Spatiotemporal Patterns of the Application of Surface Urban Heat Island Intensity Calculation Methods
Abstract
:1. Introduction
2. Data Sources and Method
3. Historical Trends
4. Methods for Measuring SUHII
4.1. Temperature Dichotomy Method
4.2. LST/BT Grading Method
4.3. Heat Island Index
4.4. Statistical Models
5. Spatial and Temporal Distribution Characteristics of SUHI Research Methods
5.1. Analysis of Temporal Pattern of SUHI Research Methods
5.2. Analysis of the Spatial Pattern of SUHI Research Methods
6. Discussion
6.1. Limitations of the Research Methods
6.2. Unbalanced Distribution in the Research Area
6.3. Lack Impact of LST Data on SUHI Research
6.4. Effect of Thermal Radiation Directionality on LST
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howard, L. The Climate of London: Deduced from Meteorological Observations Made in the Metropolis and at Various Places around It; Harvey and Darton: London, UK, 1833; Volume 3. [Google Scholar]
- Baqa, M.F.; Lu, L.L.; Chen, F.; Nawaz-ul-Huda, S.; Pan, L.; Tariq, A.; Qureshi, S.; Li, B.; Li, Q. Characterizing spatiotemporal variations in the urban thermal environment related to land cover changes in Karachi, Pakistan, from 2000 to 2020. Remote Sens. 2022, 14, 2164. [Google Scholar] [CrossRef]
- Si, M.L.; Li, Z.L.; Nerry, F.; Tang, B.; Leng, P.; Wu, H.; Zhang, X.; Shang, G. Spatiotemporal pattern and long-term trend of global surface urban heat islands characterized by dynamic urban-extent method and MODIS data. ISPRS J. Photogramm. 2022, 183, 321–335. [Google Scholar] [CrossRef]
- Shen, Y.; Zeng, C.; Cheng, Q.; Shen, H.F. Opposite spatiotemporal patterns for surface urban heat island of two “stove cities” in China: Wuhan and Nanchang. Remote Sens. 2021, 13, 4447. [Google Scholar] [CrossRef]
- Chen, Y.; Shuqing, Z. Diverse seasonal hysteresis of surface urban heat islands across Chinese cities: Patterns and drivers. Remote Sens. Environ. 2023, 294, 113644. [Google Scholar] [CrossRef]
- Zhou, D.C.; Zhao, S.Q.; Liu, S.G.; Zhang, L.X.; Zhu, C. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Tian, P.; Li, J.L.; Cao, L.D.; Pu, R.; Wang, Z.; Zhang, H.; Chen, H.; Gong, H. Assessing spatiotemporal characteristics of urban heat islands from the perspective of an urban expansion and green infrastructure. Sustain. Cities Soc. 2021, 74, 103208. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.Q.; Wang, J. Time-series analysis reveals intensified urban heat island effects but without significant urban warming. Remote Sens. 2019, 11, 2229. [Google Scholar] [CrossRef]
- Aleksandrowicz, O.; Vuckovic, M.; Kiesel, K.; Mahdavi, A. Current trends in urban heat island mitigation research: Observations based on a comprehensive research repository. Urban. Clim. 2017, 21, 1–26. [Google Scholar] [CrossRef]
- Vásquez-Álvarez, P.E.; Flores-Vázquez, C.; Cobos-Torres, J.C.; Cobos-Mora, S.L. Urban heat island mitigation through planned simulation. Sustainability 2022, 14, 8612. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, X.; Qian, J. Research progress on the thermal environment of the urban surfaces. Acta Ecol. Sin. 2018, 38, 1134–1147. [Google Scholar] [CrossRef]
- Rao, P.K. Remote sensing of urban heat islands from an environmental satellite. Bull. Am. Meteorol. Soc. 1972, 53, 647–648. [Google Scholar]
- Haashemi, S.; Weng, Q.H.; Darvishi, A.; Alavipanah, S. Seasonal variations of the surface urban heat island in a semi-arid city. Remote Sens. 2016, 8, 17. [Google Scholar] [CrossRef]
- Schwarz, N.; Manceur, A.M. Analyzing the influence of urban forms on surface urban heat islands in Europe. J. Urban. Plan. Dev. 2015, 141, 11. [Google Scholar] [CrossRef]
- Lu, Y.; He, T.; Xu, X.; Qiao, Z. Investigation the robustness of standard classification methods for defining urban heat islands. I IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11386–11394. [Google Scholar] [CrossRef]
- Yuan, Y.F.; Zhai, P.M. Latest understanding of extreme weather and climate events under global warming and urbanization influences. Trans. Atmos. Sci. 2022, 45, 161–166. [Google Scholar] [CrossRef]
- Lian, X.; Piao, S.L.; Chen, A.P.; Huntingford, C.; Fu, B.J.; Li, L.Z.X.; Huang, J.P.; Sheffield, J.; Berg, A.M.; Keenan, T.F.; et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Env. 2021, 2, 232–250. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2018, 11, 48. [Google Scholar] [CrossRef]
- Almeida, C.R.d.; Teodoro, A.C.; Gonçalves, A. Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments 2021, 8, 105. [Google Scholar] [CrossRef]
- Chen, G.Z.; Li, X.; Liu, X.P.; Chen, Y.M.; Liang, X.; Leng, J.Y.; Xu, X.C.; Liao, W.L.; Qiu, Y.A.; Wu, Q.L.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef]
- Liu, Z.H.; Zhan, W.F.; Bechtel, B.; Voogt, J.; Lai, J.M.; Chakraborty, T.; Wang, Z.H.; Li, M.C.; Huang, F.; Lee, X.H. Surface warming in global cities is substantially more rapid than in rural background areas. Commun. Earth Environ. 2022, 3, 219. [Google Scholar] [CrossRef]
- Liu, H.M.; He, B.J.; Gao, S.H.; Zhan, Q.M.; Yang, C. Influence of non-urban reference delineation on trend estimate of surface urban heat island intensity: A comparison of seven methods. Remote Sens. Environ. 2023, 296, 113735. [Google Scholar] [CrossRef]
- Shen, H.F.; Huang, L.W.; Zhang, L.P.; Wu, P.H.; Zeng, C. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China. Remote Sens. Environ. 2016, 172, 109–125. [Google Scholar] [CrossRef]
- Li, Y.Z.; Yin, K.; Zhou, H.X.; Wang, X.L.; Hu, D. Progress in urban heat island monitoring by remote sensing. Prog. Geogr. 2016, 35, 1062–1074. [Google Scholar] [CrossRef]
- Budhiraja, B.; Gawuc, L.; Agrawal, G. Seasonality of surface urban heat island in Delhi city region measured by local climate zones and conventional indicators. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5223–5232. [Google Scholar] [CrossRef]
- Jiang, S.; Peng, J.; Dong, J.Q.; Cheng, X.Y.; Dan, Y.Z. Conceptual connotation and quantitative characterization of surface urban heat island effect. Acta Geogr. Sin. 2022, 77, 2249–2265. [Google Scholar] [CrossRef]
- Schwarz, N.; Lautenbach, S.; Seppelt, R. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens. Environ. 2011, 115, 3175–3186. [Google Scholar] [CrossRef]
- Ren, T.; Zhou, W.Q.; Wang, J. Beyond intensity of urban heat island effect: A continental scale analysis on land surface temperature in major Chinese cities. Sci. Total Environ. 2021, 791, 148334. [Google Scholar] [CrossRef]
- Deng, Y.J.; Kuang, Y.Q.; Huang, F. Research of Urban Heat Island in Guangzhou Based on Landsat/TM Data. Meteorol. Mon. 2010, 36, 26–30. [Google Scholar]
- Gui, X.; Wang, L.C.; Yao, R.; Yu, D.Q.; Li, C.A. Investigating the urbanization process and its impact on vegetation change and urban heat island in Wuhan, China. Environ. Sci. Pollut. Res. 2019, 26, 30808–30825. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Imhoff, M.L.; Bounoua, L.; Wolfe, R.E. Exploring the influence of impervious surface density and shape on urban heat islands in the northeast United States using MODIS and Landsat. Can. J. Remote Sens. 2012, 38, 441–451. [Google Scholar] [CrossRef]
- Chakraborty, T.; Lee, X. A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 269–280. [Google Scholar] [CrossRef]
- Wang, L.Y.; Hou, H.; Weng, J.X. Ordinary least squares modelling of urban heat island intensity based on landscape composition and configuration: A comparative study among three megacities along the Yangtze River. Sustain. Cities Soc. 2020, 62, 102381. [Google Scholar] [CrossRef]
- Clinton, N.; Gong, P. MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sens. Environ. 2013, 134, 294–304. [Google Scholar] [CrossRef]
- Peng, S.S.; Piao, S.L.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Breon, F.M.; Nan, H.J.; Zhou, L.M.; Myneni, R.B. Surface Urban Heat Island Across 419 Global Big Cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef]
- Ye, C.H.; Liu, Y.H.; Liu, W.D.; Liu, C.; Quan, W.J. Research on urban surface heat environment monitoring indexes and its application. Meteorol. Sci. Technol. 2011, 39, 95–101. [Google Scholar] [CrossRef]
- Fang, Y.B.; Zhan, W.F.; Huang, F.; Gao, L.; Quan, J.L.; Zou, Z.X. Hourly variation of surface urban heat island over the Yangtze River Delta urban agglomeration. Adv. Earth Sci. 2017, 32, 187–198. [Google Scholar] [CrossRef]
- Zhou, D.C.; Bonafoni, S.; Zhang, L.X.; Wang, R.H. Remote sensing of the urban heat island effect in a highly populated urban agglomeration area in East China. Sci. Total Environ. 2018, 628–629, 415–429. [Google Scholar] [CrossRef]
- Gawuc, L.; Struzewska, J. Impact of MODIS Quality Control on Temporally Aggregated Urban Surface Temperature and Long-Term Surface Urban Heat Island Intensity. Remote Sens. 2016, 8, 374. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Li, D.L.; Liu, L.B.; Liang, Z.; Shen, J.S.; Wei, F.L.; Li, S.C. Spatiotemporal Characteristics of the Surface Urban Heat Island and Its Driving Factors Based on Local Climate Zones and Population in Beijing, China. Atmosphere 2021, 12, 1271. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, F. Thermal environment effects of urban human settlements and influencing factors based on multi-source data: A case study of Changsha city. Acta Geogr. Sin. 2020, 75, 2443–2458. [Google Scholar] [CrossRef]
- Huang, J.C.; Zhao, X.F.; Tang, L.N.; Qiu, Q.Y. Analysis on spatiotemporal changes of urban thermal landscape pattern in the context of urbanisation: A case study of Xiamen City. Acta Ecol. Sin. 2012, 32, 622–631. [Google Scholar] [CrossRef]
- Xu, H.Q.; Chen, B.Q. An image processing technique for the study of urban heat island changes using different seasonal remote sensing data. Remote Sens. Technol. Appl. 2003, 18, 129–133. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.P. Impacts of urban surface characteristics on spatiotemporal pattern of land surface temperature in Kunming of China. Sustain. Cities Soc. 2017, 32, 87–99. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, W.X. Analysis of winter heat island intensity in Chengdu based on MODIS. Sci. Technol. Eng. 2015, 15, 197–201. [Google Scholar] [CrossRef]
- Hu, J.; Yang, Y.B.; Zhou, Y.Y.; Zhang, T.; Ma, Z.; Meng, X. Spatial patterns and temporal variations of footprint and intensity of surface urban heat island in 141 China cities. Sustain. Cities Soc. 2022, 77, 10. [Google Scholar] [CrossRef]
- Weng, Q.H.; Rajasekar, U.; Hu, X.F. Modeling urban heat islands and their relationship with impervious surface and vegetation abundance by using ASTER images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4080–4089. [Google Scholar] [CrossRef]
- Liu, F.; Hou, H.; Murayama, Y. Spatial interconnections of land surface temperatures with land cover/use: A case study of Tokyo. Remote Sens. 2021, 13, 610. [Google Scholar] [CrossRef]
- Li, F.; Sun, W.W.; Yang, G.; Weng, Q.H. Investigating Spatiotemporal Patterns of Surface Urban Heat Islands in the Hangzhou Metropolitan Area, China, 2000-2015. Remote Sens. 2019, 11, 1553. [Google Scholar] [CrossRef]
- Li, H.D.; Zhou, Y.Y.; Li, X.M.; Meng, L.; Wang, X.; Wu, S.; Sodoudi, S. A new method to quantify surface urban heat island intensity. Sci. Total Environ. 2018, 624, 262–272. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Cheng, J. Spatio-Temporal Analysis of Urban Heat Island Using Multisource Remote Sensing Data: A Case Study in Hangzhou, China. IEEE J.-Stars. 2019, 12, 3317–3326. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.C.; Huang, X.; Gong, W.; Xia, X.G. Greening in Rural Areas Increases the Surface Urban Heat Island Intensity. Geophys. Res. Lett. 2019, 46, 2204–2212. [Google Scholar] [CrossRef]
- Niu, L.; Tang, R.L.; Jiang, Y.Z.; Zhou, X.M. Spatiotemporal patterns and drivers of the surface urban heat island in 36 major cities in China: A comparison of two different methods for delineating rural areas. Sustainability 2020, 12, 478. [Google Scholar] [CrossRef]
- Li, K.N.; Chen, Y.H.; Gao, S.J. Uncertainty of city-based urban heat island intensity across 1112 global cities: Background reference and cloud coverage. Remote Sens. Environ. 2022, 271, 112898. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.C.; Huang, X.; Niu, Y.; Chen, Y.S.; Niu, Z. The influence of different data and method on estimating the surface urban heat island intensity. Ecol. Indic. 2018, 89, 45–55. [Google Scholar] [CrossRef]
- Peres, L.D.; de Lucena, A.J.; Rotunno, O.C.; Franca, J.R.D. The urban heat island in Rio de Janeiro, Brazil, in the last 30 years using remote sensing data. Int. J. Appl. Earth Obs. 2018, 64, 104–116. [Google Scholar] [CrossRef]
- Wei, C.Z.; Chen, W.; Lu, Y.; Blaschke, T.; Peng, J.; Xue, D. Synergies between urban heat island and urban heat wave effects in 9 global mega-regions from 2003 to 2020. Remote Sens. 2022, 14, 21. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef]
- Shahfahad; Naikoo, M.W.; Naikoo, M.W.; Towfiqul Islam, A.R.M.; Mallick, J.; Rahman, A. Land use/land cover change and its impact on surface urban heat island and urban thermal comfort in a metropolitan city. Urban Clim. 2022, 41, 101052. [Google Scholar] [CrossRef]
- Hu, J.; Yang, Y.B.; Pan, X.; Zhu, Q.; Zhan, W.; Wang, Y.; Ma, W.; Su, W. Analysis of the spatial and temporal variations of land surface temperature based on local climate zones: A case study in Nanjing, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4213–4223. [Google Scholar] [CrossRef]
- Amorim, M.C.D.T.; Dubreuil, V.; Amorim, A.T. Day and night surface and atmospheric heat islands in a continental and temperate tropical environment. Urban Clim. 2021, 38, 100918. [Google Scholar] [CrossRef]
- Han, J.; Liu, J.; Liu, L.; Ye, Y. Spatiotemporal changes in the urban heat island intensity of distinct local climate zones: Case study of Zhongshan District, Dalian, China. Complexity 2020, 2020, 8820338. [Google Scholar] [CrossRef]
- Yang, K.; Zhou, T.; Wang, C.L.; Wang, Z.L.; Han, Q.L.; Tao, F. RSEDM: A New Rotational-Scan Exponential Decay Model for Extracting the Surface Urban Heat Island Footprint. Remote Sens. 2022, 14, 20. [Google Scholar] [CrossRef]
- Zhang, P.; Imhoff, M.L.; Wolfe, R.E.; Bounoua, L. Characterizing urban heat islands of global settlements using MODIS and nighttime lights products. Can. J. Remote Sens. 2010, 36, 185–196. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Hereher, M.; Eissa, R.; Alqasemi, A.; El Kenawy, A.M. Assessment of air pollution at Greater Cairo in relation to the spatial variability of surface urban heat island. Environ. Sci. Pollut. Res. 2022, 29, 21412–21425. [Google Scholar] [CrossRef]
- Athukorala, D.; Murayama, Y. Urban Heat Island Formation in Greater Cairo: Spatio-Temporal Analysis of Daytime and Nighttime Land Surface Temperatures along the Urban-Rural Gradient. Remote Sen. 2021, 13, 1396. [Google Scholar] [CrossRef]
- Gizelis, T.I.; Pickering, S.; Urdal, H. Conflict on the urban fringe: Urbanization, environmental stress, and urban unrest in Africa. Polit. Geogr. 2021, 86, 102357. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.C.; Wang, S.Q.; Wang, L.Z.; Wei, J.; Li, J.L.; Yu, D.Q. A detailed comparison of MYD11 and MYD21 land surface temperature products in mainland China. Int. J. Digit. Earth 2020, 13, 1391–1407. [Google Scholar] [CrossRef]
- Manoli, G.; Fatichi, S.; Bou-Zeid, E.; Katul, G.G. Seasonal hysteresis of surface urban heat islands. Proc. Natl. Acad. Sci. USA 2020, 117, 7082–7089. [Google Scholar] [CrossRef]
- Feng, J.L.; Cai, X.M.; Chapman, L. Impact of atmospheric conditions and levels of urbanization on the relationship between nocturnal surface and urban canopy heat islands. Q. J. Roy. Meteor. Soc. 2019, 145, 3284–3299. [Google Scholar] [CrossRef]
- Mukherjee, S.; Joshi, P.K.; Garg, R.D. Analysis of urban built-up areas and surface urban heat island using downscaled MODIS derived land surface temperature data. Geocarto Int. 2017, 32, 900–918. [Google Scholar] [CrossRef]
- Venter, Z.S.; Chakraborty, T.; Lee, X.H. Crowdsourced air temperatures contrast satellite measures of the urban heat island and its mechanisms. Sci. Adv. 2021, 7, eabb9569. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Wang, L.C.; Huang, X.; Liu, Y.T.; Niu, Z.G.; Wang, S.Q.; Wang, L.Z. Long-term trends of surface and canopy layer urban heat island intensity in 272 cities in the mainland of China. Sci. Total Environ. 2021, 772, 145607. [Google Scholar] [CrossRef]
- Raj, S.; Paul, S.K.; Chakraborty, A.; Kuttippurath, J. Anthropogenic forcing exacerbating the urban heat islands in India. J. Environ. Manag. 2020, 257, 110006. [Google Scholar] [CrossRef] [PubMed]
- Du, H.L.; Zhan, W.F.; Liu, Z.H.; Li, J.F.; Li, L.; Lai, J.M.; Miao, S.Q.; Huang, F.; Wang, C.G.; Wang, C.L.; et al. Simultaneous investigation of surface and canopy urban heat islands over global cities. Isprs J. Photogramm. 2021, 181, 67–83. [Google Scholar] [CrossRef]
- Wang, Y.A.; Yi, G.H.; Zhou, X.B.; Zhang, T.B.; Bie, X.J.; Li, J.J.; Ji, B.W. Spatial distribution and influencing factors on urban land surface temperature of twelve megacities in China from 2000 to 2017. Ecol. Indic. 2021, 125, 107533. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Fathololoumi, S.; Kiavarz, M.; Arsanjani, J.J.; Alavipanah, S.K. Modelling surface heat island intensity according to differences of biophysical characteristics: A case study of Amol city, Iran. Ecol. Indic. 2020, 109, 105816. [Google Scholar] [CrossRef]
- Chen, S.Z.; Yu, Z.W.; Liu, M.; Da, L.J.; Hassan, M.F.U. Trends of the contributions of biophysical (climate) and socioeconomic elements to regional heat islands. Sci. Rep. 2021, 11, 12696. [Google Scholar] [CrossRef]
- Choi, Y.Y.; Suh, M.S.; Park, K.H. Assessment of Surface Urban Heat Islands over Three Megacities in East Asia Using Land Surface Temperature Data Retrieved from COMS. Remote Sens. 2014, 6, 5852–5867. [Google Scholar] [CrossRef]
- Alexander, P.J.; Mills, G. Local Climate Classification and Dublin’s Urban Heat Island. Atmosphere 2014, 5, 755–774. [Google Scholar] [CrossRef]
- Molnar, G.; Gyongyosi, A.Z.; Gal, T. Integration of an LCZ-based classification into WRF to assess the intra-urban temperature pattern under a heatwave period in Szeged, Hungary. Theor. Appl. Climatol. 2019, 138, 1139–1158. [Google Scholar] [CrossRef]
- Wang, Z.A.; Meng, Q.Y.; Allam, M.; Hu, D.; Zhang, L.L.; Menenti, M. Environmental and anthropogenic drivers of surface urban heat island intensity: A case-study in the Yangtze River Delta, China. Ecol. Indic. 2021, 128, 107845. [Google Scholar] [CrossRef]
- Hu, Y.H.; Hou, M.T.; Jia, G.S.; Zhao, C.L.; Zhen, X.J.; Xu, Y.H. Comparison of surface and canopy urban heat islands within megacities of eastern China. Isprs J. Photogramm. 2019, 156, 160–168. [Google Scholar] [CrossRef]
- Lai, J.M.; Zhan, W.F.; Huang, F.; Voogt, J.; Bechtel, B.; Allen, M.; Peng, S.S.; Hong, F.L.; Liu, Y.X.; Du, P.J. Identification of typical diurnal patterns for clear-sky climatology of surface urban heat islands. Remote Sens. Environ. 2018, 217, 203–220. [Google Scholar] [CrossRef]
- Li, K.N.; Chen, Y.H.; Wang, M.J.; Gong, A. Spatial-temporal variations of surface urban heat island intensity induced by different definitions of rural extents in China. Sci. Total Environ. 2019, 669, 229–247. [Google Scholar] [CrossRef]
- Qiao, Z.; Wu, C.; Zhao, D.Q.; Xu, X.L.; Yang, J.L.; Feng, L.; Sun, Z.Y.; Liu, L. Determining the Boundary and Probability of Surface Urban Heat Island Footprint Based on a Logistic Model. Remote Sens. 2019, 11, 1368. [Google Scholar] [CrossRef]
- Meng, Q.Y.; Zhang, L.L.; Sun, Z.H.; Meng, F.; Wang, L.; Sun, Y.X. Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China. Remote Sens. Environ. 2018, 204, 826–837. [Google Scholar] [CrossRef]
- Huang, F.; Zhan, W.F.; Voogt, J.; Hu, L.Q.; Wang, Z.H.; Quan, J.L.; Ju, W.M.; Guo, Z. Temporal upscaling of surface urban heat island by incorporating an annual temperature cycle model: A tale of two cities. Remote Sens. Environ. 2016, 186, 1–12. [Google Scholar] [CrossRef]
- Liu, Y.H.; Fang, X.Y.; Xu, Y.M.; Zhang, S.; Luan, Q.Z. Assessment of surface urban heat island across China’s three main urban agglomerations. Theor. Appl. Climatol. 2018, 133, 473–488. [Google Scholar] [CrossRef]
- Li, J.Y.; Sun, R.H.; Liu, T.; Xie, W.; Chen, L.D. Prediction models of urban heat island based on landscape patterns and anthropogenic heat dynamics. Landscape Ecol. 2021, 36, 1801–1815. [Google Scholar] [CrossRef]
- Lin, R.P.; Qi, X.H.; Ye, S.L. Spatial-temporal characteristics of urban heat islands and driving mechanisms in a coastal valley-basin city: A case study of Fuzhou City. Acta Ecol. Sin. 2017, 37, 294–304. [Google Scholar] [CrossRef]
- Li, L.; Xu, H.Q. Urban Expansion and Thermal Environment Changes in Hangzhou City of East China. Remote Sens. Technol. Appl. 2014, 29, 264–272. [Google Scholar]
- Luo, X.B.; Chen, D.; Liu, M.H.; Liu, Q. Application Research on Monitor of Heat Island Effect in Chongqing Based on HJ-1B/IRS. J. Geo-Inf. Sci. 2011, 13, 833–839. [Google Scholar] [CrossRef]
- Shen, Z.C.; Xu, X.L. Influence of the Economic Efficiency of Built-Up Land (EEBL) on Urban Heat Islands (UHIs) in the Yangtze River Delta Urban Agglomeration (YRDUA). Remote Sens. 2020, 12, 3944. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.C.; Huang, X.; Chen, J.P.; Li, J.R.; Niu, Z.G. Less sensitive of urban surface to climate variability than rural in Northern China. Sci. Total Environ. 2018, 628–629, 650–660. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q.H. Consistent land surface temperature data generation from irregularly spaced Landsat imagery. Remote Sens. Environ. 2016, 184, 175–187. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Z.F.; Jim, C.Y.; Li, J.B.; Deng, J.S.; Liu, J.G. Water as an urban heat sink: Blue infrastructure alleviates urban heat island effect in mega-city agglomeration. J. Clean. Prod. 2020, 262, 1411. [Google Scholar] [CrossRef]
- Li, J.F.; Wang, F.F.; Fu, Y.C.; Guo, B.Y.; Zhao, Y.L.; Yu, H.F. A Novel SUHI Referenced Estimation Method for Multicenters Urban Agglomeration using DMSP/OLS Nighttime Light Data. IEEE J.-Stars. 2020, 13, 1416–1425. [Google Scholar] [CrossRef]
- Zhong, C.; Chen, C.; Liu, Y.; Gao, P.; Li, H. A Specific Study on the Impacts of PM2.5 on Urban Heat Islands with Detailed In Situ Data and Satellite Images. Sustainability 2019, 11, 7075. [Google Scholar] [CrossRef]
- Zhou, D.C.; Zhao, S.Q.; Zhang, L.X.; Sun, G.; Liu, Y.Q. The footprint of urban heat island effect in China. Sci. Rep. 2015, 5, 11160. [Google Scholar] [CrossRef]
- Shastri, H.; Barik, B.; Ghosh, S.; Venkataraman, C.; Sadavarte, P. Flip flop of Day-night and Summer-Winter Surface Urban Heat Island Intensity in India. Sci. Rep. 2017, 7, 40178. [Google Scholar] [CrossRef] [PubMed]
- Halder, B.; Bandyopadhyay, J.; Banik, P. Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustain. Cities Soc. 2021, 74, 10318. [Google Scholar] [CrossRef]
- Weng, Q.H.; Fu, P. Modeling annual parameters of clear-sky land surface temperature variations and evaluating the impact of cloud cover using time series of Landsat TIR data. Remote Sens. Environ. 2014, 140, 267–278. [Google Scholar] [CrossRef]
- Liao, Y.S.Y.; Shen, X.; Zhou, J.; Ma, J.; Zhang, X.D.; Tang, W.B.; Chen, Y.R.; Ding, L.R.; Wang, Z.W. Surface urban heat island detected by all-weather satellite land surface temperature. Sci. Total Environ. 2022, 811, 151405. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Xiao, J.F.; Li, X.X.; Zhou, D.C.; Wu, Y.P. Combining GOES-R and ECOSTRESS land surface temperature data to investigate diurnal variations of surface urban heat island. Sci. Total Environ. 2022, 823, 153652. [Google Scholar] [CrossRef]
- Li, H.D.; Zhou, Y.Y.; Jia, G.S.; Zhao, K.G.; Dong, J.W. Quantifying the response of surface urban heat island to urbanization using the annual temperature cycle model. Geosci. Front. 2022, 13, 101141. [Google Scholar] [CrossRef]
- Li, G.; Yan, W.N.; Weng, T. A method of removing thin cloud in remote sensing image based on the homomorphic filter algorithm. Sci. Surv. Mapp. 2007, 32, 47–48. [Google Scholar]
- Zhang, B.; Ji, H.M.; Shen, Q. Wavelet-based Cloud Removal from High-resolution Remote Sensing Data: An Experiment with QuickBird Imagery. Remote Sens. Inf. 2011, 3, 38–43. [Google Scholar] [CrossRef]
- Chen, D.; Wu, W.B.; Lu, M.; Hu, Q.; Zhou, Q.B. Progresses in land cover data reconstruction method based on multi-source data fusion. Chin. J. Agric. Resour. Reg. Plan. 2016, 37, 62–70. [Google Scholar] [CrossRef]
- Liu, Z.H.; Zhan, W.F.; Lai, J.M.; Bechtel, B.; Lee, X.H.; Hong, F.L.; Li, L.; Huang, F.; Li, J.F. Taxonomy of seasonal and diurnal clear-sky climatology of surface urban heat island dynamics across global cities. Isprs J. Photogramm. 2022, 187, 14–33. [Google Scholar] [CrossRef]
- Li, Z.L.; Duan, S.B.; Tang, B.H.; Wu, H.; Ren, H.Z.; Yan, G.J.; Tang, R.L.; Len, P. Review of methods for land surface temperature derived from thermal infrared remotely sensed data. Natl. Remote Sens. Bull. 2016, 20, 899–920. [Google Scholar] [CrossRef]
- Cao, B.; Liu, Q.H.; Du, Y.M.; Roujean, J.L.; Gastellu-Etchegorry, J.P.; Trigo, I.F.; Zhan, W.F.; Yu, Y.Y.; Cheng, J.; Jacob, F.; et al. A review of earth surface thermal radiation directionality observing and modeling: Historical development, current status and perspectives. Remote Sens. Environ. 2019, 232, 111304. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Cao, B.; Roujean, J.L.; Gastellu-Etchegorry, J.P.; Liu, Q.H.; Du, Y.M.; Lagouarde, J.P.; Huange, H.G.; Li, H.; Bian, Z.J.; Hu, T.; et al. A general framework of kernel-driven modeling in the thermal infrared domain. Remote Sens. Environ. 2021, 252, 112157. [Google Scholar] [CrossRef]
- Lian, J.; Sun, H.; Lin, Q.; Cao, X.; Li, C.; Huang, H. Field observations of background thermal radiation directionality in natural forests. Natl. Remote Sens. Bull. 2017, 21, 365–374. [Google Scholar] [CrossRef]
Type | Method | Illustration | References | Application Number |
---|---|---|---|---|
Temperature Dichotomy Method | Urban–Rural Method | Average LST difference between urban and rural areas by administrative boundaries. | Ren et al. [28]; Deng et al. [29] | 59 |
Average LST difference between new/old city and nonurban areas. | Gui et al. [30]; Wang et al. [8] | 3 | ||
Average LST difference between urban built-up areas and rural areas according to ISA, NDVI, OLS, LULC, SUE, etc. | Zhang et al. [31]; Chakraborty et al. [32] | 58 | ||
Difference between each pixel and the average LST in the study areas. | Wang et al. [33] | 20 | ||
Urban–Buffer Zone Method | Average LST difference between urban areas and the surrounding n km buffer. (Urban areas determined from NDVI, ISA, OLS, BI, etc.) | Clinton et al. [34]; Zhou et al. [6] | 99 | |
Average LST difference between urban areas and the surrounding buffer zone that 50%, 100%, and 150% of urban areas are based on the using urban clustering algorithm. | Peng et al. [35] | 16 | ||
Urban–Field Method | Average LST difference between urban and field areas. | Ye et al. [36] | 33 | |
Urban–Vegetation Method | Average LST difference between urban and vegetation areas. | Fang et al. [37]; Zhou et al. [38] | 12 | |
Urban–Water Body Method | Average LST difference between urban and water body areas. | Gawuc et al. [39] | 3 | |
Local Climate Zones (LCZs) | Average LST difference between LCZs and a particular LCZ (e.g., low vegetation type) | Zhang et al. [40]; Budhiraja et al. [25] | 16 | |
LST/BT Grading Method | ─── | Grading according to different periods of LST or BT images | Xiong et al. [41]; Huang et al. [42] | 109 |
Heat Island Index | Urban Heat Island Ratio Index (URI) | Ratio of the UHI area to built-up area and assigned weights to characterize the SUHII | Xu et al. [43] | 40 |
Urban Thermal Field Variance Index (UTFVI) | Ratio of the difference between the LST of each pixel and the mean LST to the mean LST of the study areas | Chen et al. [44] | 32 | |
Maximum Urban Heat Island Intensity (MUI) and Weighted Average Urban Heat Island Intensity (WAUI) | MUI refers to the difference between the maximum temperature in the urban areas and the minimum temperature in the suburbs. WAUI refers to the difference between the average LST and the proportion of the average LST in each class of areas of the city and the average LST in the suburbs | Zhang et al. [45] | 5 | |
Statistical Models | Gaussian Surface Model (GSM) | Fitting of the rural temperature image to a plane and then decreasing the rural temperature image from the original surface temperature image | Hu et al. [46]; Schwarz et al. [14] | 16 |
Kernel Convolution Method | Difference between the maximum and minimum values of the LST after processing according to the kernel convolution method | Weng et al. [47] | 2 | |
Moran’s I (MI) and Getis-Ord Gi* (Gi*) | Explains the spatial aggregation patterns of the SUHI at the overall and local spatial scales, respectively | Liu et al. [48]; Li et al. [49] | 10 | |
Linear Relationship Between LST and ISA (or HIS) | Regression slope of the LST and ISA (or HIS) fit function is regarded as the SUHII | Li et al. [50]; Zhang et al. [51] | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Tu, L.; Shi, B. Spatiotemporal Patterns of the Application of Surface Urban Heat Island Intensity Calculation Methods. Atmosphere 2023, 14, 1580. https://doi.org/10.3390/atmos14101580
Zhang J, Tu L, Shi B. Spatiotemporal Patterns of the Application of Surface Urban Heat Island Intensity Calculation Methods. Atmosphere. 2023; 14(10):1580. https://doi.org/10.3390/atmos14101580
Chicago/Turabian StyleZhang, Jiyuan, Lili Tu, and Biao Shi. 2023. "Spatiotemporal Patterns of the Application of Surface Urban Heat Island Intensity Calculation Methods" Atmosphere 14, no. 10: 1580. https://doi.org/10.3390/atmos14101580
APA StyleZhang, J., Tu, L., & Shi, B. (2023). Spatiotemporal Patterns of the Application of Surface Urban Heat Island Intensity Calculation Methods. Atmosphere, 14(10), 1580. https://doi.org/10.3390/atmos14101580