Can Climate Change Increase the Spread of Animal Diseases? Evidence from 278 Villages in China
Abstract
:1. Introduction
2. Literature Review
2.1. Climate Change and Animal Disease
2.2. Climate Change and Transmission Ecology of Animal Disease
3. Material and Methods
3.1. Framework of the Study
3.2. Model Specifications
3.3. Data Source and Sample Distribution
3.4. Basic Data Descriptive Statistics
4. Results
4.1. The Influence of Climate Variables on Animal Disease Occurrence
4.1.1. The Influence of Temperature
4.1.2. The Influence of Precipitation, Humidity, and Wind Speed
4.1.3. Impact of Temperature, Precipitation Anomaly Index, Wind Speed, and Animal Concentration on Regression Findings
4.2. The Influence of Climate Variables on Animal Disease Occurrence in Subsamples
4.2.1. The Influence of Temperature
4.2.2. The Influence of Precipitation, Humidity, and Wind Speed
5. Discussions
5.1. Climate Factors and Animal Diseases
5.2. Limitation
5.3. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Tignor, D.C.R.M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar]
- Schmitt, L.H.; Graham, H.M.; White, P.C. Economic Evaluations of the Health Impacts of Weather-Related Extreme Events: A Scoping Review. Int. J. Environ. Res. Public Health 2016, 13, 1105. [Google Scholar] [CrossRef] [PubMed]
- China Meteorological Administration Climate Change Centre. Blue Book on Climate Change in China (2022); Science Press: Beijing, China, 2022. [Google Scholar]
- Mclnerney, J. Old economics for new problems-Livestock disease: Presidential address. J. Agric. Econ. 1996, 47, 295–314. [Google Scholar] [CrossRef]
- Huntington, B.; Bernardo, T.M.; Bondad-Reantaso, M.; Bruce, M.; Devleesschauwer, B.; Gilbert, W.; Grace, D.; Havelaar, A.; Herrero, M.; Marsh, T.L.; et al. Global Burden of Animal Diseases: A novel approach to understanding and managing disease in livestock and aquaculture. Rev. Sci. Tech. 2021, 40, 567–584. [Google Scholar] [CrossRef]
- Li, Y.L. Animal Disease Emergencies in China: Risks, Emergence, and Policy Response; Science Press: Beijing, China, 2021. [Google Scholar]
- OIE. Their Health, Our Future, Activity Report 2019; OIE: Paris, France, 2019. [Google Scholar]
- Li, B.L.; Wang, S.Q. Influence of the Outbreak of PPR on the Development of Meat Sheep and Goat Industry. China Anim. Ind. 2014, 21, 31–33. [Google Scholar]
- Parihar, R.S.; Bal, P.K.; Thapliyal, A.; Saini, A. Climate Change Projections and Its Impacts on Potential Malaria Transmission Dynamics in Uttarakhand. J. Commun. Dis. 2022, 54, 47–53. [Google Scholar] [CrossRef]
- Sahu, N.S.; Saini, A.; Behera, S.K.; Sayama, T.; Sahu, L.; Nguyen, V.-T.-V.; Takara, K. Why Apple Orchards Are Shifting to the Higher Altitudes of the Himalayas? PLoS ONE 2020, 15, e0235041. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Ma, J.; Zhang, H.; Zhang, S. Rural Farmers’ Perceptionsfor the Impacts of Climate Changeand Adaptation Policies on WheatProductivity: Insights from a RecentStudy in Balochistan, Pakistan. Atmosphere 2023, 14, 1278. [Google Scholar] [CrossRef]
- Sahu, N.S.; Saini, A.; Behera, S.; Sayama, T.; Nayak, S.; Sahu, L.; Duan, W.; Avtar, R.; Yamada, M.; Singh, R.B.; et al. Impact of Indo-Pacific Climate Variability on Rice Productivity in Bihar, India. Sustainability 2020, 12, 7023. [Google Scholar] [CrossRef]
- Liu, H.S.; Zhu, J.F. New Thinking on Animal Disease Control Brought by Global Warming. China Anim. Health 2008, 9, 96–98. [Google Scholar]
- Summers, B.A. Climate Change and Animal Disease. Vet. Pathol. 2009, 46, 1185–1186. [Google Scholar] [CrossRef]
- Zhang, Z.B. Factors Affecting Outbreaks and Prevention and Control Strategies of Wildlife Infectious Disease. Bull. Chin. Acad. Sci. 2021, 36, 188–198. [Google Scholar]
- Mekonnen, N. The Impact of Climatic Change on Animal Disease Ecology, Distribution and Emergence: A Review. Arch. Appl. Sci. Res. 2018, 10, 14–20. [Google Scholar]
- Black, P.; Nunn, M. Impact of climate change and environmental changes on emerging and reemerging animal disease and animal production. In Proceedings of the Conference OIE, Coolum Beach, QD, Australia, 16 October 2009; pp. 15–25. [Google Scholar]
- Ahmed, I. The Impact of Climate Change on the Emerging and Re-emerging Infectious Diseases: Global Perspective. J. Enam. Med. Coll. 2012, 1, 51–53. [Google Scholar] [CrossRef]
- Howden, S.M.; Crimp, S.J.; Stokes, C. Climate change and Australian livestock systems: Impacts, research and policy issues. Aust. J. Exp. Agric. 2008, 48, 780–788. [Google Scholar] [CrossRef]
- De La Rocque, S.; Rioux, J.-A.; Slingenbergh, J. Climate change: Effects on animal disease systems and implications for surveillance and control. Rev. Sci. Tech. 2008, 27, 339–354. [Google Scholar]
- Haile, W.A. Impact of climate change on animal production and expansion of animal disease: A review on Ethiopia perspective. Am. J. Pure Appl. Sci. 2020, 2, 64–76. [Google Scholar]
- International Atomic Energy Agency. Climate Change and the Expansion of Animal and Zoonotic Diseases—What Is the Agency’s Contribution? Nuclear Techniques in Food and Agriculture; International Atomic Energy Agency: Vienna, Austria, 2017. [Google Scholar]
- Lowen, A.C.; Mubareka, S.; Steel, J.; Palese, P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 2007, 3, e151. [Google Scholar] [CrossRef]
- Gilbert, M.; Slingenbergh, J.; Xiao, X. Climate change and avian influenza. Rev. Sci. Tech. 2008, 27, 459–466. [Google Scholar] [CrossRef]
- Nas, F.S.; Yahaya, A.; Muazu, L.; Halliru, S.A.N.; Ali, M. Prevalence of Trichomonas vaginalis among pregnant women attending ante-natal care in Kano, Nigeria. Eur. J. Med. Health Sci. 2020, 2, 39–45. [Google Scholar]
- Rehman, T.; Yin, L.; Latif, M.B.; Zhou, Y.; Wang, K.; Geng, Y.; Huang, X.; Chen, D.; Fang, J.; Chen, Z. Current findings on carp edema virus, control challenges, and future outlook. Aquac. Int. 2020, 28, 2015–2026. [Google Scholar] [CrossRef]
- Rupasinghe, R.; Chomel, B.B.; Martínez-López, B. Climate change and zoonoses: A review of the current status, knowledge gaps, and future trends. Acta Trop. 2022, 226, 106225. [Google Scholar] [CrossRef] [PubMed]
- Baylis, N.; Githeko, A.K. The Effects of Climate Change on Infectious Diseases of Animals; Office of Science and Innovation: London, UK, 2006; p. 35. [Google Scholar]
- Black, P.F.; Murray, J.G.; Nunn, M.J. Managing animal disease risk in Australia: The impact of climate change. Rev. Sci. Tech. 2008, 27, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Marcos-López, M.; Gale, P.; Oidtmann, B.; Peeler, E. Assessing the impact of climate change on disease emergence in freshwater fish in the United Kingdom. Transbound. Emerg. Dis. 2010, 57, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.L.; Zhang, X.G.; Yang, M.H.; Xia, M.H.; Zhang, Q.; Wang, Y.M. Study on the Correlation between Diseases and Meteorological Factors in Captive Wild Animals. Chin. J. Vet. Med. 2005, 41, 19–22. [Google Scholar]
- Harvell, D.; Altizer, S.; Cattadori, I.M.; Harrington, L.; Weil, E. Climate change and wildlife diseases: When does the host matter the most? Ecology 2009, 90, 912–920. [Google Scholar] [CrossRef]
- Wei, J.; Hansen, A.; Zhang, Y.; Li, H.; Liu, Q.; Sun, Y.; Xue, S.; Zhao, S.; Bi, P. The impact of climate change on infectious disease transmission: Perceptions of CDC health professionals in Shanxi Province, China. PLoS ONE 2014, 9, e109476. [Google Scholar] [CrossRef]
- Ezzati, M.; Lopez, A.D.; Rodgers, A.A.; Murray, C.J. Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors; World Health Organization: Geneva, Switzerland, 2004; p. 2258. [Google Scholar]
- Altizer, S.; Ostfeld, R.S.; Johnson, P.T.; Kutz, S.; Harvell, C.D. Climate change and infectious diseases: From evidence to a predictive framework. Science 2013, 341, 514–519. [Google Scholar] [CrossRef]
- Swaminathan, A.; Viennet, E.; McMichael, A.J.; Harley, D. Climate change and the geographical distribution of infectious diseases. In Infectious Diseases: A Geographic Guide; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 470–480. [Google Scholar]
- Liu-Helmersson, J.; Stenlund, H.; Wilder-Smith, A.; Rocklöv, J. Vectorial capacity of Aedes aegypti: Effects of temperature and implications for global dengue epidemic potential. PLoS ONE 2014, 9, e89783. [Google Scholar] [CrossRef]
- Lafferty, K.D. The ecology of climate change and infectious diseases. Ecology 2009, 90, 888–900. [Google Scholar] [CrossRef]
- McMichael, A.J.; Lindgren, E. Climate change: Present and future risks to health, and necessary responses. J. Intern. Med. 2011, 270, 401–413. [Google Scholar] [CrossRef]
- Paz, S.; Semenza, J.C. Environmental drivers of West Nile fever epidemiology in Europe and Western Asia—A review. Int. J. Environ. Res. Public Health 2013, 10, 3543–3562. [Google Scholar] [CrossRef] [PubMed]
- de Magny, G.C.; Colwell, R.R. Cholera and climate: A demonstrated relationship. Trans. Am. Clin. Climatol. Assoc. 2009, 120, 119–128. [Google Scholar]
- Jones, B.A.; Grace, D.; Kock, R.; Alonso, S.; Rushton, J.; Said, M.Y.; McKeever, D.; Mutua, F.; Young, J.; McDermott, J. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl. Acad. Sci. USA 2013, 110, 8399–8404. [Google Scholar] [CrossRef] [PubMed]
- Forman, S.; Hungerford, N.; Yamakawa, M.; Yanase, T.; Tsai, H.; Joo, Y.; Yang, D.; Nha, J. Climate change impacts and risks for animal health in Asia. Rev. Sci. Tech. 2008, 27, 581–597. [Google Scholar] [CrossRef]
- National Research Council. Effect of Environment on Nutrient Requirements of Domestic Animals; National Academies Press: Washington, DC, USA, 1981. [Google Scholar]
- Mukheibir, P.; Kuruppu, N.; Gero, A.; Herriman, J. Overcoming cross-scale challenges to climate change adaptation for local government: A focus on Australia. Clim. Chang. 2013, 121, 271–283. [Google Scholar] [CrossRef]
- Dittmar, J.; Janssen, H.; Kuske, A.; Kurtz, J.; Scharsack, J.P. Heat and immunity: An experimental heat wave alters immune functions in three-spined sticklebacks (Gasterosteus aculeatus). J. Anim. Ecol. 2014, 83, 744–757. [Google Scholar] [CrossRef]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J.; Imtiwati; Kumar, R. Impact of heat stress on health and performance of dairy animals: A review. Vet. World 2016, 9, 260–268. [Google Scholar] [CrossRef]
- Nanyingi, M.O.; Munyua, P.; Kiama, S.G.; Muchemi, G.M.; Thumbi, S.M.; Bitek, A.O.; Bett, B.; Muriithi, R.M.; Njenga, M.K. A systematic review of rift valley fever epidemiology 1931–2014. Infect. Ecol. Epidemiol. 2015, 5, 28024. [Google Scholar] [CrossRef]
- Noriko Endo, E.A.B.E. Prevention of malaria transmission around reservoirs: An observational and modelling study on the effect of wind direction and village location. Lancet Planet. Health 2018, 2, e406–e413. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Chies, J.A.B. Wind: A neglected factor in the spread of infectious diseases. Lancet Planet. Health 2018, 2, E475. [Google Scholar] [CrossRef]
- Smith, O.M.; Cornell, K.A.; Crossley, M.S.; Crespo, R.; Jones, M.S.; Snyder, W.E.; Owen, J.P. Wind Speed and Landscape Context Mediate Campylobacter Risk among Poultry Reared in Open Environments. Animals 2023, 13, 492. [Google Scholar] [CrossRef] [PubMed]
Variable Type | Variable Name | Variable Description | |
---|---|---|---|
Variables related to animal disease | Occurrence of animal major epidemic diseases | If there was a major epidemic event recognized by the government in the village in the year: 1 = yes, 0 = no | |
Variables related climate | Temperature | Mean temperature (°C) | The average temperature in the year |
Mean daily minimum temperature (°C) | The mean of daily minimum temperature in the year | ||
Mean daily maximum temperature (°C) | The mean of daily maximum temperature in the year | ||
Number of days with high temperature | The number of days with a maximum temperature above a specified temperature in the year | ||
Precipitation | Mean daily precipitation (mm) | The average daily precipitation in the year | |
Precipitation anomaly index | Precipitation anomaly index = (precipitation in this period—average precipitation during the observation period)/average precipitation during the observation period | ||
Humidity | Mean humidity (%) | The average humidity (Relative humidity: The ratio of the actual water vapor pressure in the air to the saturation water vapor pressure at the current temperature, expressed as a percentage (%)) in the year | |
Wind speed | Mean wind speed (m/s) | The average wind speed in the year |
Provinces Name | Hebei | Jilin | Fujian | Shandong | Henan | Yunnan | Shaanxi | Xinjiang | Total |
---|---|---|---|---|---|---|---|---|---|
Number of villages | 27 | 27 | 40 | 25 | 27 | 27 | 47 | 58 | 278 |
2012 | 27 | 27 | 27 | 25 | 27 | 27 | 18 | 42 | 220 |
2013 | 27 | 26 | 26 | 23 | 26 | 26 | 14 | 43 | 211 |
2014 | 27 | 24 | 24 | 16 | 26 | 27 | 23 | 50 | 217 |
2015 | 26 | 24 | 24 | 19 | 21 | 25 | 24 | 42 | 205 |
2016 | 25 | 27 | 26 | 22 | 19 | 25 | 17 | 37 | 198 |
2017 | 25 | 24 | 26 | 22 | 16 | 25 | 22 | 38 | 198 |
2018 | 26 | 25 | 18 | 24 | 21 | 26 | 18 | 29 | 187 |
Years | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | Total |
---|---|---|---|---|---|---|---|---|
Number of villages involved | 184 | 193 | 196 | 190 | 168 | 175 | 158 | 1264 |
Number of villages with a major epidemic events recognized by the government | 8 | 5 | 4 | 4 | 1 | 3 | 3 | 28 |
Percentage (%) | 4.35 | 2.59 | 2.04 | 2.11 | 0.60 | 1.71 | 1.90 | 2.22 |
Provinces Name | Hebei | Jilin | Fujian | Shandong | Henan | Yunnan | Shaanxi | Xinjiang |
Sample size | 174 | 159 | 155 | 107 | 134 | 164 | 120 | 251 |
Number of villages with a major epidemic events recognized by the government | 0 | 1 | 2 | 3 | 0 | 9 | 1 | 12 |
Percentage (%) | 0.00 | 0.63 | 1.29 | 2.80 | 0.00 | 5.49 | 0.83 | 4.78 |
Temperature | Occurrence of Animal Major Epidemic Diseases |
---|---|
Mean temperature | 0.0206 ** |
Mean daily minimum temperature | 0.0282 *** |
Mean daily maximum temperature | 0.0106 |
Number of days with high temperature | |
days with >35 °C | 0.0007 |
days with >36 °C | 0.0014 |
days with >37 °C | 0.0021 * |
days with >38 °C | 0.0043 ** |
days with >39 °C | 0.0088 *** |
days with >40 °C | 0.0120 *** |
days with >41 °C | 0.0104 *** |
days with >42 °C | 0.0211 *** |
days with >43 °C | 0.0176 *** |
days with >44 °C | 0.0188 *** |
days with >45 °C | 0.0187 ** |
Precipitation | Occurrence of Animal Major Epidemic Diseases |
---|---|
Mean daily precipitation | −0.0097 |
Precipitation anomaly index | −0.0462 ** |
Mean humidity | −0.0015 |
Mean wind speed | 0.0615 ** |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
---|---|---|---|---|---|---|---|
Mean daily minimum temperature | 0.0282 *** (0.0096) | 0.0253 ** (0.0100) | 0.0263 *** (0.0100) | ||||
Days with >39 °C | 0.0088 *** (0.0025) | 0.0059 ** (0.0026) | 0.0055 ** (0.0026) | ||||
Precipitation anomaly index | −0.0462 ** (0.0185) | −0.0376 ** (0.0195) | −0.0374 * (0.0194) | ||||
Mean wind speed | 0.0615 ** (0.0281) | 0.0668 ** (0.0283) | 0.0687 ** (0.0282) | ||||
Concentration of livestock | 0.0386 *** (0.0141) | 0.0379 *** (0.0139) | |||||
Constant | −0.1612 ** (0.0721) | 0.0362 *** (0.0100) | 0.0232 *** (0.00349) | −0.0731 (0.0563) | 0.0389 ** (0.1007) | −0.2771 *** (0.0991) | −0.2970 *** (0.0993) |
Observations | 1264 | 1264 | 1264 | 1264 | 1262 | 1264 | 1262 |
R-squared(within) | 0.0190 | 0.0230 | 0.006 | 0.0153 | 0.0181 | 0.0365 | 0.0438 |
Number of villages | 268 | 268 | 268 | 268 | 268 | 268 | 268 |
Individual fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | No | Yes | Yes | Yes | Yes |
Temperature | Total Sample | North | Jilin | Shandong | Shaanxi | Northwest (Xinjiang) | South | Yunnan | Fujian |
---|---|---|---|---|---|---|---|---|---|
Mean temperature | 0.0206 ** | 0.0179 | 0.0086 | −0.0522 | −0.0441 * | 0.0183 | −0.0037 | −0.0091 | −0.0760 ** |
Mean daily minimum temperature | 0.0282 *** | 0.0246 * | 0.0094 | 0.2500 ** | −0.0611 * | 0.0159 | 0.0031 | 0.0023 | −0.0379 |
Mean daily maximum temperature | 0.0106 | 0.0082 | 0.0069 | −0.0506 * | −0.0277 | 0.0230 | −0.0226 | −0.0065 | −0.0434 * |
Number of days with high temperature | |||||||||
Days with >35 °C | 0.0007 | −0.0009 | −0.0016 | −0.0141 * | −0.0025 | 0.0033 | 0.0014 | 0 | 0.0007 |
Days with >36 °C | 0.0014 | −0.0002 | −0.0021 | −0.0014 | −0.0003 | 0.0035 | 0.0017 | — | 0.0007 |
Days with >37 °C | 0.0021 * | −0.0007 | 0 | 0.0003 | −0.0023 | 0.0042 | 0.0007 | — | −0.0002 |
Days with >38 °C | 0.0043 ** | 0.0002 | 0 | 0.0097 | −0.0010 | 0.0062 * | −0.0033 | — | −0.0046 |
Days with >39 °C | 0.0088 *** | −0.0022 | 0 | 0.0620 * | −0.0100 | 0.0100 ** | −0.0167 | — | −0.0198 |
Days with >40 °C | 0.0120 *** | −0.0163 | 0 | — | −0.0233 | 0.0123 *** | — | — | — |
Days with >41 °C | 0.0104 *** | −0.0001 | 0 | — | 0 | 0.0099 * | — | — | — |
Days with >42 °C | 0.0211 *** | — | — | — | — | 0.0196 ** | — | — | — |
Days with >43 °C | 0.0176 *** | — | — | — | — | 0.0164 ** | — | — | — |
Days with >44 °C | 0.0188 *** | — | — | — | — | 0.0177 * | — | — | — |
Days with >45 °C | 0.0187 ** | — | — | — | — | 0.0169 | — | — | — |
Precipitation | Total Sample | North | Jilin | Shandong | Shaanxi | Northwest (Xinjiang) | South | Yunnan | Fujian |
---|---|---|---|---|---|---|---|---|---|
Mean daily precipitation | −0.0079 | −0.0108 | −0.0321 | −0.0071 | −0.0539 | −0.1212 | −0.0066 | −0.0193 | −0.0041 |
Precipitation anomaly index | −0.0477 ** | −0.0216 | −0.0572 | −0.0112 | −0.0920 | −0.0875 * | −0.0227 | −0.0584 | −0.0202 |
Mean humidity | −0.0000 | −0.0021 | −0.0010 | −0.0210 ** | −0.0623 ** | 0.0004 | −0.0019 | −0.0021 | −0.0015 |
Mean wind speed | 0.0615 ** | 0.0552 * | 0.0099 | 0.0037 | −0.0568 | 0.0900 | 0.0611 | 0.0667 | 0.1586 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Q.; Zhou, H.; Khan, N.; Ma, J. Can Climate Change Increase the Spread of Animal Diseases? Evidence from 278 Villages in China. Atmosphere 2023, 14, 1581. https://doi.org/10.3390/atmos14101581
Chang Q, Zhou H, Khan N, Ma J. Can Climate Change Increase the Spread of Animal Diseases? Evidence from 278 Villages in China. Atmosphere. 2023; 14(10):1581. https://doi.org/10.3390/atmos14101581
Chicago/Turabian StyleChang, Qian, Hui Zhou, Nawab Khan, and Jiliang Ma. 2023. "Can Climate Change Increase the Spread of Animal Diseases? Evidence from 278 Villages in China" Atmosphere 14, no. 10: 1581. https://doi.org/10.3390/atmos14101581
APA StyleChang, Q., Zhou, H., Khan, N., & Ma, J. (2023). Can Climate Change Increase the Spread of Animal Diseases? Evidence from 278 Villages in China. Atmosphere, 14(10), 1581. https://doi.org/10.3390/atmos14101581