the mutual information size (see Equation 10 in the paper). Mutual information 
is the normalized entropy of the connection of the phenomena described by the two 
chronological series in question, and a priori is a measure of indeterminacy (uncertainty) 
and a posteriori is a measure of information [12]. 



Therefore, in the following section, we show by testing that the linkages between 
components of predictor–predictand sets can be of both forms, such as in figures S1-S5 
below, where the relevant combinations of any two variables are shown in plane (a,b,c) 
and in (d) the overall combination of the three variables, x1,x2, and x3, which are repre-
sented in space. In these figures, the blue points are the data, and those shown by a 
curve made up of red small circles are a kind of fit of the data. 

Linear links are usually found among the components of vectors describing geo-
physical phenomena, such as in Figure S3 (a) and Figure S4. In other cases, the existing 
nonlinearity is evident as can be seen in Figures S1, S2, and S5. 

In conclusion, the need to test in advance the nature of the linkage between the 
components of the predictor–predictand sets is a condition of interest not only theoreti-
cally but also practically in order not to reach false conclusions. 

Figures S1 and S2 show the linkages between the components of the predictor–
predictand sets in the seasonal series (SPR= spring; SUM= summer), denoted by 
X1=PHDI, X2=SSN, and X3=Q, for the spring and summer seasons, respectively, and the 
linkages are clearly nonlinear. 

 
Figure S1. Relationship between (a) the PHDI (X1) and SSN (X2); (b) the PHDI (X1) and Q (X3); (c) 
the SSN (X2) and Q (X3); (d) the spatial representation of the overall combination of the three vari-
ables in the spring season. The blue points are the data, and those shown by a curve made up of 
red small circles are a kind of fit of the data. 

 



 
Figure S2. Same variables as in Figure S1 but for the summer season. 

 

 
Figure S3. Relationship between the GBOI (X1), PHDI (X2), and Q (X3) during the spring season. 

In Figure S3 (a), between the GBOI (X1) and PHDI (X2), the link is linear. The water 
component Q is closely related to the nonlinear PHDI (Figure S3 (c)), which has a rela-
tively obvious scedasticity (increasing spread around the curve formed by red circles as 
one goes from small to large deviations). In S3 (d), the overall combination of the three 
variables also seems to be linear, which means that the combination (X1,X2) is very 
close. 

Figure S4, in which the variables formed by the annual series of the GBOI, PHDI, 
and Q ( river discharge), show links with linear structures. 



 
Figure S4. Relationship between the GBOI (X1), PHDI (X2), and Q (X3) for annual values. 

 
Figure S5. Relationship between the Q (X1), SSN (X2), and PHDI (X3) for annual values. 

Figure S5 highlights the link between the annual solar activity SSN and the other 
parameters designating the terrestrial phenomena: the Danube discharge (Q) and the ba-
sin moisture through the PHDI.  

In fact, the links between the analyzed parameters, either seasonal or annual, are 
nonlinear if solar activity is included. 



In the end, we must conclude that it is difficult to give physical explanations of the 
nonlinear links between phenomena when the intimate processes in one of them are not 
known in detail. But with mutual information and entropy transfer [13], the causal con-
nection can be specified somewhat. 

If we think about Saltzman's postulate [14], under an initial impulse, a system like 
the climatic one, then we have "free variations due to internal instabilities and feedbacks, 
usually involving nonlinear interaction among different components of the climatic sys-
tem, that can occur even if there are no forcing changes". The effect of even a weak solar 
signal on the Earth's climate system can lead to significant climate variations if the sys-
tem is nonlinear [15]. 

In fact, only a stochastic–dynamic model of the terrestrial climate can provide us 
with truthful information for physical explanations. 
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