Characteristics Analysis of Volatile Organic Compounds Pollution in Residential Buildings in Northeast China Based on Field Measurement
Abstract
:1. Introduction
2. Test Methods
2.1. Sampling Location and Outdoor Meteorology
2.2. Sampling Schedule and Method
2.3. Chemical and Risk Analyses
3. Results and Discussion
3.1. Results of TVOC Measurement
3.2. The Detection Rates of VOCs
3.3. The Types of VOCs
3.4. The Mass Ratios of VOCs
3.5. Influence of Ventilation Mode on Indoor TVOC Concentration
3.6. Enthalpy Exchange Efficiency of Fresh Air System
3.7. Benzene Carcinogenic Risk
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef]
- Dimitroulopoulou, C.; Ashmore, M.R.; Byrne, M.A.; Kinnersley, R.P. Modelling of indoor exposure to nitrogen dioxide in the UK. Atmos. Environ. 2001, 35, 269–279. [Google Scholar] [CrossRef]
- Williams, R.; Creason, J.; Zweidinger, R.; Watts, R.; Sheldon, L.; Shy, C. Indoor, outdoor, and personal exposure monitoring of particulate air pollution: The Baltimore elderly epidemiology-exposure pilot study. Atmos. Environ. 2000, 34, 4193–4204. [Google Scholar] [CrossRef]
- Salthammer, T.; Mentese, S.; Marutzky, R. Formaldehyde in the Indoor Environment. Chem. Rev. 2010, 110, 2536–2572. [Google Scholar] [CrossRef]
- Duan, H.; Liu, X.; Yan, M.; Wu, Y.; Liu, Z. Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China. Front. Environ. Sci. Eng. 2014, 10, 73–84. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, H.; Xu, R.; Jing, S.; Liu, Y.; Peng, Y. Composition and emission characteristics of volatile organic compounds from catering sources. Environ. Sci. 2019, 40, 109–115. [Google Scholar]
- Norbäck, D.; Michel, I.; Widström, J. Indoor air quality and personal factors related to the sick building syndrome. Scand. J. Work. Environ. Health 1990, 16, 121–128. [Google Scholar] [CrossRef]
- Bu, Z.; Zhang, Y.; Mmereki, D.; Yu, W.; Li, B. Indoor phthalate concentration in residential apartments in Chongqing, China: Implications for preschool children’s exposure and risk assessment. Atmos. Environ. 2016, 127, 34–45. [Google Scholar] [CrossRef]
- Sivanantham, S.; Dassonville, C.; Grégoire, A.; Malingre, L.; Ramalho, O.; Mandin, C. Coexposure to indoor pollutants in French schools and associations with building characteristics. Energy Build. 2021, 252, 111424. [Google Scholar] [CrossRef]
- Wolkoff, P.; Wilkins, C.K.; Clausen, P.A.; Nielsen, G.D. Organic compounds in office environments-sensory irritation, odor, measurements and the role of reactive chemistry. Indoor Air 2006, 16, 7–19. [Google Scholar] [CrossRef]
- Weschler, C.J.; Wells, J.R.; Poppendieck, D.; Hubbard, H.; Pearce, T.A. Workgroup Report: Indoor Chemistry and Health. Environ. Health Perspect. 2006, 114, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Kadosaki, M.; Terasawa, T.; Tanino, K.; Tatuyama, C. Exploration of Highly Sensitive Oxide Semiconductor Materials to Indoor-Air Pollutants. IEEJ Trans. Sensors Micromachines 1999, 119, 383–389. [Google Scholar] [CrossRef]
- Kang, J. Concentration Level and Risk Assessment of Major Indoor Air Pollutants in Public Buildings; Beijing University of Civil Engineering and Architecture: Beijing, China, 2020. [Google Scholar]
- Farrow, A.; Taylor, H.; Northstone, K.; Golding, J. Symptoms of Mothers and Infants Related to Total Volatile Organic Compounds in Household Products. Arch. Environ. Health Int. J. 2003, 58, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Wen, X. Numerical Simulation of TVOC Emission Law in Wet Building Materials and TVOC Concentration in Office Buildings; Chongqing University: Chongqing, China, 2015. [Google Scholar]
- Tan, H.; Qian, S.; Sun, D.; Ye, S.; Qiao, Q.; Ye, D. Study on the status and standards of harmful organic compounds pollution in indoor environment. China Meas. Test 2015, 41, 1–5. [Google Scholar]
- Zha, J.; Lin, H.; Zhang, Q.; Fu, X.; Lv, Y. Health effects of low concentration benzene series on workers. Occup. Health 2010, 26, 1828–1829. [Google Scholar]
- Wang, D. Pollution and control strategies of benzene and its homologous in public places. Sci. Technol. Inf. 2013, 1, 144–145. [Google Scholar]
- Xu, W. Determination of benzene series in indoor air of public places by gas chromatography. Hebei Chem. 2010, 33, 70–71. [Google Scholar]
- Zhao, Y.; Li, A.; Gao, R.; Tao, P.; Shen, J. Measurement of temperature, relative humidity and concentrations of CO, CO2 and TVOC during cooking typical Chinese dishes. Energy Build. 2014, 69, 544–561. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, Y. Filed test and numerical simulation of cooking fume pollution in household kitchens. Contam. Control. Air-Cond. Technol. 2015, 2, 13–17. [Google Scholar]
- Wang, H.; Xiong, J.; Wei, W. Measurement methods and impact factors for the key parameters of VOC/SVOC emissions from materials in indoor and vehicular environments: A review. Environ. Int. 2022, 168, 107451. [Google Scholar] [CrossRef]
- Haddad, S.; Synnefa, A.; Marcos, M.Á.P.; Paolini, R.; Delrue, S.; Prasad, D.; Santamouris, M. On the potential of demand-controlled ventilation system to enhance indoor air quality and thermal condition in Australian school classrooms. Energy Build. 2021, 238, 110838. [Google Scholar] [CrossRef]
- Salthammer, T.; Fuhrmann, F.; Kaufhold, S.; Meyer, B.; Schwarz, A. Effects of Climatic Parameters on Formaldehyde Concentrations in Indoor Air. Indoor Air 1995, 5, 120–128. [Google Scholar] [CrossRef]
- Lai, D.; Qi, Y.; Liu, J.; Dai, X.; Zhao, L.; Wei, S. Ventilation behavior in residential buildings with mechanical ventilation systems across different climate zones in China. J. Affect. Disord. 2018, 143, 679–690. [Google Scholar] [CrossRef]
- Zhao, Y.; Tan, H. Measurement and analysis of indoor environment of residential buildings with different ventilation modes in Shanghai. Build. Energy Environ. 2019, 38, 28–33. [Google Scholar] [CrossRef]
- Andersen, R.; Fabi, V.; Toftum, J.; Corgnati, S.P.; Olesen, B.W. Window opening behaviour modelled from measurements in Danish dwellings. Build. Environ. 2013, 69, 101–113. [Google Scholar] [CrossRef]
- Rijal, H.B.; Tuohy, P.; Humphreys, M.A.; Nicol, J.F.; Samuel, A.; Clarke, J. Using results from filed surveys to predict the effect of open windows on thermal comfort and energy use in buildings. Energy Build. 2017, 39, 823–836. [Google Scholar] [CrossRef]
- Pan, S.; Xiong, Y.; Han, Y.; Zhang, X.; Xia, L.; Wei, S.; Wu, J.; Han, M. A study on influential factors of occupant window-opening behavior in an office building in China. J. Affect. Disord. 2018, 133, 41–50. [Google Scholar] [CrossRef]
- Lan, L.; Qian, X.L.; Lian, Z.W.; Lin, Y.B. Local body cooling to improve sleep quality and thermal comfort in a hot environment. Indoor Air 2017, 28, 135–145. [Google Scholar] [CrossRef]
- Rijal, H.B. Investigation of Comfort Temperature and Occupant Behavior in Japanese Houses during the Hot and Humid Season. Buildings 2014, 4, 437–452. [Google Scholar] [CrossRef]
- Wallner, P.; Munoz, U.; Tappler, P.; Wanka, A.; Kundi, M.; Shelton, J.F.; Hutter, H.P. Indoor environmental quality in mechanically ventilated, energy-efficient buildings vs. conventional buildings. Int. J. Environ. Res. Public Health 2015, 12, 14132–14147. [Google Scholar] [CrossRef]
- GB/T 18883-2002; Standard for Indoor Air Quality. Standards Press of China: Beijing, China, 2002.
- GB/T 18204.2-2014; Hygienic Inspection Methods for Public Places Part 2: Chemical Pollutants. Standards Press of China: Beijing, China, 2014.
- Yin, H.; Liu, C.; Zhang, L.; Li, A.; Ma, Z. Measurement and evaluation of indoor air quality in naturally ventilated residential buildings. Indoor Built Environ. 2019, 28, 1307–1323. [Google Scholar] [CrossRef]
- Du, Z.; Mo, J.; Zhang, Y.; Xu, Q. Benzene, toluene and xylenes in newly renovated homes and associated health risk in Guangzhou, China. Build. Environ. 2014, 72, 75–81. [Google Scholar] [CrossRef]
- Lai, C. Assessment of side exhaust systems for residential kitchens in Taiwan. Build. Serv. Eng. Res. Technol. 2005, 26, 157–166. [Google Scholar] [CrossRef]
- Wei, P.; Zhou, B.; Tan, M.; Li, F.; Lu, J.; Dong, Z.; Xu, M.; Wang, G.; Xiao, Y. Study on Thermal Comfort under Non-uniform Thermal Environment Condition in Domestic Kitchen. Procedia Eng. 2017, 205, 2041–2048. [Google Scholar] [CrossRef]
- Yin, Y. Research on Emission Characteristic and Natural Ventilation Effect of Indoor Gaseous Pollutants in Chinese Residence; TianJin University: TianJin, China, 2017. [Google Scholar]
- Wang, J. Analysis of Winter Formaldehyde and VOCs Pollution Characteristics of Residential Kitchens in Severe Cold Regions and the Optimization of Make-Up Air; Shenyang Jianzhu University: LiaoNing, China, 2020. [Google Scholar]
- Liu, C. Measurement of Indoor Air Quality and Ventilation Strategy for Naturally Ventilated Residential Buildings in Xi’an and Lanzhou Regions; Xi’an University of Architecture and Technology: Xi’an, China, 2018. [Google Scholar]
- Lu, Y.; Yuan, T.; Yun, S.H.; Wang, W.; Wu, Q.; Kannan, K. Occurrence of cyclic and linear siloxanes in indoor dust from China, and implications for human exposures. Environ. Sci. Technol. 2010, 44, 6081–6087. [Google Scholar] [CrossRef]
- Kierkegaard, A.; Egmond, R.V.; McLachlan, M.S. Cyclic volatile methylsiloxane bioaccumulation in flounder and ragworm in the Humber Estuary. Environ. Sci. Technol. 2011, 45, 5936–5942. [Google Scholar] [CrossRef]
- Lieberman, M.W.; Lykissa, E.D.; Barrios, R.; Ou, C.N.; Kala, G.; Kala, S.V. Cyclosiloxanes produce fatal liver and lung damage in mice. Environ. Health Perspect. 1999, 107, 161–165. [Google Scholar] [CrossRef]
- He, B.; Rhodes-Brower, S.; Miller, M.R.; Munson, A.E.; Germolec, D.R.; Walker, V.R.; Korach, K.S.; Meade, B.J. Octamethylcyclotetrasiloxane exhibits estrogenic activity in mice via ERα. Toxicol. Appl. Pharmacol. 2003, 192, 254–261. [Google Scholar] [CrossRef]
- GB/T 21087-2007; Air-Air Energy Recovery Device. Standards Press of China: Beijing, China, 2007.
- Zhao, L. Study on Improving Indoor Ventilation of Residential Buildings by Different Ventilation and Purification Methods; Tianjin University: Tianjin, China, 2018. [Google Scholar]
- Zhang, C. Environment and Health Risk Assessment of Point Type High-Rise Residential Buildings in Chongqing in Winter; Chongqing University: Chongqing, China, 2016. [Google Scholar]
- Zhao, X.; Duan, X. Chinese Population Exposure Parameters Manual (Adult Volume); China Environmental Press: Beijing, China, 2014. [Google Scholar]
No. | City | Ventilation Mode | Construction Year | Decoration Year | House Type | Residential Area (m2) | Decoration Way | Elevation (m) | Furniture Surface Area (m2) |
---|---|---|---|---|---|---|---|---|---|
M1 | Yingkou | mechanical ventilation | 2016 | 2016 | three bedroom | 120 | diatom ooze + composite wood | 69.2 | 21.31 |
M2 | Yingkou | mechanical ventilation | 2016 | 2016 | two bedroom | 90 | diatom ooze + composite wood + ceramic tile | 55.2 | 44.93 |
M3 | Yingkou | mechanical ventilation | 2012 | 2013 | four bedroom | 160 | Wallpaper + diatom ooze + solid wood +ceramic tile | 69.2 | 43.10 |
M4 | Yingkou | mechanical ventilation | 2016 | 2017 | villa | 300 | Wallpaper + latex paint + solid wood + ceramic tile | 52.4 | 43.50 |
M5 | Shenyang | mechanical ventilation | 2016 | 2016 | one bedroom | 55 | latex paint + composite wood | 94.4 | 38.22 |
M6 | Shenyang | mechanical ventilation | 2016 | 2016 | one bedroom | 55 | latex paint + composite wood | 74.8 | 43.41 |
M7 | Shenyang | mechanical ventilation | 2016 | 2016 | two bedroom | 65 | latex paint + composite wood | 122.4 | 36.32 |
M8 | Shenyang | mechanical ventilation | 2016 | 2016 | one bedroom | 52 | latex paint + composite wood | 139.2 | 34.62 |
N9 | Shenyang | natural ventilation | 2011 | 2011 | four bedroom | 145 | Wallpaper + latex paint + solid wood + ceramic tile | 55.2 | 42.35 |
N10 | Shenyang | natural ventilation | 2004 | 2004 | three bedroom | 140 | latex paint + solid wood | 72 | 63.98 |
N11 | Shenyang | natural ventilation | 2013 | 2013 | three bedroom | 134 | latex paint + solid wood + ceramic tile | 122.4 | 52.97 |
N12 | Shenyang | natural ventilation | 2012 | 2012 | three bedroom | 120 | latex paint + composite wood + ceramic tile | 94.4 | 60.42 |
N13 | Fushun | natural ventilation | 2012 | 2012 | two bedroom | 70 | latex paint + composite wood + ceramic tile | 66.4 | 37.52 |
N14 | Fushun | natural ventilation | 2003 | 2004 | three bedroom | 95 | latex paint + composite wood + ceramic tile | 52.4 | 36.33 |
N15 | Fushun | natural ventilation | 2011 | 2011 | two bedroom | 110 | latex paint + composite wood + ceramic tile | 52.4 | 33.66 |
N16 | Fushun | natural ventilation | 2013 | 2013 | two bedroom | 90 | latex paint + composite wood + ceramic tile | 94.4 | 21.29 |
Performance Parameter | Model | |
---|---|---|
Atmospheric sampler | Flow range: 0.1~1.2 L/min | Beijing Labor Insurance QC-2B |
Flow error: ≤±5% | ||
Flow stability: ≤5% |
Bedroom | Living Room | Kitchen | ||
---|---|---|---|---|
Toluene | Detection rate | 96.2% | 90.9% | 100% |
Concentration | 0.045 mg/m3 | 0.032 mg/m3 | 0.038 mg/m3 | |
Alkanes | Mass ratio | 30.91% | 15.34% | 46.31% |
Concentration | 0.020 mg/m3 | 0.010 mg/m3 | 0.058 mg/m3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Yan, W.; Huang, K.; Song, J.; Liu, G. Characteristics Analysis of Volatile Organic Compounds Pollution in Residential Buildings in Northeast China Based on Field Measurement. Atmosphere 2023, 14, 1543. https://doi.org/10.3390/atmos14101543
Sun W, Yan W, Huang K, Song J, Liu G. Characteristics Analysis of Volatile Organic Compounds Pollution in Residential Buildings in Northeast China Based on Field Measurement. Atmosphere. 2023; 14(10):1543. https://doi.org/10.3390/atmos14101543
Chicago/Turabian StyleSun, Wen, Weidong Yan, Kailiang Huang, Jiasen Song, and Guoqi Liu. 2023. "Characteristics Analysis of Volatile Organic Compounds Pollution in Residential Buildings in Northeast China Based on Field Measurement" Atmosphere 14, no. 10: 1543. https://doi.org/10.3390/atmos14101543
APA StyleSun, W., Yan, W., Huang, K., Song, J., & Liu, G. (2023). Characteristics Analysis of Volatile Organic Compounds Pollution in Residential Buildings in Northeast China Based on Field Measurement. Atmosphere, 14(10), 1543. https://doi.org/10.3390/atmos14101543