Precipitation Sensitivity to Soil Moisture Changes in Multiple Global Climate Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climate Models
2.2. Reanalysis Models
2.3. Calculation of Local SM-P
3. Results
3.1. Dissecting the SM-P Coupling
3.2. Variation of SM-P with SM
3.3. The SM-P’s Future Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Pitman, A.J. The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Clim. 2003, 23, 479–510. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture—Climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Wei, J.; Dickinson, R.E.; Chen, H. A Negative Soil Moisture-Precipitation Relationship and Its Causes. J. Hydrometeorol. 2008, 9, 1364–1376. [Google Scholar] [CrossRef]
- Koster, R.D.; Mahanama, S.P.P.; Yamada, T.J.; Balsamo, G.; Berg, A.A.; Boisserie, M.; Dirmeyer, P.A.; Doblas-Reyes, F.J.; Drewitt, G.; Gordon, C.T.; et al. The Second Phase of the Global Land–Atmosphere Coupling Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill. J. Hydrometeorol. 2011, 12, 805–822. [Google Scholar] [CrossRef]
- Tuttle, S.; Salvucci, G. Empirical evidence of contrasting soil moisture-precipitation feedbacks across the United States. Science 2016, 352, 825–828. [Google Scholar] [CrossRef]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of Strong Coupling between Soil Moisture and Precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [PubMed]
- Bellucci, A.; Haarsma, R.; Bellouin, N.; Booth, B.; Cagnazzo, C.; van den Hurk, B.; Keenlyside, N.; Koenigk, T.; Massonnet, F.; Materia, S.; et al. Advancements in decadal climate predictability: The role of nonoceanic drivers. Rev. Geophys. 2015, 53, 165–202. [Google Scholar] [CrossRef]
- Dong, J.; Dirmeyer, P.A.; Lei, F.; Anderson, M.C.; Holmes, T.R.H.; Hain, C.; Crow, W.T. Soil Evaporation Stress Determines Soil Moisture-Evapotranspiration Coupling Strength in Land Surface Modeling. Geophys. Res. Lett. 2020, 47, e2020GL090391. [Google Scholar] [CrossRef]
- Eltahir, E.A.B. A Soil Moisture–Rainfall Feedback Mechanism: 1. Theory and observations. Water Resour. Res. 1998, 34, 765–776. [Google Scholar] [CrossRef]
- Hu, H.; Leung, L.R.; Feng, Z. Early warm-season mesoscale convective systems dominate soil moisture-precipitation feedback for summer rainfall in central United States. Proc. Natl. Acad. Sci. USA 2021, 118, e2105260118. [Google Scholar] [CrossRef]
- Shukla, J.; Mintz, Y. Influence of Land-Surface Evapotranspiration on the Earth’s Climate. Science 1982, 215, 1498–1501. [Google Scholar] [CrossRef] [PubMed]
- Notaro, M. Statistical identification of global hot spots in soil moisture feedbacks among IPCC AR4 models. J. Geophys. Res. Atmos. 2008, 113, D09101. [Google Scholar] [CrossRef]
- Wei, J.; Dirmeyer, P.A. Dissecting soil moisture-precipitation coupling. Geophys. Res. Lett. 2012, 39, L19711. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Chen, Y.; De Maeyer, P.; Li, Z.; Duan, W. Detecting the Causal Effect of Soil Moisture on Precipitation Using Convergent Cross Mapping. Sci. Rep. 2018, 8, 12171. [Google Scholar] [CrossRef] [PubMed]
- Koster, R.D.; Sud, Y.C.; Guo, Z.; Dirmeyer, P.A.; Bonan, G.; Oleson, K.W.; Chan, E.; Verseghy, D.; Cox, P.; Davies, H.; et al. GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeorol. 2006, 7, 590–610. [Google Scholar] [CrossRef]
- Wei, J.; Dirmeyer, P.A.; Guo, Z. Sensitivities of soil wetness simulation to uncertainties in precipitation and radiation. Geophys. Res. Lett. 2008, 35, L15703. [Google Scholar] [CrossRef]
- Graf, M.; Arnault, J.; Fersch, B.; Kunstmann, H. Is the soil moisture precipitation feedback enhanced by heterogeneity and dry soils? A comparative study. Hydrol. Process. 2021, 35, e14332. [Google Scholar] [CrossRef]
- Asharaf, S.; Dobler, A.; Ahrens, B. Soil Moisture-Precipitation Feedback Processes in the Indian Summer Monsoon Season. J. Hydrometeorol. 2012, 13, 1461–1474. [Google Scholar] [CrossRef]
- Zhong, S.; Yang, T.; Qian, Y.; Zhu, J.; Wu, F. Temporal and spatial variations of soil moisture-precipitation feedback in East China during the East Asian summer monsoon period: A sensitivity study. Atmos. Res. 2018, 213, 163–172. [Google Scholar] [CrossRef]
- Guo, Z.; Dirmeyer, P.A.; Koster, R.D.; Sud, Y.C.; Bonan, G.; Oleson, K.W.; Chan, E.; Verseghy, D.; Cox, P.; Gordon, C.T.; et al. GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeorol. 2006, 7, 611–625. [Google Scholar] [CrossRef]
- Gentine, P.; Holtslag, A.A.M.; D’Andrea, F.; Ek, M. Surface and Atmospheric Controls on the Onset of Moist Convection over Land. J. Hydrometeorol. 2013, 14, 1443–1462. [Google Scholar] [CrossRef]
- Wei, J.; Dirmeyer, P.A. Sensitivity of land precipitation to surface evapotranspiration: A nonlocal perspective based on water vapor transport. Geophys. Res. Lett. 2019, 46, 12588–12597. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Q.; Zhang, Y.; Yue, P.; Zhang, L.; Zeng, J.; Qi, Y. Hydrothermal Factors Influence on Spatial-Temporal Variation of Evapotranspiration-Precipitation Coupling over Climate Transition Zone of North China. Remote Sens. 2022, 14, 1448. [Google Scholar] [CrossRef]
- Liu, D.; Yu, Z.; Lü, H.; Gu, H.; Yang, C.; Ju, Q.; Sun, J.; Fu, X. Diagnosing the compound seasonal soil moisture-hydroclimate interaction regime on the Tibetan Plateau using multi-high-resolution reanalysis products and one regional climate model. J. Hydrol. 2023, 620, 129517. [Google Scholar] [CrossRef]
- Koukoula, M.; Schwartz, C.S.; Nikolopoulos, E.I.; Anagnostou, E.N. Understanding the Impact of Soil Moisture on Precipitation Under Different Climate and Meteorological Conditions: A Numerical Sensitivity Study Over the CONUS. J. Geophys. Res. Atmos. 2021, 126, e2021JD035096. [Google Scholar] [CrossRef]
- Koster, R.D.; Schubert, S.D.; Suarez, M.J. Analyzing the Concurrence of Meteorological Droughts and Warm Periods, with Implications for the Determination of Evaporative Regime. J. Clim. 2009, 22, 3331–3341. [Google Scholar] [CrossRef]
- Berg, A.; Findell, K.; Lintner, B.R.; Gentine, P.; Kerr, C. Precipitation Sensitivity to Surface Heat Fluxes over North America in Reanalysis and Model Data. J. Hydrometeorol. 2013, 14, 722–743. [Google Scholar] [CrossRef]
- Santanello, J.A.; Dirmeyer, P.A.; Ferguson, C.R.; Findell, K.L.; Tawfik, A.B.; Berg, A.; Ek, M.; Gentine, P.; Guillod, B.P.; Van Heerwaarden, C.; et al. Land–Atmosphere Interactions: The LoCo Perspective. Bull. Am. Meteorol. Soc. 2018, 99, 1253–1272. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Chen, L.; Wu, J.; Shin, C.-S.; Huang, B.; Cash, B.A.; Bosilovich, M.G.; Mahanama, S.; Koster, R.D.; Santanello, J.A.; et al. Verification of Land–Atmosphere Coupling in Forecast Models, Reanalyses, and Land Surface Models Using Flux Site Observations. J. Hydrometeorol. 2018, 19, 375–392. [Google Scholar] [CrossRef]
- Ford, T.W.; Steiner, J.; Mason, B.; Quiring, S.M. Observation-Driven Characterization of Soil Moisture-Precipitation Interactions in the Central United States. J. Geophys. Res. Atmos. 2023, 128, e2022JD037934. [Google Scholar] [CrossRef]
- Lawston-Parker, P.; Santanello, J.A.; Kumar, S.V. Understanding the Impacts of Land Surface and PBL Observations on the Terrestrial and Atmospheric Legs of Land–Atmosphere Coupling. J. Hydrometeorol. 2021, 22, 2241–2258. [Google Scholar] [CrossRef]
- Betts, A.K. Land-Surface-Atmosphere Coupling in Observations and Models. J. Adv. Model. Earth Syst. 2009, 1, 4. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Cash, B.A.; Kinter, J.L.; Stan, C.; Jung, T.; Marx, L.; Towers, P.; Wedi, N.; Adams, J.M.; Altshuler, E.L.; et al. Evidence for Enhanced Land–Atmosphere Feedback in a Warming Climate. J. Hydrometeorol. 2012, 13, 981–995. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Gidden, M.J.; Riahi, K.; Smith, S.J.; Fujimori, S.; Luderer, G.; Kriegler, E.; van Vuuren, D.P.; van den Berg, M.; Feng, L.; Klein, D.; et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 2019, 12, 1443–1475. [Google Scholar] [CrossRef]
- Yoder, R.E.; Odhiambo, L.O.; Wright, W.C. Effects of Vapor-Pressure Deficit and Net-Irradiance Calculation Methods on Accuracy of Standardized Penman-Monteith Equation in a Humid Climate. J. Irrig. Drain. Eng. 2005, 131, 228–237. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Wei, J.; Zhao, J.; Chen, H.; Liang, X. Coupling between Land Surface Fluxes and Lifting Condensation Level: Mechanisms and Sensitivity to Model Physics Parameterizations. J. Geophys. Res. Atmos. 2021, 126, e2020JD034313. [Google Scholar] [CrossRef]
- Song, Y.; Wei, J. Diurnal cycle of summer precipitation over the North China Plain and associated land–atmosphere interactions: Evaluation of ERA5 and MERRA-2. Int. J. Clim. 2021, 41, 6031–6046. [Google Scholar] [CrossRef]
- Jiao, D.; Xu, N.; Yang, F.; Xu, K. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Sci. Rep. 2021, 11, 17956. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Zuo, Z.; Xiao, D. Evaluation of Soil Moisture in CMIP6 Simulations. J. Clim. 2022, 35, 779–800. [Google Scholar] [CrossRef]
- Li, X.; Li, Z. Global water availability and its distribution under the Coupled Model Intercomparison Project Phase Six scenarios. Int. J. Clim. 2022, 42, 5748–5767. [Google Scholar] [CrossRef]
- Dirmeyer, P.A. The terrestrial segment of soil moisture-climate coupling. Geophys. Res. Lett. 2011, 38, L16702. [Google Scholar] [CrossRef]
- Koster, R.D.; Chang, Y.; Wang, H.; Schubert, S.D. Impacts of Local Soil Moisture Anomalies on the Atmospheric Circulation and on Remote Surface Meteorological Fields during Boreal Summer: A Comprehensive Analysis over North America. J. Clim. 2016, 29, 7345–7364. [Google Scholar] [CrossRef]
- Guichard, F.; Petch, J.C.; Redelsperger, J.-L.; Bechtold, P.; Chaboureau, J.-P.; Cheinet, S.; Grabowski, W.; Grenier, H.; Jones, C.G.; Köhler, M.; et al. Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Q. J. R. Meteorol. Soc. 2004, 130, 3139–3172. [Google Scholar] [CrossRef]
- Barthlott, C.; Kalthoff, N. A Numerical Sensitivity Study on the Impact of Soil Moisture on Convection-Related Parameters and Convective Precipitation over Complex Terrain. J. Atmos. Sci. 2011, 68, 2971–2987. [Google Scholar] [CrossRef]
- Guillod, B.P.; Orlowsky, B.; Miralles, D.G.; Teuling, A.J.; Seneviratne, S.I. Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun. 2015, 6, 6443. [Google Scholar] [CrossRef]
- Findell, K.L.; Eltahir, E.A.B. Atmospheric Controls on Soil Moisture–Boundary Layer Interactions. Part I: Framework Development. J. Hydrometeorol. 2003, 4, 552–569. [Google Scholar] [CrossRef]
- Lam, A.; Bierkens, M.F.P.; van den Hurk, B.J.J.M. Global patterns of relations between soil moisture and rainfall occurrence in ERA-40. J. Geophys. Res. Atmos. 2007, 112, D17116. [Google Scholar] [CrossRef]
- Taylor, C.M.; Parker, D.J.; Harris, P.P. An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett. 2007, 34, L15801. [Google Scholar] [CrossRef]
- Taylor, C.M.; Harris, P.P.; Parker, D.J. Impact of soil moisture on the development of a Sahelian mesoscale convective system: A case-study from the AMMA Special Observing Period. Q. J. R. Meteorol. Soc. 2010, 136, 456–470. [Google Scholar] [CrossRef]
- Taylor, C.M.; de Jeu, R.A.M.; Guichard, F.; Harris, P.P.; Dorigo, W.A. Afternoon rain more likely over drier soils. Nature 2012, 489, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Hohenegger, C.; Brockhaus, P.; Bretherton, C.S.; Schär, C. The Soil Moisture-Precipitation Feedback in Simulations with Explicit and Parameterized Convection. J. Clim. 2009, 22, 5003–5020. [Google Scholar] [CrossRef]
- Santanello, J.A.; Peters-Lidard, C.D.; Kumar, S.V.; Alonge, C.; Tao, W.-K. A Modeling and Observational Framework for Diagnosing Local Land–Atmosphere Coupling on Diurnal Time Scales. J. Hydrometeorol. 2009, 10, 577–599. [Google Scholar] [CrossRef]
- Wei, J.; Su, H.; Yang, Z.-L. Impact of moisture flux convergence and soil moisture on precipitation: A case study for the southern United States with implications for the globe. Clim. Dyn. 2015, 46, 467–481. [Google Scholar] [CrossRef]
- Berg, A.; Findell, K.; Lintner, B.; Giannini, A.; Seneviratne, S.I.; van den Hurk, B.; Lorenz, R.; Pitman, A.; Hagemann, S.; Meier, A.; et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 2016, 6, 869–874. [Google Scholar] [CrossRef]
- Berg, A.; McColl, K.A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Change 2021, 11, 331–337. [Google Scholar] [CrossRef]
- Chemke, R.; Polvani, L.M. Ocean Circulation Reduces the Hadley Cell Response to Increased Greenhouse Gases. Geophys. Res. Lett. 2018, 45, 9197–9205. [Google Scholar] [CrossRef]
- Lachmy, O. The Relation between the Latitudinal Shifts of Midlatitude Diabatic Heating, Eddy Heat Flux, and the Eddy-Driven Jet in CMIP6 Models. J. Geophys. Res. Atmos. 2022, 127, e2022JD036556. [Google Scholar] [CrossRef]
- Hu, Y.; Tao, L.; Liu, J. Poleward expansion of the hadley circulation in CMIP5 simulations. Adv. Atmos. Sci. 2013, 30, 790–795. [Google Scholar] [CrossRef]
- Vallis, G.K.; Zurita-Gotor, P.; Cairns, C.; Kidston, J. Response of the large-scale structure of the atmosphere to global warming. Q. J. R. Meteorol. Soc. 2015, 141, 1479–1501. [Google Scholar] [CrossRef]
- Schmidt, D.F.; Grise, K.M. The Response of Local Precipitation and Sea Level Pressure to Hadley Cell Expansion. Geophys. Res. Lett. 2017, 44, 10573–10582. [Google Scholar] [CrossRef]
- Lachmy, O.; Kaspi, Y. The Role of Diabatic Heating in Ferrel Cell Dynamics. Geophys. Res. Lett. 2020, 47, e2020GL090619. [Google Scholar] [CrossRef]
Model Name | Institute | Variant Label | Resolution (Latitude × Longitude) |
---|---|---|---|
ACCESS-CM2 | CSIRO, Canberra, Australia | r1i1p1f1 | 1.25° × 1.875° |
ACCESS-ESM1-5 | CSIRO, Canberra, Australia | r1i1p1f1 | 1.241° × 1.875° |
CESM2-WACCM | NCAR, Boulder, CO, USA | r1i1p1f1 | 0.9375° × 1.25° |
CMCC-CM2-SR5 | CMCC, Lecce, Italy | r1i1p1f1 | 0.9375° × 1.25° |
CMCC-ESM2 | Euro-Mediterranean Centre, Lecce, Italy | r1i1p1f1 | 0.9375° × 1.25° |
EC-Earth3 | EC-Earth Consortium, Norrkoping, Sweden | r1i1p1f1 | 0.703125° × 0.703125° |
EC-Earth3-Veg-LR | EC-Earth-Consortium, Norrkoping, Sweden EU | r1i1p1f1 | 1.125° × 1.125° |
FGOALS-g3 | CAS, Beijing, China | r1i1p1f1 | 2.25° × 2° |
GFDL-ESM4 | NOAA-GFDL, Princeton, NJ, USA | r1i1p1f1 | 1° × 1.2857° |
IPSL-CM6A-LR | IPSL, Guyancourt, France | r1i1p1f1 | 1.259° × 2.5° |
KACE-1-0-G | NIMS-KMA, Jeju City, Republic of Korea | r1i1p1f1 | 1.25° × 1.875° |
MIROC6 | MIROC, Marugame, Japan | r1i1p1f1 | 1.40625° × 1.40625° |
MPI-ESM1-2-HR | DKRZ, Hamburg, Germany | r1i1p1f1 | 0.9375° × 0.9375° |
MPI-ESM1-2-LR | MPI-M, Hamburg, Germany | r1i1p1f1 | 1.875° × 1.875° |
MRI-ESM2-0 | MRI, Tokyo, Japan | r1i1p1f1 | 1.125° × 1.125° |
NorESM2-LM | NCC, Oslo, Norway | r1i1p1f1 | 1.875° × 2.5° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, X.; Wang, G.; Hagan, D.F.T.; Li, S.; Wei, J.; Lu, J.; Qiao, Y.; Zhu, C.; Ullah, W.; Yeboah, E. Precipitation Sensitivity to Soil Moisture Changes in Multiple Global Climate Models. Atmosphere 2023, 14, 1531. https://doi.org/10.3390/atmos14101531
Zou X, Wang G, Hagan DFT, Li S, Wei J, Lu J, Qiao Y, Zhu C, Ullah W, Yeboah E. Precipitation Sensitivity to Soil Moisture Changes in Multiple Global Climate Models. Atmosphere. 2023; 14(10):1531. https://doi.org/10.3390/atmos14101531
Chicago/Turabian StyleZou, Xiao, Guojie Wang, Daniel Fiifi Tawia Hagan, Shijie Li, Jiangfeng Wei, Jiao Lu, Yumeng Qiao, Chenxia Zhu, Waheed Ullah, and Emmanuel Yeboah. 2023. "Precipitation Sensitivity to Soil Moisture Changes in Multiple Global Climate Models" Atmosphere 14, no. 10: 1531. https://doi.org/10.3390/atmos14101531
APA StyleZou, X., Wang, G., Hagan, D. F. T., Li, S., Wei, J., Lu, J., Qiao, Y., Zhu, C., Ullah, W., & Yeboah, E. (2023). Precipitation Sensitivity to Soil Moisture Changes in Multiple Global Climate Models. Atmosphere, 14(10), 1531. https://doi.org/10.3390/atmos14101531