Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = soil moisture–precipitation feedback

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8013 KiB  
Article
Assessing the Combined Impact of Land Surface Temperature and Droughts to Heatwaves over Europe Between 2003 and 2023
by Foteini Karinou, Ilias Agathangelidis and Constantinos Cartalis
Remote Sens. 2025, 17(9), 1655; https://doi.org/10.3390/rs17091655 - 7 May 2025
Cited by 1 | Viewed by 1016
Abstract
The increasing frequency, intensity, and duration of heatwaves and droughts pose significant societal and environmental challenges across Europe. This study analyzes land surface temperature (LST) observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2003 and 2023 to identify thermal anomalies associated with [...] Read more.
The increasing frequency, intensity, and duration of heatwaves and droughts pose significant societal and environmental challenges across Europe. This study analyzes land surface temperature (LST) observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2003 and 2023 to identify thermal anomalies associated with heatwaves. Additionally, this study examines the role of different land cover types in modulating heatwave impacts, employing turbulent flux observations from micrometeorological towers. The interaction between heatwaves and droughts is further explored using the Standardized Precipitation Evapotranspiration Index (SPEI) and soil moisture data, highlighting the amplifying role of water stress through land–atmosphere feedbacks. The results reveal a statistically significant upward trend in LST-derived thermal anomalies, with the 2022 heatwave identified as the most extreme event, when approximately 75% of Europe experienced strong positive anomalies. On average, 91% of heatwave episodes identified in reanalysis-based air temperature records coincided with LST-defined anomaly events, confirming LST as a robust proxy for heatwave detection. Flux tower observations show that, during heatwaves, evergreen coniferous and mixed forests predominantly enhance sensible heat fluxes (mean anomalies during midday of 74 W/m2 and 62 W/m2, respectively), while grasslands exhibit increased latent heat flux (89 W/m2). Notably, under extreme compound heat–drought conditions, this pattern reverses for grassed sites due to rapid soil moisture depletion. Overall, the findings underscore the combined influence of surface temperature and drought in driving extreme heat events and introduce a novel, multi-source approach that integrates satellite, reanalysis, and ground-based data to assess heatwave dynamics across scales. Full article
Show Figures

Graphical abstract

16 pages, 8261 KiB  
Article
Hydrology–Soil–Vegetation Element Interactions in the Largest Single-Port Artesian Irrigation Area of Asia
by Ziniu Wang, Limin Duan, Yahui Han, Jianxun Ji, Qiwei Shi, Rongjiang Yao, Yanyun Luo and Tingxi Liu
Land 2024, 13(12), 2099; https://doi.org/10.3390/land13122099 - 5 Dec 2024
Cited by 1 | Viewed by 839
Abstract
Climate change and anthropogenic activities have increased the complexity of hydrology–soil–vegetation interactions in arid-region irrigation areas. Therefore, studies on the spatiotemporal characteristics of these interactions can greatly benefit the sustainable development of arid areas. This study developed a spatially granular dataset of the [...] Read more.
Climate change and anthropogenic activities have increased the complexity of hydrology–soil–vegetation interactions in arid-region irrigation areas. Therefore, studies on the spatiotemporal characteristics of these interactions can greatly benefit the sustainable development of arid areas. This study developed a spatially granular dataset of the key hydrology, soil, and vegetation elements for the Hetao Irrigation District (HID) for 2000–2020, recognized as the largest single-port artesian irrigation area in Asia, and explored the interactions between these elements by means of a geodetector, the analytic hierarchy process, and the Pearson correlation coefficient. The key results indicated the following: (1) a declining trend of 0.1–0.15 in the comprehensive influence of hydrology–soil–vegetation interactions; increasing significance of hydrologically driven soil and vegetation evolution, with feedback between soil and vegetation; (2) the maximization of the interactions between soil moisture and precipitation and groundwater, with evapotranspiration as the dominant factor regulating hydrology–vegetation interactions; (3) the interactions between hydrology, soil, and vegetation showing nonlinear synergism; (4) and the spatial distributions of the hydrology–soil–vegetation interactions showing significant band-like patterns with weak coupling between the elements. Full article
Show Figures

Figure 1

19 pages, 9113 KiB  
Article
Causes of Increased Compound Temperature and Precipitation Extreme Events in the Arid Region of Northwest China from 1961 to 2100
by Huihui Niu, Weijun Sun, Baojuan Huai, Yuzhe Wang, Rensheng Chen, Chuntan Han, Yingshan Wang, Jiaying Zhou and Lei Wang
Remote Sens. 2024, 16(17), 3111; https://doi.org/10.3390/rs16173111 - 23 Aug 2024
Cited by 1 | Viewed by 2231
Abstract
Compound extreme events pose more grave threats to human health, the natural environment, and socioeconomic systems than do individual extreme events. However, the drivers and spatiotemporal change characteristics of compound extreme events under climate transition remain poorly understood, especially in the arid region [...] Read more.
Compound extreme events pose more grave threats to human health, the natural environment, and socioeconomic systems than do individual extreme events. However, the drivers and spatiotemporal change characteristics of compound extreme events under climate transition remain poorly understood, especially in the arid region of Northwest China. This study examined the spatiotemporal change characteristics and driving mechanisms of extreme temperature and precipitation compound events in Northwest China based on data from 86 national meteorological stations and 11 climate models of the Coupled Model Intercomparison Project, Phase 6. The results indicated that (1) the frequency values of heat extremity–dry (1.60/10a) and heat extremity–heavy precipitation (0.60/10a) events increased from 1961 to 2020, and showed a faster uptrend after 1990 than before. (2) Under four shared socioeconomic pathway scenarios, there is also the likelihood of an upward trend in heat extremity–dry and heat extremity–heavy precipitation events in Northwest China by the end of 21 century, especially under SSP585, with probability values of 1.70/10a and 1.00/10a, respectively. (3) A soil moisture deficit leads to decreased evaporation and increased sensible heat by reduction in the soil–atmosphere exchange; the non-adiabatic heating process leads to a higher frequency of hot days. This land–air interaction feedback mechanism is a significant driver of heat extremity–dry events in Northwest China. (4) In the Northwest China region, the warmer trend surpasses the wetter trend, contributing to increased specific humidity, and the vapor pressure deficit may lead to an increasing frequency of extreme precipitation, consequently increasing heat extremity–heavy precipitation events. These results provide new insights for the understanding of compound extreme events, in order to cope with their risks. Full article
Show Figures

Figure 1

13 pages, 3244 KiB  
Article
Spatial and Temporal Variability of Soil Moisture and Its Driving Factors in the Northern Agricultural Regions of China
by Junjie Cai, Bingting Zhou, Shiyan Chen, Xuelin Wang, Shuyun Yang, Zhiqing Cheng, Fengwen Wang, Xueying Mei and Dong Wu
Water 2024, 16(4), 556; https://doi.org/10.3390/w16040556 - 12 Feb 2024
Cited by 5 | Viewed by 3279
Abstract
Soil moisture, as an important variable affecting water–heat exchange between land and atmosphere, is an important feedback to climate change. Soil moisture is of great concern in Northern China, where arable land is extensive, but water resources are distributed unevenly and extremely sensitive [...] Read more.
Soil moisture, as an important variable affecting water–heat exchange between land and atmosphere, is an important feedback to climate change. Soil moisture is of great concern in Northern China, where arable land is extensive, but water resources are distributed unevenly and extremely sensitive to climate change. Using measured soil moisture data collected by the China Meteorological Administration from 164 stations during 1980–2021, we explored the drivers of soil moisture variation by analyzing its spatiotemporal variability using linear regression, partial correlation analysis, and geostatistical methods. The results indicated that (1) soil moisture increased from northwest to southeast in Northern China, with the lowest soil moisture in the IM; (2) the overall trend of soil moisture in most regions decreased, especially in the arid northwest and northeast China. However, soil moisture in some regions began to increase gradually in recent years, such as in northwestern Xinjiang and the central-eastern part of IM; and (3) soil moisture in the whole region was negatively correlated with temperature and sunshine duration and positively correlated with precipitation and relative humidity. The results of the study can provide valuable guidance for timely agricultural irrigation and the adjustment of cropping structures, thereby ensuring agricultural production and food security. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

18 pages, 16131 KiB  
Article
Sensitivities of Vegetation Gross Primary Production to Precipitation Frequency in the Northern Hemisphere from 1982 to 2015
by Shouye Xue and Guocan Wu
Remote Sens. 2024, 16(1), 21; https://doi.org/10.3390/rs16010021 - 20 Dec 2023
Cited by 7 | Viewed by 2788
Abstract
Vegetation of the Northern Hemisphere plays a vital role in global ecosystems and the carbon cycle. Variations in precipitation profoundly affect vegetation productivity, plant growth, and species communities. Precipitation frequency directly controls soil moisture availability, which has an impact on the vegetation carbon [...] Read more.
Vegetation of the Northern Hemisphere plays a vital role in global ecosystems and the carbon cycle. Variations in precipitation profoundly affect vegetation productivity, plant growth, and species communities. Precipitation frequency directly controls soil moisture availability, which has an impact on the vegetation carbon sink. However, it is unclear how precipitation frequency affects the vegetation productivity of different land cover types in different seasons. In this study, the sensitivities of the gross primary production (GPP) of six vegetation types (forest, cropland, grassland, shrubland, tundra and barren land) in response to the frequency of five categories of precipitation (trace: 0.1–5 mm/day, small: 5–10 mm/day, moderate: 10–15 mm/day, heavy: 15–20 mm/day, and very heavy: >20 mm/day) were analyzed based on the XGBoost model. The results showed that, between 1982 and 2015, precipitation frequency declined in most land cover types but increased significantly in the pan-Arctic. Differences in the sensitivity to precipitation frequency were observed between seasons and precipitation categories in northern latitudes. The GPP values of forest and barren land vegetation were less sensitive to precipitation frequency than grassland, shrubland and tundra. This may be related to different vegetation community structures and underlying surfaces and gradually increasing drought resistance capability. The sensitivity to precipitation frequency declined for moderate and heavy precipitation in cropland, but it increased in winter. As the frequency of trace precipitation diminishes in winter, the sensitivity of each vegetation type reduces by an average of 0.03%/decade. Conversely, the sensitivities to small and moderate rain increase by 0.01%/decade and 0.02%/decade, respectively, for ecosystems such as cultivated land, forests, and shrubs. However, shrubs and tundra exhibit distinct behaviors, where shifts in precipitation frequency align directly with trends in sensitivity. These results show that the frequency of precipitation significantly affects vegetation productivity and has different sensitivities, and vegetation shows different feedback mechanisms in the face of environmental changes. Full article
(This article belongs to the Special Issue Remote Sensing of Primary Production)
Show Figures

Figure 1

31 pages, 9789 KiB  
Article
Precipitation Sensitivity to Soil Moisture Changes in Multiple Global Climate Models
by Xiao Zou, Guojie Wang, Daniel Fiifi Tawia Hagan, Shijie Li, Jiangfeng Wei, Jiao Lu, Yumeng Qiao, Chenxia Zhu, Waheed Ullah and Emmanuel Yeboah
Atmosphere 2023, 14(10), 1531; https://doi.org/10.3390/atmos14101531 - 5 Oct 2023
Viewed by 2460
Abstract
The ability of soil moisture (SM) to affect precipitation (P) is a vital part of the water-energy cycles. Accurately quantifying this coupling enhances the ability to predict hydroclimatic extremes like floods and droughts. In this study, the ability of soil moisture to affect [...] Read more.
The ability of soil moisture (SM) to affect precipitation (P) is a vital part of the water-energy cycles. Accurately quantifying this coupling enhances the ability to predict hydroclimatic extremes like floods and droughts. In this study, the ability of soil moisture to affect precipitation (SM-P) is characterized by two parts: the influence of soil moisture on evapotranspiration (SM-ET), and the influence of evapotranspiration on precipitation (ET-P). We determined localized ET-P by incorporating the coupling between latent heat flux (LH) and LCL height, to optimize the estimation of the SM-P. This approach links SM more closely to P by considering the influence of surface fluxes. The results indicate that CMIP6 models exhibited the anticipated hotspot patterns for the three coupling metrics in transition regions. However, we observed that climate models generally exhibit weaker SM-P coupling compared to reanalysis models. Both SM-ET and SM-P showcase higher values wherein wet climate regions during dry years, and the converse occurs in dry regions. Due to sensitivity to climate change, the ET-P exhibits a more pronounced upward trend in the future. This study helps understand P’s response to SM shifts in climate models, crucial for predicting hydrological extremes and coupled global warming impact. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

13 pages, 2244 KiB  
Article
Effects of Precipitation Variation on Annual and Winter Soil Respiration in a Semiarid Mountain Shrubland in Northern China
by Huitao Shen, Tao Zhang, Yanxia Zhao, Aibin Wu, Zhenhua Zheng and Jiansheng Cao
Sustainability 2023, 15(9), 7461; https://doi.org/10.3390/su15097461 - 1 May 2023
Cited by 4 | Viewed by 2042
Abstract
In response to global climate change, future precipitation changes are expected to profoundly influence soil respiration in arid and semiarid areas. However, few studies focus on CO2 emissions from soils undergoing precipitation changes in semiarid mountain shrublands in winter. A precipitation-manipulation experiment [...] Read more.
In response to global climate change, future precipitation changes are expected to profoundly influence soil respiration in arid and semiarid areas. However, few studies focus on CO2 emissions from soils undergoing precipitation changes in semiarid mountain shrublands in winter. A precipitation-manipulation experiment with three levels of precipitation (30% decreased precipitation (DP), ambient precipitation (AP), and 30% increased precipitation (IP)) was performed to examine the effects of variable precipitation on soil respiration (SR) and wintertime contributions to annual SR emissions in Vitex negundo var. heterophylla shrub ecosystems located on the Middle Taihang Mountain in Hebei Province, northern China. The results showed that the average annual SR rates and winter SR rates ranged from 1.37 to 1.67 μmol m−2 s−1 and 0.42 to 0.59 μmol m−2 s−1 among the different precipitation treatments. The model based on soil moisture better represented the soil-respiration rates, suggesting that the variable precipitation extended the water’s limitation of the soil’s CO2 emissions. The cumulative annual soil CO2 emissions were 523, 578, and 634 g C m−2 in response to the DP, AP, and IP treatments, respectively. The ratio of the soil CO2 emissions in winter to the annual CO2 emissions varied from 7.6 to 8.8% in response to the different precipitation treatments. Therefore, ignoring the soil CO2 emissions in winter leads to the underestimation of the carbon losses in semiarid shrublands. Our results highlight that variable precipitation significantly influences soil-respiration rates, and soil CO2 emissions in winter must not be ignored when predicting the future feedback between SR and climate change in semiarid regions. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

17 pages, 3929 KiB  
Article
Evaluating the Effects of Climate Change and Human Activities on the Seasonal Trends and Spatial Heterogeneity of Soil Moisture
by Ermei Zhang, Yujie Liu, Tao Pan, Qinghua Tan and Zhiang Ma
Remote Sens. 2022, 14(19), 4862; https://doi.org/10.3390/rs14194862 - 29 Sep 2022
Cited by 10 | Viewed by 2570
Abstract
Soil moisture (SM), as a crucial variable in the soil–vegetation–atmosphere continuum, plays an important role in the terrestrial water cycle. Analyzing SM’s variation and driver factors is crucial to maintaining ecosystem diversity on the Tibetan Plateau (TP) and ensuring food security as well [...] Read more.
Soil moisture (SM), as a crucial variable in the soil–vegetation–atmosphere continuum, plays an important role in the terrestrial water cycle. Analyzing SM’s variation and driver factors is crucial to maintaining ecosystem diversity on the Tibetan Plateau (TP) and ensuring food security as well as water supply balance in developing countries. Gradual wetting of the soil has been detected and attributed to precipitation in this area. However, there is still a gap in understanding the potential mechanisms. It is unclear whether the greening, glacier melting, and different vegetation degradation caused by asymmetrical climate change and intensified human activities have significantly affected the balance of SM. Here, to test the hypothesis that heterogeneous SM caused by precipitation was subject to temperatures and anthropogenic constraints, GLDAS-2.1 (Global Land Data Assimilation System-2.1) SM products combined with the statistical downscaling and Geographic detectors were applied. The results revealed that: (1) Seasonal SM gradually increased (p < 0.05), while SM deficit frequently appeared with exposure to extreme climates, such as in the summer of 2010 and 2013, and changed into a pattern of precipitation transport to western dry lands in autumn. (2) There was a synergistic reaction between greening and local moisture in autumn. SM was dominated by low temperature (TMN) in winter, warming indirectly regulated SM by exacerbating the thawing of glaciers and permafrost. The spatial coupling between the faster rising rate of TMN and the frozen soil might further aggravate the imbalance of SM. (3) The land cover’s mutual transformation principally affected SM in spring and autumn, and degradation accelerated the loss of SM replenished by precipitation. (4) Land cover responses were different; SM in grassland was less affected by external disturbance, while degraded woodland and shrub performed adaptive feedback under dry environments, SM increased by 0.05 and 0.04 m3/(m3 10a), respectively. Our research provides a scientific basis for improving hydrological models and developing vegetation restoration strategies for long-term adaptation to TP-changing environments. Full article
Show Figures

Graphical abstract

15 pages, 15759 KiB  
Article
Modeling Potential Impacts on Regional Climate Due to Land Surface Changes across Mongolia Plateau
by Guangshuai Li, Lingxue Yu, Tingxiang Liu, Yue Jiao and Jiaxin Yu
Remote Sens. 2022, 14(12), 2947; https://doi.org/10.3390/rs14122947 - 20 Jun 2022
Cited by 12 | Viewed by 2687
Abstract
Although desertification has greatly increased across the Mongolian Plateau during the last decades of the 20th century, recent satellite records documented increasing vegetation growth since the 21st century in some areas of the Mongolian Plateau. Compared to the study of desertification, the opposite [...] Read more.
Although desertification has greatly increased across the Mongolian Plateau during the last decades of the 20th century, recent satellite records documented increasing vegetation growth since the 21st century in some areas of the Mongolian Plateau. Compared to the study of desertification, the opposite characteristics of land use and vegetation cover changes and their different effects on regional land–atmosphere interaction factors still lack enough attention across this vulnerable region. Using long-term time-series multi-source satellite records and regional climate model, this study investigated the climate feedback to the observed land surface changes from the 1990s to the 2010s in the Mongolia Plateau. Model simulation suggests that vegetation greening induced a local cooling effect, while the warming effect is mainly located in the vegetation degradation area. For the typical vegetation greening area in the southeast of Inner Mongolia, latent heat flux increased over 2 W/m2 along with the decrease of sensible heat flux over 2 W/m2, resulting in a total evapotranspiration increase by 0.1~0.2 mm/d and soil moisture decreased by 0.01~0.03 mm/d. For the typical vegetation degradation area in the east of Mongolia and mid-east of Inner Mongolia, the latent heat flux decreased over 2 W/m2 along with the increase of sensible heat flux over 2 W/m2 obviously, while changes in moisture cycling were spatially more associated with variations of precipitation. It means that precipitation still plays an important role in soil moisture for most areas, and some areas would be at potential risk of drought with the asynchronous increase of evapotranspiration and precipitation. Full article
(This article belongs to the Special Issue Remote Sensing for Advancing Nature-Based Climate Solutions)
Show Figures

Graphical abstract

11 pages, 4769 KiB  
Article
Influence of Climatic Factors on Lightning Fires in the Primeval Forest Region of the Northern Daxing’an Mountains, China
by Yang Shu, Chunming Shi, Bole Yi, Pengwu Zhao, Lijuan Guan and Mei Zhou
Sustainability 2022, 14(9), 5462; https://doi.org/10.3390/su14095462 - 1 May 2022
Cited by 18 | Viewed by 2799
Abstract
Forest fires lead to permafrost degradation and localized drought, and regional droughts increase the probability of forest fires, leading to a positive feedback loop between climate change and fires. However, the relationship between fire occurrence and climatic factors change is unclear for boreal [...] Read more.
Forest fires lead to permafrost degradation and localized drought, and regional droughts increase the probability of forest fires, leading to a positive feedback loop between climate change and fires. However, the relationship between fire occurrence and climatic factors change is unclear for boreal forests, which represent the largest land-based biome and stock of carbon. Here, we analyzed the relationship between lightning fire occurrence and meteorological and topographic factors based on the fire frequency, burned area, and meteorological data from the primeval forest region of the northern Daxing’an Mountains in China. We found that lightning fires occurred most frequently at an altitude of 600 to 700 m. From 1999 to 2019, the frequency of lightning fires showed an overall upward trend, whereas the affected area had no obvious change. It can be attributed to fire suppression efforts and greatly increased investment in fire prevention in China. Snow cover had a strong regulatory effect on the start and end dates of lightning fires for seasonal cycle. The frequency of lightning fires was positively correlated with the average temperature, maximum temperature, and surface evaporation and negatively correlated with precipitation and surface soil moisture (0–10 cm). The result will be useful in the spatially assessment of fire risk, the planning and coordination of regional efforts to identify areas at greatest risk, and in designing long-term lightning fires management strategies. Full article
(This article belongs to the Topic Climate Change and Environmental Sustainability)
Show Figures

Figure 1

17 pages, 2500 KiB  
Article
Effects of Warming and Precipitation on Soil CO2 Flux and Its Stable Carbon Isotope Composition in the Temperate Desert Steppe
by Na Guo, Shijie Lv, Guangyi Lv, Xuebao Xu, Hongyun Yao, Zhihui Yu, Xiao Qiu, Zhanyi Wang and Chengjie Wang
Sustainability 2022, 14(6), 3351; https://doi.org/10.3390/su14063351 - 12 Mar 2022
Cited by 4 | Viewed by 2943
Abstract
The stable carbon (C) isotope of soil CO2 efflux (δ13CO2e) is closely associated with soil C dynamics, which have a complex feedback relationship with climate. Three levels of warming (T0: ambient temperature (15.7 °C); T1: T0 + 2 [...] Read more.
The stable carbon (C) isotope of soil CO2 efflux (δ13CO2e) is closely associated with soil C dynamics, which have a complex feedback relationship with climate. Three levels of warming (T0: ambient temperature (15.7 °C); T1: T0 + 2 °C; T2: T0 + 4 °C) were combined with three levels of increased precipitation (W0: ambient precipitation (245.2 mm); W1: W0 + 25%; W2: W0 + 50%) in order to quantify soil CO2 flux and its δ13CO2e values under nine treatment conditions (T0W0, T0W1, T0W2, T1W0, T1W1, T1W2, T2W0, T2W1, and T2W2) in desert steppe in an experimental beginning in 2015. A non-steady state chamber system relying on Keeling plots was used to estimate δ13CO2e. The temperature (ST) and moisture (SM) of soil as well as soil organic carbon content (SOC) and δ13C values (δ13Csoil) were tested in order to interpret variations in soil CO2 efflux and δ13CO2e. Sampling was carried out during the growing season in 2018 and 2019. During the experiment, the ST and SM correspondingly increased due to warming and increased precipitation. CO2 flux ranged from 37 to 1103 mg m−2·h−1, and emissions peaked in early August in the desert steppe. Warming of 2 °C to 4 °C stimulated a 14% to 30.9% increase in soil CO2 efflux and a 0.4‰ to 1.8‰ enrichment in δ13CO2e, respectively. Increased precipitation raised soil CO2 efflux by 14% to 19.3%, and decreased δ13CO2e by 0.5‰ to 0.9‰. There was a positive correlation between soil CO2 efflux and ST and SOC indicating that ST affected soil CO2 efflux by changing SOC content. Although the δ13CO2e was positively correlated with ST, it was negatively correlated to SM. The decline of δ13CO2e with soil moisture was predominantly due to intensified and increased diffusive fractionation. The mean δ13CO2e value (−20.2‰) was higher than that of the soil carbon isotope signature at 0–20 cm (δ13Csoil = −22.7‰). The difference between δ13CO2e and δ13Csoile-s) could be used to evaluate the likelihood of substrate utilization. 13C enriched stable C pools were more likely to be utilized below 20 cm under warming of 2 °C in the desert steppe. Moreover, the interaction of T × W neither altered the CO2 emitted by soil nor the δ13CO2e or Δe-s, indicating that warming combined with precipitation may alleviate the SOC oxidation of soil enriched in 13C in the desert steppe. Full article
Show Figures

Figure 1

27 pages, 11866 KiB  
Article
Analysis of Effects of Recent Changes in Hydrothermal Conditions on Vegetation in Central Asia
by Xiuwei Xing, Jing Qian, Xi Chen, Chaoliang Chen, Jiayu Sun, Shujie Wei, Duman Yimamaidi and Zhahan Zhanar
Land 2022, 11(3), 327; https://doi.org/10.3390/land11030327 - 23 Feb 2022
Cited by 11 | Viewed by 3261
Abstract
Understanding the relationship of hydrothermal conditions to vegetation changes is conducive to revealing the feedback mechanism connecting climate variations and vegetation. Based on the methods of Theil–Sen median analysis, and the Mann–Kendall trend test, this research investigated the spatiotemporal vegetation dynamics in Central [...] Read more.
Understanding the relationship of hydrothermal conditions to vegetation changes is conducive to revealing the feedback mechanism connecting climate variations and vegetation. Based on the methods of Theil–Sen median analysis, and the Mann–Kendall trend test, this research investigated the spatiotemporal vegetation dynamics in Central Asia using the Normalized Difference Vegetation Index (NDVI) and grid climate data from 1982 to 2015. Further, the contributions of hydrothermal conditions to vegetation changes were quantified using a boosted regression tree model (BRT). The results demonstrated that the spatiotemporal characteristics of vegetation dynamics exhibited significant differences in different seasons, and most pixels showed increasing trends in the growing season and spring. Boosted regression tree analysis indicated that the contributions of hydrothermal conditions to vegetation dynamics exhibited temporal and spatial heterogeneity. During the annual, growing season, and summer examination periods, the contribution value of the increase in warming conditions (temperature or potential evapotranspiration) to vegetation degradation in the region due to the hydrothermal tradeoff effect (water) was 49.92%, 44.10%, and 44.95%, respectively. Moreover, the increase in warming conditions promoted vegetation growth, with a contribution value of 59.73% in spring. The contribution value of the increase in wetting conditions (precipitation or soil moisture) to vegetation growth was 48.46% in northern Central Asia, but the contribution value of the increase in warming conditions to vegetation degradation was 59.49% in Ustyurt Upland and the Aral Sea basin in autumn. However, the increase in warming conditions facilitated irrigation vegetation growth, with a contribution value of 59.86% in winter. The increasing potential evapotranspiration was the main factor affecting vegetation degradation in the Kyzylkum Desert and Karakum Desert during the annual, growing season, and autumn examination periods. Precipitation and soil moisture played decisive roles in vegetation dynamics in northern Central Asia during the growing season, summer, and autumn. This research provides reference information for ecological restoration in Central Asia. Full article
(This article belongs to the Section Land–Climate Interactions)
Show Figures

Figure 1

15 pages, 6824 KiB  
Article
Water Limitation in Forest Soils Regulates the Increase in Weathering Rates under Climate Change
by Salim Belyazid, Cecilia Akselsson and Giuliana Zanchi
Forests 2022, 13(2), 310; https://doi.org/10.3390/f13020310 - 14 Feb 2022
Cited by 5 | Viewed by 2565
Abstract
Climate change is generally expected to have a positive effect on weathering rates, due to the strong temperature dependence of the weathering process. Important feedback mechanisms such as changes in soil moisture, tree growth and organic matter decomposition can affect the response of [...] Read more.
Climate change is generally expected to have a positive effect on weathering rates, due to the strong temperature dependence of the weathering process. Important feedback mechanisms such as changes in soil moisture, tree growth and organic matter decomposition can affect the response of weathering rates to climate change. In this study, the dynamic forest ecosystem model ForSAFE, with mechanistic descriptions of tree growth, organic matter decomposition, weathering, hydrology and ion exchange processes, is used to investigate the effects of future climate scenarios on base cation weathering rates. In total, 544 productive coniferous forest sites from the Swedish National Forest Inventory are modelled, and differences in weathering responses to changes in climate from two Global Climate Models are investigated. The study shows that weathering rates at the simulated sites are likely to increase, but not to the extent predicted by a direct response to elevated air temperatures. Besides the result that increases in soil temperatures are less evident than those in air temperature, the study shows that soil moisture availability has a strong potential to limit the expected response to increased temperature. While changes in annual precipitation may not indicate further risk for more severe water deficits, seasonal differences show a clear difference between winters and summers. Taking into account the seasonal variation, the study shows that reduced soil water availability in the summer seasons will strongly limit the expected gain in weathering associated with higher temperatures. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

13 pages, 2923 KiB  
Article
Soil Moisture-Boundary Layer Feedbacks on the Loess Plateau in China Using Radiosonde Data with 1-D Atmospheric Boundary Layer Model
by Yingsai Ma, Xianhong Meng, Yinhuan Ao, Ye Yu, Guangwei Li, Shihua Lyu, Jianglin Li and Jie Xu
Atmosphere 2021, 12(12), 1619; https://doi.org/10.3390/atmos12121619 - 4 Dec 2021
Viewed by 2446
Abstract
The Loess Plateau is one land-atmosphere coupling hotspot. Soil moisture has an influence on atmospheric boundary layer development under specific early-morning atmospheric thermodynamic structures. This paper investigates the sensitivity of atmospheric convection to soil moisture conditions over the Loess Plateau in China by [...] Read more.
The Loess Plateau is one land-atmosphere coupling hotspot. Soil moisture has an influence on atmospheric boundary layer development under specific early-morning atmospheric thermodynamic structures. This paper investigates the sensitivity of atmospheric convection to soil moisture conditions over the Loess Plateau in China by using the convective triggering potential (CTP)—humidity index (HIlow) framework. The CTP indicates atmospheric stability and the HIlow indicates atmospheric humidity in the low-level atmosphere. By comparing the model outcomes with the observations, the one-dimensional model achieves realistic daily behavior of the radiation and surface heat fluxes and the mixed layer properties with appropriate modifications. New CTP-HIlow thresholds for soil moisture-atmosphere feedbacks are found in the Loess Plateau area. By applying the new thresholds with long-time scales sounding data, we conclude that negative feedback is dominant in the north and west portion of the Loess Plateau; positive feedback is predominant in the south and east portion. In general, this framework has predictive significance for the impact of soil moisture on precipitation. By using this new CTP-HIlow framework, we can determine under what atmospheric conditions soil moisture can affect the triggering of precipitation and under what atmospheric conditions soil moisture has no influence on the triggering of precipitation. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

18 pages, 5057 KiB  
Article
Stability of Ecosystem CO2 Flux in Response to Changes in Precipitation in a Semiarid Grassland
by Kaiqiang Bao, Haifeng Tian, Min Su, Liping Qiu, Xiaorong Wei, Yanjiang Zhang, Jian Liu, Hailong Gao and Jimin Cheng
Sustainability 2019, 11(9), 2597; https://doi.org/10.3390/su11092597 - 6 May 2019
Cited by 11 | Viewed by 3681
Abstract
Carbon dioxide (CO2) flux provides feedback between C cycling and the climatic system. There is considerable uncertainty regarding the direction and magnitude of the responses of this process to precipitation changes, hindering accurate prediction of C cycling in a changing world. [...] Read more.
Carbon dioxide (CO2) flux provides feedback between C cycling and the climatic system. There is considerable uncertainty regarding the direction and magnitude of the responses of this process to precipitation changes, hindering accurate prediction of C cycling in a changing world. We examined the responses of ecosystem CO2 flux to ambient precipitation and experimentally decreased (−35%) and increased precipitation (+20%) in a semiarid grassland in China between July 2013 and September 2015. The measured CO2 flux components included the gross ecosystem productivity (GEP), net ecosystem CO2 exchange (NEE), ecosystem respiration (Re), and soil respiration (Rs). The results showed that the seasonal and diurnal patterns of most components of ecosystem CO2 flux were minimally affected by precipitation treatments, with less than 4% changes averaged across the three growing seasons. GEP and NEE had a quadratic relationship, while Re and Rs increased exponentially with soil temperature. GEP, RE, and Rs, however, decreased with soil moisture. Decreased precipitation reduced the dependence of CO2 flux on soil temperature but partly increased the dependence on soil moisture; in contrast, increased precipitation had the opposite influence. Our results suggested a relatively stable CO2 flux in this semiarid grassland across the tested precipitation regimes. Full article
Show Figures

Figure 1

Back to TopTop