The Impact of Anthropogenic VOC Emissions on Atmospheric Pollution: A Case Study of a Typical Industrialized Area in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Building of Emission Inventory
2.2.1. Source Classification
2.2.2. Emission Estimation
2.3. Calculation of Individual VOC Species Emissions
2.4. OFP and SOAP Estimation
2.5. Data Source and Parameter Setting of ADMS Model
3. Results and Discussions
3.1. Emission Inventory
3.1.1. Source Contributions
3.1.2. Emission Characteristics of Individual VOCs
3.2. Species Activity in VOCs
3.2.1. Main Active Species
3.2.2. Reactive Activity of Emission Source
3.3. VOCs Impact on Air Quality
3.3.1. Annual Average Concentration Distribution of VOCs
3.3.2. Seasonal Emission Concentration Characteristics
3.3.3. Diurnal Emission Concentration Characteristics
3.3.4. Uncertainties and Future Research
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Gao, W.; Wang, S.; Song, T.; Gong, Z.; Ji, D.; Wang, L.; Liu, Z.; Tang, G.; Huo, Y.; et al. Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017. Natl. Sci. Rev. 2020, 7, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Cao, Y.; Qiao, X.; Seyler, B.C.; Tang, Y. Air pollution reduction in China: Recent success but great challenge for the future. Sci. Total Environ. 2019, 663, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Wu, L.; Xie, Y.; He, J.; Chen, X.; Wang, T.; Lin, Y.; Jin, T.; Wang, A.; Liu, Y.; et al. Air pollution in China: Status and spatiotemporal variations. Environ. Pollut. 2017, 227, 334–347. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhang, Y.; Bozzetti, C.; Ho, K.; Cao, J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Hu, M.; Zamora, M.L.; Peng, J.; Shang, D.; Zheng, J.; Du, Z.; Wu, Z.; Shao, M.; Zeng, L.; et al. Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373–17378. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Liu, J.; Tao, W.; Yi, K.; Xu, J.; Hu, X.; Liu, H.; Wang, Y.; Zhang, Y.; Yang, H.; et al. Control of both PM2.5 and O3 in Beijing-Tianjin-Hebei and the surrounding areas. Atmos. Environ. 2020, 224, 117259. [Google Scholar] [CrossRef]
- Xing, J.; Wang, J.; Mathur, R.; Wang, S.; Sarwar, G.; Pleim, J.; Hogrefe, C.; Zhang, Y.; Jiang, J.; Wong, D.C.; et al. Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates. Atmos. Chem. Phys. 2017, 17, 9869–9883. [Google Scholar] [CrossRef]
- Liang, X.; Sun, X.; Xu, J.; Ye, D. Improved emissions inventory and VOCs speciation for industrial OFP estimation in China. Sci. Total Environ. 2020, 745, 140838. [Google Scholar] [CrossRef]
- Ou, J.; Zheng, J.; Li, R.; Huang, X.; Zhong, Z.; Zhong, L.; Lin, H. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China. Sci. Total Environ. 2015, 530–531, 393–402. [Google Scholar] [CrossRef]
- Derwent, R.G.; Jenkin, M.E.; Passant, N.R.; Pilling, M.J. Reactivity-based strategies for photochemical ozone control in Europe. Environ. Sci. Policy 2007, 10, 445–453. [Google Scholar] [CrossRef]
- Hui, L.; Liu, X.; Tan, Q.; Feng, M.; An, J.; Qu, Y.; Zhang, Y.; Cheng, N. VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan, Central China. Sci. Total Environ. 2019, 650, 2624–2639. [Google Scholar] [CrossRef]
- Simayi, M.; Hao, Y.; Li, J.; Wu, R.; Shi, Y.; Xi, Z.; Zhou, Y.; Xie, S. Establishment of county-level emission inventory for industrial NMVOCs in China and spatial-temporal characteristics for 2010–2016. Atmos. Environ. 2019, 211, 194–203. [Google Scholar] [CrossRef]
- Wu, R.; Bo, Y.; Li, J.; Li, L.; Li, Y.; Xie, S. Method to establish the emission inventory of anthropogenic volatile organic compounds in China and its application in the period 2008–2012. Atmos. Environ. 2016, 127, 244–254. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; An, J.; Huang, L.; Yan, R.; Huang, C.; Wang, H.; Wang, Q.; Wang, M.; Zhang, W. Estimation of biogenic VOC emissions and its impact on ozone formation over the Yangtze River Delta region, China. Atmos. Environ. 2018, 186, 113–128. [Google Scholar] [CrossRef]
- Zheng, J.; Shao, M.; Che, W.; Zhang, L.; Zhong, L.; Zhang, Y.; Streets, D. Speciated VOC Emission Inventory and Spatial Patterns of Ozone Formation Potential in the Pearl River Delta, China. Environ. Sci. Technol. 2009, 43, 8580–8586. [Google Scholar] [CrossRef] [PubMed]
- Hua, H.; Jiang, S.Y.; She, H.; Zhang, Y.; Liu, X.W.; Zhang, L.; Yuan, Z.W.; Chen, T.M. A high spatial-temporal resolution emission inventory of multi-type air pollutants for Wuxi city. J. Clean. Prod. 2019, 229, 278–288. [Google Scholar] [CrossRef]
- Zhou, M.; Jiang, W.; Gao, W.; Zhou, B.; Liao, X. A high spatiotemporal resolution anthropogenic VOC emission inventory for Qingdao City in 2016 and its ozone formation potential analysis. Process Saf. Environ. 2020, 139, 147–160. [Google Scholar] [CrossRef]
- An, X.; Sun, Z.; Lin, W.; Jin, M.; Li, N. Emission inventory evaluation using observations of regional atmospheric background stations of China. J. Environ. Sci. 2013, 25, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xing, J.; Chatani, S.; Hao, J.; Klimont, Z.; Cofala, J.; Amann, M. Verification of anthropogenic emissions of China by satellite and ground observations. Atmos. Environ. 2011, 45, 6347–6358. [Google Scholar] [CrossRef]
- Jiang, L.; Bessagnet, B.; Meleux, F.; Tognet, F.; Couvidat, F. Impact of Physics Parameterizations on High-Resolution Air Quality Simulations over the Paris Region. Atmosphere 2020, 11, 618. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Lin, H.; Feng, X.; Fu, T.; Wang, Y. NOx Emission Reduction and Recovery during COVID-19 in East China. Atmosphere 2020, 11, 433. [Google Scholar] [CrossRef]
- Lonati, G.; Cernuschi, S.; Sidi, S. Air quality impact assessment of at-berth ship emissions: Case-study for the project of a new freight port. Sci. Total Environ. 2010, 409, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Dėdelė, A.; Miškinytė, A. Seasonal and site-specific variation in particulate matter pollution in Lithuania. Atmos. Pollut. Res. 2019, 10, 768–775. [Google Scholar] [CrossRef]
- Sun, S.; Sun, L.; Liu, G.; Zou, C.; Wang, Y.; Wu, L.; Mao, H. Developing a vehicle emission inventory with high temporal-spatial resolution in Tianjin, China. Sci. Total Environ. 2021, 776, 145873. [Google Scholar] [CrossRef]
- He, K. Technical Manual for Compiling Urban Air Pollutant Emission Inventory; Tsinghua University: Beijing, China, 2018. (In Chinese) [Google Scholar]
- MEE (Ministry of Ecology and Environment of the People’s Republic of China). Technical Guide for Compiling Emission Inventory of Road Motor Vehicles. 2014. Available online: https://www.mee.gov.cn/gkml/hbb/bgth/201407/W020140708387895271474.pdf (accessed on 25 May 2023). (In Chinese)
- Sun, L.; Zhong, C.; Sun, S.; Liu, Y.; Tong, H.; Wu, Y.; Song, P.; Zhang, L.; Huang, X.; Wu, L.; et al. Evolution and Characteristics of Full-process Vehicular VOC Emissions in Tianjin from 2000 to 2020. Environ. Sci. 2023, 44, 1346–1356. (In Chinese) [Google Scholar]
- Sha, Q.; Zhu, M.; Huang, H.; Wang, Y.; Huang, Z.; Zhang, X.; Tang, M.; Lu, M.; Chen, C.; Shi, B.; et al. A newly integrated dataset of volatile organic compounds (VOCs) source profiles and implications for the future development of VOCs profiles in China. Sci. Total Environ. 2021, 793, 148348. [Google Scholar] [CrossRef] [PubMed]
- Suthawaree, J.; Tajima, Y.; Khunchornyakong, A.; Kato, S.; Sharp, A.; Kajii, Y. Identification of volatile organic compounds in suburban Bangkok, Thailand and their potential for ozone formation. Atmos. Res. 2012, 104–105, 245–254. [Google Scholar] [CrossRef]
- Carter, W.P.L. Development of Ozone Reactivity Scales for Volatile Organic Compounds. Air. Waste. 1994, 44, 881–899. [Google Scholar] [CrossRef]
- Venecek, M.A.; Carter, W.P.L.; Kleeman, M.J. Updating the SAPRC Maximum Incremental Reactivity (MIR) scale for the United States from 1988 to 2010. J. Air. Waste Manag. 2018, 68, 1301–1316. [Google Scholar] [CrossRef]
- Tkacik, D.S.; Presto, A.A.; Donahue, N.M.; Robinson, A.L. Secondary Organic Aerosol Formation from Intermediate-Volatility Organic Compounds: Cyclic, Linear, and Branched Alkanes. Environ. Sci. Technol. 2012, 46, 8773–8781. [Google Scholar] [CrossRef]
- Volkamer, R.; Jimenez, J.L.; San Martini, F.; Dzepina, K.; Zhang, Q.; Salcedo, D.; Molina, L.T.; Worsnop, D.R.; Molina, M.J. Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophys. Res. Lett. 2006, 33, 17811. [Google Scholar] [CrossRef]
- Wu, R.; Xie, S. Spatial Distribution of Secondary Organic Aerosol Formation Potential in China Derived from Speciated Anthropogenic Volatile Organic Compound Emissions. Environ. Sci. Technol. 2018, 52, 8146–8156. [Google Scholar] [CrossRef] [PubMed]
- Biggart, M.; Stocker, J.; Doherty, R.M.; Wild, O.; Hollaway, M.; Carruthers, D.; Li, J.; Zhang, Q.; Wu, R.; Kotthaus, S.; et al. Street-scale air quality modelling for Beijing during a winter 2016 measurement campaign. Atmos. Chem. Phys. 2020, 20, 2755–2780. [Google Scholar] [CrossRef]
- Theophanides, M.; Anastassopoulou, J. Air pollution simulation and geographical information systems (GIS) applied to Athens International Airport. J. Environ. Sci. Health A 2009, 44, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, Q.; Zhang, Y.; Lv, Z.; Wang, Y.; Wu, L.; Feng, X.; Mao, H. An AIS-based emission inventory and the impact on air quality in Tianjin port based on localized emission factors. Sci. Total Environ. 2021, 783, 146869. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, R.; Velizarova, M. Assessment of the Contribution of Different Particulate Matter Sources on Pollution in Sofia City. Atmosphere 2021, 12, 423. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, R.; Han, L. Emission Inventory of VOCs Components in Zhengzhou and Their Ozone Formation Potential. Environ. Sci. 2020, 41, 4426–4435. (In Chinese) [Google Scholar]
- Gao, S.; Yan, X.; Zhang, R.; Xie, J.; Wang, P.; Liu, G.; Du, T. Emission Inventory and Characteristics of Anthropogenic Volatile Organic Compounds in Jinan. Environ. Sci. Technol. 2021, 44, 191–198. (In Chinese) [Google Scholar]
- Simayi, M.; Shi, Y.; Xi, Z.; Li, J.; Yu, X.; Liu, H.; Tan, Q.; Song, D.; Zeng, L.; Lu, S.; et al. Understanding the sources and spatiotemporal characteristics of VOCs in the Chengdu Plain, China, through measurement and emission inventory. Sci. Total Environ. 2020, 714, 136692. [Google Scholar] [CrossRef]
- Liu, X.; Yan, F.; Hua, H.; Yuan, Z. Identifying hotspots based on high-resolution emission inventory of volatile organic compounds: A case study in China. J. Environ. Manag. 2021, 288, 112419. [Google Scholar] [CrossRef]
- Niu, Y.; Yan, Y.; Li, J.; Liu, P.; Liu, Z.; Hu, D.; Peng, L.; Wu, J. Establishment and verification of anthropogenic volatile organic compound emission inventory in a typical coal resource-based city. Environ. Pollut. 2021, 288, 117794. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Lu, X.; Liu, Y.; Yin, S.; Hu, H. Emission Characteristics of Industrial VOCs Based on Emission Inventory and Field Test: A Case Zhengzhou High-tech Zone. Environ. Sci. 2021, 42, 5687–5697. (In Chinese) [Google Scholar]
- Dong, D.; Shao, M.; Li, Y.; Lu, S.H.; Wang, Y.J.; Ji, Z.; Tang, D.G. Carbonyl emissions from heavy-duty diesel vehicle exhaust in China and the contribution to ozone formation potential. J. Environ. Sci. 2014, 26, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Shao, M.; Yuan, B.; Wang, M.; Lu, S. Parameterization of contribution to secondary organic aerosol (SOA) formation from ambient volatile organic compounds (VOCs). Acta Sci. Circumst. 2013, 33, 163–172. (In Chinese) [Google Scholar]
- You, X.; Lou, D.; Liu, Z.; Su, Y. Inventory and Environmental Impact of VOCs Emission from Anthropogenic Source in Chang-Zhu-Tan Region. Environ. Sci. 2017, 38, 461–468. (In Chinese) [Google Scholar]
- Zheng, J.; Yu, Y.; Mo, Z.; Zhang, Z.; Wang, X.; Yin, S.; Peng, K.; Yang, Y.; Feng, X.; Cai, H. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China. Sci. Total Environ. 2013, 456–457, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Shao, M.; Lu, S.; Wang, B. Source profiles of volatile organic compounds associated with solvent use in Beijing, China. Atmos. Environ. 2010, 44, 1919–1926. [Google Scholar] [CrossRef]
- Venegas, L.E.; Mazzeo, N.A.; Dezzutti, M.C. A simple model for calculating air pollution within street canyons. Atmos. Environ. 2014, 87, 77–86. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, S.; Zheng, Y.; Wang, S.; Li, Y. Numerical Study of Traffic Pollutant Dispersion within Different Street Canyon Configurations. Adv. Meteorol. 2014, 2014, 458671. [Google Scholar] [CrossRef]
- Bian, B. Study on the Influence of Built Environment on Pollutant Dispersion of Vehicle Exhaust in Typical Areas of Shenzhen. Master’s Thesis, Harbin Institute of Technology, Shenzhen, China, 2016. (In Chinese). [Google Scholar]
- Wang, G.; Zhao, N.; Zhang, H.; Li, G.; Xin, G. Spatiotemporal Distributions of Ambient Volatile Organic Compounds in China: Characteristics and Sources. Aerosol. Air. Qual. Res. 2022, 22, 210379. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Zhang, Y.; Dai, W.; He, K.; Xu, H.; Zhang, Z.; Cui, L.; Li, X.; Huang, Y.; et al. Profiles and Source Apportionment of Nonmethane Volatile Organic Compounds in Winter and Summer in Xi’an, China, based on the Hybrid Environmental Receptor Model. Adv. Atmos. Sci. 2021, 38, 116–131. [Google Scholar] [CrossRef]
- Gu, Y.; Li, Q.; Wei, D.; Gao, L.; Tan, L.; Su, G.; Liu, G.; Liu, W.; Li, C.; Wang, Q. Emission characteristics of 99 NMVOCs in different seasonal days and the relationship with air quality parameters in Beijing, China. Ecotox. Environ. Saf. 2019, 169, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Yenisoy-Karakaş, S.; Dörter, M.; Odabasi, M. Intraday and interday variations of 69 volatile organic compounds (BVOCs and AVOCs) and their source profiles at a semi-urban site. Sci. Total Environ. 2020, 723, 138028. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Wang, C.; Zhu, B.; Chen, X.; Feng, N.; Yu, G.; Huang, X. Long-term observations of oxygenated volatile organic compounds (OVOCs) in an urban atmosphere in southern China, 2014–2019. Environ. Pollut. 2021, 270, 116301. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, C.; Xu, L.; Fan, X.; Shi, J.; Zheng, R.; Hong, Y.; Li, M.; Liu, T.; Chen, G.; et al. Variations of chemical composition of NR-PM1 under the influence of sea land breeze in a coastal city of Southeast China. Atmos. Res. 2023, 285, 106626. [Google Scholar] [CrossRef]
- Cheng, F.; Chin, S.; Liu, T. The role of boundary layer schemes in meteorological and air quality simulations of the Taiwan area. Atmos. Environ. 2012, 54, 714–727. [Google Scholar] [CrossRef]
Study Area | Emissions Intensity (×10−3 Gg/km2) | Emission Sources Contribution Ratios | Ref. | ||||
---|---|---|---|---|---|---|---|
Fossil Fuel Combustion | Industrial Process | Solvent Utilization | Mobile Source | Storage and Transportation | |||
TIA | 51.0 | 8.04% | 38.4% | 12.9% | 36.5% | 3.04% | This study |
Zhengzhou | 12.7 | 4.30% | 24.2% | 28.1% | 29.7% | 7.40% | [39] |
Qingdao | 13.4 | 4.10% | 49.9% | 14.1% | 20.1% | / | [17] |
Jinan | 10.2 | 7.13% | 47.8% | 16.8% | 17.7% | 1.00% | [40] |
Chengdu | 27.2 | 1.90% | 30.0% | 25.9% | 36.7% | 1.10% | [41] |
Huai’an | 3.58 | 6.00% | 41.0% | 32.0% | 13.0% | 3.00% | [42] |
Yangquan | 2.04 | 31.0% | 31.1% | 9.50% | 23.8% | / | [43]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Wang, Y.; Wu, L.; Zheng, F.; Sun, N.; Liu, G.; Liu, Y.; Meng, P.; Sun, L.; Jing, B. The Impact of Anthropogenic VOC Emissions on Atmospheric Pollution: A Case Study of a Typical Industrialized Area in China. Atmosphere 2023, 14, 1586. https://doi.org/10.3390/atmos14101586
Gao X, Wang Y, Wu L, Zheng F, Sun N, Liu G, Liu Y, Meng P, Sun L, Jing B. The Impact of Anthropogenic VOC Emissions on Atmospheric Pollution: A Case Study of a Typical Industrialized Area in China. Atmosphere. 2023; 14(10):1586. https://doi.org/10.3390/atmos14101586
Chicago/Turabian StyleGao, Xin, Yanan Wang, Lin Wu, Fangyuan Zheng, Naixiu Sun, Guangxun Liu, Yongji Liu, Peng Meng, Luna Sun, and Boyu Jing. 2023. "The Impact of Anthropogenic VOC Emissions on Atmospheric Pollution: A Case Study of a Typical Industrialized Area in China" Atmosphere 14, no. 10: 1586. https://doi.org/10.3390/atmos14101586
APA StyleGao, X., Wang, Y., Wu, L., Zheng, F., Sun, N., Liu, G., Liu, Y., Meng, P., Sun, L., & Jing, B. (2023). The Impact of Anthropogenic VOC Emissions on Atmospheric Pollution: A Case Study of a Typical Industrialized Area in China. Atmosphere, 14(10), 1586. https://doi.org/10.3390/atmos14101586