Relationship between Land Use and Spatial Variability of Atmospheric Brown Carbon and Black Carbon Aerosols in Amazonia
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Contribution of BC and BrC to the Aerosol Optical Properties
3.2. Carbonaceous Aerosol Mixture at the Amazonian Sites
3.3. Land Use and Cover at the Brazilian Amazonian AERONET Sites
3.4. Connections between Aerosol Optical Properties, BC/BrC Fractions, and Land Use at the Brazilian Amazonian Sites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pörtner, H.-O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; in press; ISBN 978-92-9169-159-3. [Google Scholar]
- Feng, Y.; Ramanathan, V.; Kotamarthi, V.R. Brown Carbon: A Significant Atmospheric Absorber of Solar Radiation? Atmos. Chem. Phys. 2013, 13, 8607–8621. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, Ö.; Ramanathan, V. Convergence on Climate Warming by Black Carbon Aerosols. Proc. Natl. Acad. Sci. USA 2016, 113, 4243–4245. [Google Scholar] [CrossRef] [Green Version]
- Boucher, O. Atmospheric Aerosols; Springer: Dordrecht, The Netherlands, 2015; ISBN 978-94-017-9648-4. [Google Scholar]
- Artaxo, P.; Hansson, H.-C.; Andreae, M.O.; Bäck, J.; Alves, E.G.; Barbosa, H.M.J.; Bender, F.; Bourtsoukidis, E.; Carbone, S.; Chi, J.; et al. Tropical and Boreal Forest–Atmosphere Interactions: A Review. Tellus B Chem. Phys. Meteorol. 2022, 74, 24–163. [Google Scholar] [CrossRef]
- Andreae, M.O.; Gelencsér, A. Black Carbon or Brown Carbon? The Nature of Light-Absorbing Carbonaceous Aerosols. Atmos. Chem. Phys. 2006, 6, 3131–3148. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Bergstrom, R.W. Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol Sci. Technol. 2006, 40, 27–67. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment: Black carbon in the climate system. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Holanda, B.A.; Pöhlker, M.L.; Saturno, J.; Sörgel, M.; Ditas, J.; Ditas, F.; Wang, Q.; Donth, T.; Artaxo, P.; Barbosa, H.M.J.; et al. Influx of African Biomass Burning Aerosol during the Amazonian Dry Seasonthrough Layered Transatlantic Transport. of Black Carbon-Rich Smoke. Atmos. Chem. Phys. 2020, 20, 4757–4785. [Google Scholar] [CrossRef] [Green Version]
- Hoffer, A.; Gelencsér, A.; Guyon, P.; Kiss, G.; Schmid, O.; Frank, G.P.; Artaxo, P.; Andreae, M.O. Optical Properties of Humic-like Substances (HULIS) in Biomass-Burning Aerosols. Atmos. Chem. Phys. 2006, 6, 3563–3570. [Google Scholar] [CrossRef] [Green Version]
- Moschos, V.; Kumar, N.K.; Daellenbach, K.R.; Baltensperger, U.; Prévôt, A.S.H.; El Haddad, I. Source Apportionment of Brown Carbon Absorption by Coupling Ultraviolet–Visible Spectroscopy with Aerosol Mass Spectrometry. Environ. Sci. Technol. Lett. 2018, 5, 302–308. [Google Scholar] [CrossRef]
- Soleimanian, E.; Mousavi, A.; Taghvaee, S.; Shafer, M.M.; Sioutas, C. Impact of Secondary and Primary Particulate Matter (PM) Sources on the Enhanced Light Absorption by Brown Carbon (BrC) Particles in Central Los Angeles. Sci. Total Environ. 2020, 705, 135902. [Google Scholar] [CrossRef]
- Wu, C.; Wang, G.; Li, J.; Li, J.; Cao, C.; Ge, S.; Xie, Y.; Chen, J.; Li, X.; Xue, G.; et al. The Characteristics of Atmospheric Brown Carbon in Xi’an, Inland China: Sources, Size Distributions and Optical Properties. Atmos. Chem. Phys. 2020, 20, 2017–2030. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Wang, X.; Gong, P.; Wang, C.; Cong, Z. Review of Brown Carbon Aerosols: Recent Progress and Perspectives. Sci. Total Environ. 2018, 634, 1475–1485. [Google Scholar] [CrossRef] [PubMed]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Li, J.; Carlson, B.E.; Dubovik, O.; Lacis, A.A. Recent Trends in Aerosol Optical Properties Derived from AERONET Measurements. Atmos. Chem. Phys. 2014, 14, 12271–12289. [Google Scholar] [CrossRef] [Green Version]
- Eck, T.F.; Holben, B.N.; Dubovik, O.; Smirnov, A.; Goloub, P.; Chen, H.B.; Chatenet, B.; Gomes, L.; Zhang, X.-Y.; Tsay, S.-C.; et al. Columnar Aerosol Optical Properties at AERONET Sites in Central Eastern Asia and Aerosol Transport to the Tropical Mid-Pacific: Aerosol in asia and the mid-pacific. J. Geophys. Res. 2005, 110, D06202. [Google Scholar] [CrossRef]
- Saatchi, S.; Longo, M.; Xu, L.; Yang, Y.; Abe, H.; André, M.; Aukema, J.E.; Carvalhais, N.; Cadillo-Quiroz, H.; Cerbu, G.A.; et al. Detecting Vulnerability of Humid Tropical Forests to Multiple Stressors. One Earth 2021, 4, 988–1003. [Google Scholar] [CrossRef]
- Artaxo, P.; Rizzo, L.V.; Brito, J.F.; Barbosa, H.M.J.; Arana, A.; Sena, E.T.; Cirino, G.G.; Bastos, W.; Martin, S.T.; Andreae, M.O. Atmospheric Aerosols in Amazonia and Land Use Change: From Natural Biogenic to Biomass Burning Conditions. Faraday Discuss. 2013, 165, 203. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.M.; Z. Shimbo, J.; Rosa, M.R.; Parente, L.L.; A. Alencar, A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; G. Ferreira, L.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Wang, X.; Heald, C.L.; Sedlacek, A.J.; de Sá, S.S.; Martin, S.T.; Alexander, M.L.; Watson, T.B.; Aiken, A.C.; Springston, S.R.; Artaxo, P. Deriving Brown Carbon from Multiwavelength Absorption Measurements: Method and Application to AERONET and Aethalometer Observations. Atmos. Chem. Phys. 2016, 16, 12733–12752. [Google Scholar] [CrossRef] [Green Version]
- Cazorla, A.; Bahadur, R.; Suski, K.J.; Cahill, J.F.; Chand, D.; Schmid, B.; Ramanathan, V.; Prather, K.A. Relating Aerosol Absorption Due to Soot, Organic Carbon, and Dust to Emission Sources Determined from in-Situ Chemical Measurements. Atmos. Chem. Phys. 2013, 13, 9337–9350. [Google Scholar] [CrossRef] [Green Version]
- Carrero, G.C.; Fearnside, P.M.; do Valle, D.R.; de Souza Alves, C. Deforestation Trajectories on a Development Frontier in the Brazilian Amazon: 35 Years of Settlement Colonization, Policy and Economic Shifts, and Land Accumulation. Environ. Manag. 2020, 66, 966–984. [Google Scholar] [CrossRef] [PubMed]
- Palácios, R.D.S.; Morais, F.G.; Landulfo, E.; Franco, M.A.D.M.; Kuhnen, I.A.; Marques, J.B.; Nogueira, J.D.S.; Júnior, L.C.G.D.V.; Rodrigues, T.R.; Romera, K.S.; et al. Long Term Analysis of Optical and Radiative Properties of Aerosols in the Amazon Basin. Aerosol Air Qual. Res. 2020, 20, 139–154. [Google Scholar] [CrossRef] [Green Version]
- Russell, P.B.; Bergstrom, R.W.; Shinozuka, Y.; Clarke, A.D.; DeCarlo, P.F.; Jimenez, J.L.; Livingston, J.M.; Redemann, J.; Dubovik, O.; Strawa, A. Absorption Angstrom Exponent in AERONET and Related Data as an Indicator of Aerosol Composition. Atmos. Chem. Phys. 2010, 10, 1155–1169. [Google Scholar] [CrossRef] [Green Version]
- Schkolnik, G.; Chand, D.; Hoffer, A.; Andreae, M.O.; Erlick, C.; Swietlicki, E.; Rudich, Y. Constraining the Density and Complex Refractive Index of Elemental and Organic Carbon in Biomass Burning Aerosol Using Optical and Chemical Measurements. Atmos. Environ. 2007, 41, 1107–1118. [Google Scholar] [CrossRef]
- Saturno, J.; Holanda, B.A.; Pöhlker, C.; Ditas, F.; Wang, Q.; Moran-Zuloaga, D.; Brito, J.; Carbone, S.; Cheng, Y.; Chi, X.; et al. Black and Brown Carbon over Central Amazonia: Long-Term Aerosol Measurements at the ATTO Site. Atmos. Chem. Phys. 2018, 18, 12817–12843. [Google Scholar] [CrossRef] [Green Version]
- Ponczek, M.; Franco, M.A.; Carbone, S.; Rizzo, L.V.; Monteiro dos Santos, D.; Morais, F.G.; Duarte, A.; Barbosa, H.M.J.; Artaxo, P. Linking the Chemical Composition and Optical Properties of Biomass Burning Aerosols in Amazonia. Environ. Sci. Atmos. 2022, 2, 252–269. [Google Scholar] [CrossRef]
- Cappa, C.D.; Kolesar, K.R.; Zhang, X.; Atkinson, D.B.; Pekour, M.S.; Zaveri, R.A.; Zelenyuk, A.; Zhang, Q. Understanding the Optical Properties of Ambient Sub- and Supermicron Particulate Matter: Results from the CARES 2010 Field Study in Northern California. Atmos. Chem. Phys. 2016, 16, 6511–6535. [Google Scholar] [CrossRef] [Green Version]
- Palácios, R.D.S.; Artaxo, P.; Cirino, G.G.; Nakale, V.; Morais, F.G.D.; Rothmund, L.D.; Biudes, M.S.; Machado, N.G.; Curado, L.F.A.; Marques, J.B.; et al. Long-Term Measurements of Aerosol Optical Properties and Radiative Forcing (2011-2017) over Central Amazonia. Atmósfera 2022, 35, 143–163. [Google Scholar] [CrossRef]
- Fu, R.; Yin, L.; Li, W.; Arias, P.A.; Dickinson, R.E.; Huang, L.; Chakraborty, S.; Fernandes, K.; Liebmann, B.; Fisher, R.; et al. Increased Dry-Season Length over Southern Amazonia in Recent Decades and Its Implication for Future Climate Projection. Proc. Natl. Acad. Sci. USA 2013, 110, 18110–18115. [Google Scholar] [CrossRef] [Green Version]
- Nolte, C.; Agrawal, A.; Silvius, K.M.; Soares-Filho, B.S. Governance Regime and Location Influence Avoided Deforestation Success of Protected Areas in the Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2013, 110, 4956–4961. [Google Scholar] [CrossRef] [Green Version]
- Conceição, K.V.; Chaves, M.E.D.; Picoli, M.C.A.; Sánchez, A.H.; Soares, A.R.; Mataveli, G.A.V.; Silva, D.E.; Costa, J.S.; Camara, G. Government Policies Endanger the Indigenous Peoples of the Brazilian Amazon. Land Use Policy 2021, 108, 105663. [Google Scholar] [CrossRef]
- Brunel, M.; Rammig, A.; Furquim, F.; Overbeck, G.; Barbosa, H.M.J.; Thonicke, K.; Rolinski, S. When Do Farmers Burn Pasture in Brazil: A Model-Based Approach to Determine Burning Date. Rangel. Ecol. Manag. 2021, 79, 110–125. [Google Scholar] [CrossRef]
- Pöhlker, M.L.; Pöhlker, C.; Ditas, F.; Klimach, T.; Hrabe de Angelis, I.; Araújo, A.; Brito, J.; Carbone, S.; Cheng, Y.; Chi, X.; et al. Long-Term Observations of Cloud Condensation Nuclei in the Amazon Rain Forest–Part 1: Aerosol Size Distribution, Hygroscopicity, and New Model Parametrizations for CCN Prediction. Atmos. Chem. Phys. 2016, 16, 15709–15740. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Acevedo, O.C.; Araùjo, A.; Artaxo, P.; Barbosa, C.G.G.; Barbosa, H.M.J.; Brito, J.; Carbone, S.; Chi, X.; Cintra, B.B.L.; et al. The Amazon Tall Tower Observatory (ATTO): Overview of Pilot Measurements on Ecosystem Ecology, Meteorology, Trace Gases, and Aerosols. Atmos. Chem. Phys. 2015, 15, 10723–10776. [Google Scholar] [CrossRef] [Green Version]
- Amaral, D.F.; de Souza Ferreira Filho, J.B.; Chagas, A.L.S.; Adami, M. Expansion of Soybean Farming into Deforested Areas in the Amazon Biome: The Role and Impact of the Soy Moratorium. Sustain. Sci. 2021, 16, 1295–1312. [Google Scholar] [CrossRef]
- Pöhlker, C.; Walter, D.; Paulsen, H.; Könemann, T.; Rodríguez-Caballero, E.; Moran-Zuloaga, D.; Brito, J.; Carbone, S.; Degrendele, C.; Després, V.R.; et al. Land Cover and Its Transformation in the Backward Trajectory Footprint Region of the Amazon Tall Tower Observatory. Atmos. Chem. Phys. 2019, 19, 8425–8470. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, J.P.; Bela, M.M.; Meller, B.B.; Banducci, A.L.; Rizzo, L.V.; Vara-Vela, A.L.; Barbosa, H.M.J.; Gomes, H.; Rafee, S.A.A.; Franco, M.A.; et al. Aerosols from Anthropogenic and Biogenic Sources and Their Interactions–Modeling Aerosol Formation, Optical Properties, and Impacts over the Central Amazon Basin. Atmos. Chem. Phys. 2021, 21, 6755–6779. [Google Scholar] [CrossRef]
- Nascimento, J.P.; Barbosa, H.M.J.; Banducci, A.L.; Rizzo, L.V.; Vara-Vela, A.L.; Meller, B.B.; Gomes, H.; Cezar, A.; Franco, M.A.; Ponczek, M.; et al. Major Regional-Scale Production of O 3 and Secondary Organic Aerosol in Remote Amazon Regions from the Dynamics and Photochemistry of Urban and Forest Emissions. Environ. Sci. Technol. 2022, 56, 9924–9935. [Google Scholar] [CrossRef] [PubMed]
- Franco, M.A.; Ditas, F.; Kremper, L.A.; Machado, L.A.T.; Andreae, M.O.; Araújo, A.; Barbosa, H.M.J.; de Brito, J.F.; Carbone, S.; Holanda, B.A.; et al. Occurrence and Growth of Sub-50 Nm Aerosol Particles in the Amazonian Boundary Layer. Atmos. Chem. Phys. 2022, 22, 3469–3492. [Google Scholar] [CrossRef]
- Silva Junior, C.H.L.; Pessôa, A.C.M.; Carvalho, N.S.; Reis, J.B.C.; Anderson, L.O.; Aragão, L.E.O.C. The Brazilian Amazon Deforestation Rate in 2020 Is the Greatest of the Decade. Nat. Ecol. Evol 2021, 5, 144–145. [Google Scholar] [CrossRef]
- Amigo, I. When Will the Amazon Hit a Tipping Point? Nature 2020, 578, 505–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves de Oliveira, B.F.; Bottino, M.J.; Nobre, P.; Nobre, C.A. Deforestation and Climate Change Are Projected to Increase Heat Stress Risk in the Brazilian Amazon. Commun. Earth Environ. 2021, 2, 207. [Google Scholar] [CrossRef]
- Boers, N.; Marwan, N.; Barbosa, H.M.J.; Kurths, J. A Deforestation-Induced Tipping Point for the South American Monsoon System. Sci. Rep. 2017, 7, 41489. [Google Scholar] [CrossRef]
- Saatchi, S.; Asefi-Najafabady, S.; Malhi, Y.; Aragão, L.E.O.C.; Anderson, L.O.; Myneni, R.B.; Nemani, R. Persistent Effects of a Severe Drought on Amazonian Forest Canopy. Proc. Natl. Acad. Sci. USA 2013, 110, 565–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatti, L.V.; Basso, L.S.; Miller, J.B.; Gloor, M.; Gatti Domingues, L.; Cassol, H.L.G.; Tejada, G.; Aragão, L.E.O.C.; Nobre, C.; Peters, W.; et al. Amazonia as a Carbon Source Linked to Deforestation and Climate Change. Nature 2021, 595, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Boulton, C.A.; Lenton, T.M.; Boers, N. Pronounced Loss of Amazon Rainforest Resilience since the Early 2000s. Nat. Clim. Chang. 2022, 12, 271–278. [Google Scholar] [CrossRef]
Site (Period) | AOD500 nm, wet | AOD500 nm, dry | AAOD440 nm, wet | AAOD440 nm, dry |
---|---|---|---|---|
Alta Floresta (1999–2021) | 0.08 ± 0.06 | 0.49 ± 0.64 | 0.0081 ± 0.0079 | 0.035 ± 0.040 |
Ji-Paraná (2006–2021) | 0.08 ± 0.04 | 0.43 ± 0.56 | 0.0069 ± 0.0062 | 0.029 ± 0.033 |
Rio Branco (2000–2021) | 0.10 ± 0.05 | 0.39 ± 0.46 | 0.0150 ± 0.0130 | 0.040 ± 0.043 |
Cuiabá (2001–2021) | 0.10 ± 0.09 | 0.39 ± 0.48 | 0.0140 ± 0.0170 | 0.040 ± 0.046 |
Manaus (2011–2019) | 0.11 ± 0.07 | 0.26 ± 0.21 | 0.0079 ± 0.0094 | 0.015 ± 0.016 |
ATTO (2016–2021) | 0.13 ± 0.09 | 0.19 ± 0.11 | 0.0066 ± 0.0098 | 0.015 ± 0.018 |
Site | AAOD BrCwet % BrCwet | AAOD BrCdry % BrCdry | AAOD BCwet % BCwet | AAOD BCdry % BCdry |
---|---|---|---|---|
Alta Floresta | 0.0015 ± 0.0016 10% | 0.0063 ± 0.0071 9% | 0.0073 ± 0.0077 90% | 0.033 ± 0.039 91% |
Ji-Paraná | 0.0021 ± 0.0021 16% | 0.0053 ± 0.0055 11% | 0.0068 ± 0.0066 84% | 0.028 ± 0.033 89% |
Rio Branco | 0.0047 ± 0.0042 20% | 0.0080 ± 0.0074 11% | 0.012 ± 0.011 80% | 0.037 ± 0.041 89% |
Cuiabá | 0.0031 ± 0.0034 13% | 0.0092 ± 0.0097 15% | 0.014 ± 0.018 87% | 0.035 ± 0.040 85% |
Manaus | 0.0026 ± 0.0045 22% | 0.0058 ± 0.0056 24% | 0.0055 ± 0.0083 78% | 0.012 ± 0.013 76% |
ATTO | 0.0033 ± 0.0066 27% | 0.0060 ± 0.0075 25% | 0.0046 ± 0.0078 73% | 0.014 ± 0.016 75% |
Site | % Forest (2020) | % LossForest (1985–2020) | % Agricultural (2020) | % GainAgricultural (1985–2020) | % Non-Forested Natural Formation (2020) |
---|---|---|---|---|---|
Alta Floresta | 46.59 | 38.92 | 51.73 | 38.45 | 0.23 |
Ji-Paraná | 64.73 | 13.54 | 33.34 | 13.51 | 0.63 |
Rio Branco | 67.62 | 21.62 | 30.62 | 21.10 | 1.08 |
Cuiabá | 61.43 | 14.83 | 30.03 | 12.83 | 5.80 |
Manaus | 80.44 | 0.35 | 3.14 | 0.21 | 0.48 |
ATTO | 92.91 | 0.66 | 1.18 | 0.68 | 1.83 |
Site | Forest Loss Rate (ha year−1) | R² | Agricultural Gain Rate (ha year−1) | R² |
---|---|---|---|---|
Cuiabá | 1561 ± 61 | 0.95 | 1367 ± 58 | 0.94 |
Rio Branco | 5530 ± 134 | 0.98 | 5413 ± 134 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, F.G.; Franco, M.A.; Palácios, R.; Machado, L.A.T.; Rizzo, L.V.; Barbosa, H.M.J.; Jorge, F.; Schafer, J.S.; Holben, B.N.; Landulfo, E.; et al. Relationship between Land Use and Spatial Variability of Atmospheric Brown Carbon and Black Carbon Aerosols in Amazonia. Atmosphere 2022, 13, 1328. https://doi.org/10.3390/atmos13081328
Morais FG, Franco MA, Palácios R, Machado LAT, Rizzo LV, Barbosa HMJ, Jorge F, Schafer JS, Holben BN, Landulfo E, et al. Relationship between Land Use and Spatial Variability of Atmospheric Brown Carbon and Black Carbon Aerosols in Amazonia. Atmosphere. 2022; 13(8):1328. https://doi.org/10.3390/atmos13081328
Chicago/Turabian StyleMorais, Fernando G., Marco A. Franco, Rafael Palácios, Luiz A. T. Machado, Luciana V. Rizzo, Henrique M. J. Barbosa, Fabio Jorge, Joel S. Schafer, Brent N. Holben, Eduardo Landulfo, and et al. 2022. "Relationship between Land Use and Spatial Variability of Atmospheric Brown Carbon and Black Carbon Aerosols in Amazonia" Atmosphere 13, no. 8: 1328. https://doi.org/10.3390/atmos13081328
APA StyleMorais, F. G., Franco, M. A., Palácios, R., Machado, L. A. T., Rizzo, L. V., Barbosa, H. M. J., Jorge, F., Schafer, J. S., Holben, B. N., Landulfo, E., & Artaxo, P. (2022). Relationship between Land Use and Spatial Variability of Atmospheric Brown Carbon and Black Carbon Aerosols in Amazonia. Atmosphere, 13(8), 1328. https://doi.org/10.3390/atmos13081328