Population and GDP Exposure to Extreme Precipitation Events on Loess Plateau under the 1.5 °C Global Warming Level
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Define of Extreme Precipitation
2.3.2. Frequency
2.3.3. Areal Coverage
2.3.4. Population and GDP Exposure to Extreme Precipitation Events
3. Results
3.1. Spatial and Temporal Patterns of Extreme Precipitation Events
3.2. Population Exposure to Extreme Precipitation Events
3.3. GDP Exposure to Extreme Precipitation Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, NY, USA, 2014; pp. 5–6. [Google Scholar]
- Sun, H.; Wang, A.; Zhai, J.; Huang, J.; Wang, Y.; Wen, S.; Zeng, X.; Su, B. Impacts of global warming of 1.5 °C and 2.0 °C on precipitation patterns in China by regional climate model (COSMO-CLM). Atmos. Res. 2017, 203, 83–94. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, W.; Zhang, L.; Zhang, X.; Qian, Y.; Peng, D.; Shuangmei, M.A.; Dong, B. The dynamic and thermodynamic processes dominating the reduction of global land monsoon precipitation driven by anthropogenic aerosols emission. Sci. China (Earth Sci.) 2020, 63, 25–39. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, NY, USA, 2013; pp. 2–5. [Google Scholar]
- Ju, J.; Wu, C.; Yeh, J.F.; Dai, H.; Hu, B.X. Global precipitation-related extremes at 1.5 °C and 2 °C of global warming targets: Projection and uncertainty assessment based on the CESM-LWR experiment. Atmos. Res. 2021, 264, 105868. [Google Scholar] [CrossRef]
- Min, S.K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Freitas, E.D. Recent intensification of extreme precipitation events in the La Plata Basin in Southern South America (1981–2018). Atmos. Res. 2020, 249, 105299. [Google Scholar]
- Michel, C.; Sorteberg, A.; Eckhardt, S.; Weijenborg, C.; Cassiani, M. Characterization of the atmospheric environment during extreme precipitation events associated with atmospheric rivers in Norway—Seasonal and regional aspects. Weather Clim. Extrem. 2021, 34, 100370. [Google Scholar] [CrossRef]
- Roy, S.S.; Rouault, M. Spatial patterns of seasonal scale trends in extreme hourly precipitation in South Africa. Appl. Geogr. 2013, 39, 151–157. [Google Scholar]
- Cavalcanti, I.F.D.A.; Marengo, J.A.; Alves, L.M.; Costa, D.F. On the opposite relation between extreme precipitation over west Amazon and southeastern Brazil: Observations and model simulations. Int. J. Climatol. J. R. Meteorol. Soc. 2017, 37, 3606–3618. [Google Scholar] [CrossRef]
- Aleshina, M.; Semenov, V.A.; Chernokulsky, A. A link between surface air temperature and extreme precipitation over Russia from station and reanalysis data. Environ. Res. Lett. 2021, 16, 105004. [Google Scholar] [CrossRef]
- Das, S.; Kamruzzaman, M.; Islam, A.R.M.T. Assessment of characteristic changes of regional estimation of extreme rainfall under climate change: A case study in a tropical monsoon region with the climate projections from CMIP6 model. J. Hydrol. 2022, 610, 128002. [Google Scholar] [CrossRef]
- Sun, J.Q.; Ao, J. Changes in precipitation and extreme precipitation in a warming environment in China. Chin. Sci. Bull. 2013, 58, 1395–1401. [Google Scholar] [CrossRef]
- Iyakaremye, V.; Zeng, G.; Ullah, I.; Gahigi, A.; Mumo, R.; Ayugi, B. Recent observed changes in extreme high-temperature events and associated meteorological conditions over Africa. Int. J. Climatol. 2022, 42, 4522–4537. [Google Scholar] [CrossRef]
- Zhan, M.; Zhai, J.; Sun, H.; Li, X.; Xia, L. Observed Exposure of Population and Gross Domestic Product to Extreme Precipitation Events in the Poyang Lake Basin, China. Atmosphere 2019, 10, 817. [Google Scholar] [CrossRef]
- Shi, X.; Chen, J.; Gu, L.; Xu, C.-Y.; Chen, H.; Zhang, L. Impacts and socioeconomic exposures of global extreme precipitation events in 1.5 and 2.0 °C warmer climates. Sci. Total Environ. 2021, 766, 142665. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J. Future global socioeconomic risk to droughts based on estimates of hazard, exposure, and vulnerability in a changing climate. Sci. Total Environ. 2020, 751, 142159. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.-T.; Su, B.-D.; Wang, Y.-J.; Tao, H.; Jiang, T. Population exposure to precipitation extremes in the Indus River Basin at 1.5 °C, 2.0 °C and 3.0 °C warming levels. Adv. Clim. Chang. Res. 2021, 12, 199–209. [Google Scholar] [CrossRef]
- UNFCCC. Adoption of the Paris Agreement. In Proceedings of the Twenty-First Session of the Conference of the Parties, Paris, France, 30 November–13 December 2015. UN Doc No. FCCC/CP/2015/L9/Rev.1. [Google Scholar]
- Chen, J.; Liu, Y.; Pan, T.; Liu, Y.; Sun, F.; Ge, Q. Population exposure to droughts in china under the 1.5 °C global warming target. Earth Syst. Dyn. 2019, 9, 1097–1106. [Google Scholar] [CrossRef]
- Ma, F.; Yuan, X. Impact of climate and population changes on the increasing exposure to summertime compound hot extremes. Sci. Total Environ. 2021, 772, 145004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhou, T.; Zou, L.; Zhang, L.; Chen, X. Reduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regions. Nat. Commun. 2018, 9, 1–8. [Google Scholar]
- Gu, L.; Chen, J.; Yin, J.; Sullivan, S.C.; Wang, H.-M.; Guo, S.; Zhang, L.; Kim, J.-S. Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2 C warmer climates. Hydrol. Earth Syst. Sci. 2020, 24, 451–472. [Google Scholar] [CrossRef]
- Mondal, S.K.; Huang, J.; Wang, Y.; Su, B.; Zhai, J.; Tao, H.; Wang, G.; Fischer, T.; Wen, S.; Jiang, T. Doubling of the population exposed to drought over South Asia: CMIP6 multi-model-based analysis. Sci. Total Environ. 2021, 771, 145186. [Google Scholar] [CrossRef] [PubMed]
- Almazroui, M.; Islam, M.N. Coupled Model Inter-comparison Project Database to Calculate Drought Indices for Saudi Arabia: A Preliminary Assessment. Earth Syst. Environ. 2019, 3, 419–428. [Google Scholar] [CrossRef]
- Su, C.; Fu, B. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes. Glob. Planet. Chang. 2013, 101, 119–128. [Google Scholar] [CrossRef]
- Duan, Q.; Miao, C.; Sun, Q.; Wang, Y. Joint analysis of changes in temperature and precipitation on the Loess Plateau during the period 1961–2011. Clim. Dyn. Obs. Theor. Comput. Res. Clim. Syst. 2016, 47, 3221–3234. [Google Scholar]
- Su, B.; Huang, J.; Mondal, S.K.; Zhai, J.; Jza, B.; Yw, A.; Sw, A.; Mg, A.; Yl, A.; Shan, J.D.; et al. Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China—ScienceDirect. Atmos. Res. 2020, 250, 105375. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Fischer, T.; Wang, Y.; Kundzewicz, Z.W.; Zhai, J.; Sun, H.; Wang, A.; Zeng, X.; Wang, G. Drought losses in China might double between the 1.5 °C and 2.0 °C warming. Proc. Natl. Acad. Sci. USA 2018, 115, 10600–10605. [Google Scholar] [CrossRef]
- Huang, J.; Mondal, S.K.; Zhai, J.; Fischer, T.; Wang, Y.; Su, B.; Wang, G.; Gao, M.; Jiang, S.; Tao, H. Intensity-area-duration-based drought analysis under 1.5 °C–4.0 °C warming using CMIP6 over a climate hotspot in South Asia. J. Clean. Prod. 2022, 345, 131106. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, Z.; Li, L. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6. Sci. Bull. 2021, 66, 2528–2537. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Choy, S.; Jiang, C.; Wu, S.; Zhang, J.; Qiu, C.; Zhou, K.; Li, L.; Fu, E. Detecting heavy rainfall using anomaly-based percentile thresholds of predictors derived from GNSS-PWV. Atmos. Res. 2022, 265, 105912. [Google Scholar] [CrossRef]
- Pińskwar, I. Complex changes of extreme precipitation in the warming climate of Poland. Int. J. Climatol. 2022, 42, 817–833. [Google Scholar] [CrossRef]
- Olmo, M.E.; Bettolli, M.L. Statistical downscaling of daily precipitation over southeastern South America: Assessing the performance in extreme events. Int. J. Climatol. 2022, 42, 1283–1302. [Google Scholar] [CrossRef]
- Mondal, S.K.; Huang, J.; Wang, Y.; Su, B.; Kundzewicz, Z.W.; Jiang, S.; Zhai, J.; Chen, Z.; Jing, C.; Jiang, T. Changes in extreme precipitation across South Asia for each 0.5 °C of warming from 1.5 °C to 3.0 °C above pre-industrial levels. Atmos. Res. 2022, 266, 105961. [Google Scholar] [CrossRef]
- Zhou, T.; Lu, J.; Zhang, W.; Chen, Z. The sources of uncertainty in the projection of global land monsoon precipitation. Geophys. Res. Lett. 2020, 47, e2020GL088415. [Google Scholar] [CrossRef]
- Li, S.; Otto, F.E.; Harrington, L.J.; Sparrow, S.N.; Wallom, D.C. A pan-South-America assessment of avoided exposure to dangerous extreme precipitation by limiting to 1.5 °C warming. Environ. Res. Lett. 2020, 15, 054005. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Wang, Y.-J.; Jiang, T. Spatial-temporal Characteristics of Exposure and Vulnerability to Flood Disaster in Jiangsu Province. J. Yangtze River Sci. Res. Inst. 2016, 33, 27–32. [Google Scholar]
Model Number | Model Name | Modeling Center and Country | Resolution (Lat × Lon) |
---|---|---|---|
1 | BCC-CSM2-MR | Beijing Climate Center, China Meteorological Administration (China) | 1.125° × 1.125° |
2 | BCC-ESM1 | Beijing Climate Center, China Meteorological Administration (China) | 2.8° × 2.8° |
3 | CNRM-CM6-1 | National Centre for Meteorological Research-European Centre for Advanced Research and Training in Scientific Computing (France) | 1.4° × 1.4° |
4 | CNRM-ESM2-1 | National Centre for Meteorological Research-European Centre for Advanced Research and Training in Scientific Computing (France) | 1.4° × 1.4° |
5 | EC-Earth3-Veg | EC-EARTH consortium | 0.7° × 0.7° |
6 | GFDL-CM4 | NOAA Geophysical Fluid Dynamics Laboratory (USA) | 1° × 1.25° |
7 | GFDL-ESM4 | NOAA Geophysical Fluid Dynamics Laboratory (USA) | 1° × 1.25° |
8 | IPSL-CM6A-LR | PierrcSimon Laplace Institute (France) | 1.26° × 2.5° |
9 | MRI-ESM2-0 | Meteorological Research Institute (Japan) | 1.125° × 1.125° |
10 | NESM3 | Nanjing University of Information Science and Technology (China) | 1.875° × 1.875° |
11 | SAM0-UNICON | Seoul National University (Republic of Korea) | 0.94° × 1.25° |
12 | UKESML-0-LL | Met Office Hadley Centre (UK) | 1.25° × 1.875° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ta, Z.; Li, K.; Han, H.; Jin, Q. Population and GDP Exposure to Extreme Precipitation Events on Loess Plateau under the 1.5 °C Global Warming Level. Atmosphere 2022, 13, 1423. https://doi.org/10.3390/atmos13091423
Ta Z, Li K, Han H, Jin Q. Population and GDP Exposure to Extreme Precipitation Events on Loess Plateau under the 1.5 °C Global Warming Level. Atmosphere. 2022; 13(9):1423. https://doi.org/10.3390/atmos13091423
Chicago/Turabian StyleTa, Zhijie, Kaiyu Li, Hongzhu Han, and Qian Jin. 2022. "Population and GDP Exposure to Extreme Precipitation Events on Loess Plateau under the 1.5 °C Global Warming Level" Atmosphere 13, no. 9: 1423. https://doi.org/10.3390/atmos13091423
APA StyleTa, Z., Li, K., Han, H., & Jin, Q. (2022). Population and GDP Exposure to Extreme Precipitation Events on Loess Plateau under the 1.5 °C Global Warming Level. Atmosphere, 13(9), 1423. https://doi.org/10.3390/atmos13091423