From Gustiness to Dustiness—The Impact of Wind Gusts on Particulate Matter Emissions in Field Experiments in La Pampa, Argentina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Wind and Dust Measurements
2.3. Derivation of Gusts
3. Results
3.1. Influence of Measuring Intervals on Mean Wind Velocity and Transport Capacity
3.2. Impact of Gust Activity on Particle Uptake
3.3. Wind Speed Variation and Its Impact on Particle Uptake
4. Discussion
Limitations of the New Approach and Scope of Further Investigations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shukla, P.R.; Skea, J.; Buendia, E.C.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, R.; et al. (Eds.) Summary for policymakers. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Knippertz, P.; Stuut, J.-B. Mineral Dust: A Key Player in the Earth System; Springer: Berlin/Heidelberg, Germany, 2014; 509p. [Google Scholar]
- Steinke, I.; Funk, R.; Busse, J.; Iturri, A.; Kirchen, S.; Leue, M. Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina, and Germany. J. Geophys. Res. Atmos. 2016, 121, 13559–13576. [Google Scholar] [CrossRef]
- Testa, B.; Hill, T.C.J.; Marsden, N.A.; Barry, K.R.; Hume, C.C.; Bian, Q.; Uetake, J.; Hare, H.; Perkins, R.J.; Möhler, O.; et al. Ice nucleating particle connections to regional Argentinian land surface emissions and weather during the Cloud, Aerosol, and Complex Terrain Interactions experiment. J. Geophys. Res. Atmos. 2021, 126, e2021JD035186. [Google Scholar] [CrossRef]
- Goossens, D.; Riksen, M. (Eds.) Wind erosion and dust dynamics at the commencement of the 21th century. In Wind Erosion and Dust Dynamics: Observations, Simulations, Modeling; ESW Publications: Wageningen, The Netherlands, 2004; pp. 7–13. [Google Scholar]
- Nerger, R.; Funk, R.; Cordsen, E.; Fohrer, N. Application of a modeling approach to designate soil and soil organic carbon loss to wind erosion on long-term monitoring sites (BDF) in Northern Germany. Aeolian Res. 2017, 25, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Iturri, L.A.; Funk, R.; Leue, M.; Sommer, M.; Buschiazzo, D.E. Wind sorting affects differently the organo-mineral composition of saltating and particulate materials in contrasting texture agricultural soils. Aeolian Res. 2017, 28, 39–49. [Google Scholar] [CrossRef]
- Buschiazzo, D.; Zobeck, T.M.; Abascal, S.A. Wind erosion quantity and quality of an Entic Haplustoll of the semi-arid pampas of Argentina. J. Arid Environ. 2007, 69, 29–39. [Google Scholar] [CrossRef]
- Zárate, M.A.; Tripaldi, A. The aeolian system of central Argentina. Aeolian Res. 2012, 3, 401–417. [Google Scholar] [CrossRef]
- Avecilla, F.; Panebianco, J.E.; Buschiazzo, D.E.; De Oro, L.A. A study on the fragmentation of saltating particles along the fetch distance during wind erosion. Aeolian Res. 2018, 35, 85–93. [Google Scholar] [CrossRef]
- Siegmund, N.; Funk, R.; Koszinsky, S.; Buschiazzo, D.; Sommer, M. Effects of low-scale landscape structures on aeolian transport processes on arable land. Aeolian Res. 2018, 32, 181–191. [Google Scholar] [CrossRef]
- Suomi, I.; Lüpkes, C.; Hartmann, J.; Vihma, T.; Gryning, S.-E.; Fortelius, C. Gust factor based on research aircraft measurements: A new methodology applied to the Arctic marine boundary layer. Q. J. R. Meteorol. Soc. 2016, 142, 2985–3000. [Google Scholar] [CrossRef]
- WMO. Guide to Instruments and Methods of Observation, Volume I—Measurements of Meteorological Variables; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Harper, B.; Kepert, J.; Ginger, J. Wind speed time averaging conversions for tropical cyclone conditions. In Proceedings of the 28th Conference Hurricanes and Tropical Meteorology, AMS, Orlando, FL, USA, 28 April 2008. [Google Scholar]
- Lee, J.A. A field experiment on the role of small scale wind gustiness in Aeolian sand transport. Earth Surf. Processes Landf. 1987, 12, 331–335. [Google Scholar] [CrossRef]
- Durán, O.; Claudin, P.; Andreotti, B. On aeolian transport: Grain-scale interactions, dynamical mechanisms and scaling laws. Aeolian Res. 2011, 3, 243–270. [Google Scholar] [CrossRef]
- Pfeifer, S.; Schönfeld, H.-J. The response of saltation to wind speed fluctuations. Earth Surf. Processes Landf. 2012, 37, 1056–1064. [Google Scholar] [CrossRef]
- Martin, R.L.; Kok, J.F.; Hugenholtz, C.H.; Barchyn, T.E.; Chamecki, M.; Ellis, J.T. High-frequency measurements of Aeolian saltation flux: Field-based methodology and applications. Aeolian Res. 2018, 30, 97–114. [Google Scholar] [CrossRef] [Green Version]
- Comola, F.; Kok, J.F.; Chamecki, M.; Martin, R.L. The intermittency of wind-driven sand transport. Geophys. Res. Lett. 2019, 46, 13430–13440. [Google Scholar] [CrossRef]
- Sterk, G.; Jacobs, A.F.G.; van Boxel, J.H. The effect of turbulent flow structures on saltation sand transport in the atmospheric boundary layer. Earth Surf. Processes Landf. 1998, 23, 877–887. [Google Scholar] [CrossRef]
- Stout, J.E.; Zobeck, T.M. Intermittent saltation. Sedimentology 1997, 44, 959–970. [Google Scholar] [CrossRef] [Green Version]
- Baas, A. Evaluation of Saltation Flux Impact Responders (Safires) for measuring instantaneous aeolian sand transport rates. Geomorphology 2004, 59, 99–118. [Google Scholar] [CrossRef]
- Bauer, B.O.; Yi, J.; Namikas, S.L.; Sherman, D.J. Event detection and conditional averaging in unsteady aeolian systems. J. Arid. Environ. 1998, 39, 345–375. [Google Scholar] [CrossRef]
- Zanke, U. Grundlagen der Sedimentbewegung (Basics of Sediment Transport), in German; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1982. [Google Scholar]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1988; 666p. [Google Scholar]
- Shao, Y. Physics and Modelling Wind Erosion; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar]
- Dupont, S.; Rajot, J.-L.; Labiadh, M.; Bergametti, G.; Alfaro, S.C.; Lamaud, E.; Irvine, M.R.; Bouet, C.; Fernandes, R.; Khalfallah, B.; et al. Dissimilarity between dust, heat, and momentum turbulent transports during aeolian soil erosion. J. Geophys. Res. Atmos. 2019, 124, 1064–1089. [Google Scholar] [CrossRef]
- Schmid, H.; Oke, T. A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain. Q. J. R. Meteorol. Soc. 2006, 116, 965–988. [Google Scholar] [CrossRef]
- Horst, T.W.; Weil, J.C. Footprint estimation for scalar flux measurements in the atmospheric surface layer. Bound. Layer Meteorol. 1992, 59, 279–296. [Google Scholar] [CrossRef]
- Horst, T.W.; Weil, J.C. How far is far enough?: The fetch requirements for micrometeorological measurement of surface fluxes. J. Atmos. Ocean. Technol. 1994, 11, 1018–1025. [Google Scholar] [CrossRef] [Green Version]
- Horst, T.W. The footprint for estimation of atmosphere-surface exchange fluxes by profile techniques. Bound. Layer Meteorol. 1999, 90, 171–188. [Google Scholar] [CrossRef]
- Foken, T. Micrometeorology; Springer: Berlin/Heidelberg, Germany, 2008; 328p. [Google Scholar]
- Siegmund, N.; Funk, R.; Sommer, M.; Panebianco, J.; Avecilla, F.; Iturri, L.; Buschiazzo, D. Horizontal and vertical fluxes of particulate matter during wind erosion on arable land in the province La Pampa, Argentina. Int. J. Sediment Res. 2022, 37, 539–552. [Google Scholar] [CrossRef]
- de Oro, L.; Buschiazzo, D. Threshold wind velocity as an index of soil susceptibility to wind erosion under variable climatic conditions. Land Degrad. Dev. 2018, 20, 14–21. [Google Scholar] [CrossRef]
- Fryrear, D.W.; Saleh, A.; Bilbro, J.D.; Schomberg, H.M.; Stout, J.E.; Zobeck, T.M. Revised Wind Erosion Equation (RWEQ); Technical Bulletin 1; Southern Plains Area Cropping Systems Research Laboratory, Wind Erosion and Water Conservation Research Unit: Lafayette, LA, USA, 1998. [Google Scholar]
- WMO. Challenges in the Transition from Conventional to Automatic Meteorological Observing Networks for Long-Term Climate Records; World Meteorological Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Harper, B.A.; Kepert, J.D.; Ginger, J.D. Guidelines for Converting between Various Wind Averaging Periods in Tropical Cyclone Conditions; World Meteorological Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Saxton, K.; Chandler, D.; Stetler, L.; Lamb, B.; Claiborn, C.; Lee, B.-H. Wind erosion and fugitive dust fluxes on agricultural lands in the Pacific Northwest. Trans. ASAE 2000, 43, 623–630. [Google Scholar] [CrossRef]
- Panebianco, J.E.; Buschiazzo, D.E. Effect of temporal resolution of wind data on wind erosion prediction with the Revised Wind Erosion Equation (RWEQ). Cienc. Del. Suelo 2013, 31, 189–199. [Google Scholar]
- Hu, F.; Cheng, X.; Zeng, Q. The Mechanism of Dust Entrainment under Strong Wind with Gustiness. Procedia IUTAM 2015, 17, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Avecilla, F.; Panebianco, J.E.; Mendez, M.J.; Buschiazzo, D.E. PM10 emission efficiency for agricultural soils: Comparing a wind tunnel, a dust generator, and the open-air plot. Aeolian Res. 2018, 32, 116–123. [Google Scholar] [CrossRef]
- Zeng, Q.; Cheng, X.; Hu, F.; Peng, Z. Gustiness and coherent structure of strong winds and their role in dust emission and entrainment. Adv. Atmos. Sci. 2010, 27, 1–13. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, X.; Wang, H.; Zhao, A.; Wang, X. The flux profile of a blowing sand cloud: A wind tunnel investigation. Geomorphology 2003, 49, 219–230. [Google Scholar] [CrossRef]
- Avecilla, F.; Panebianco, J.; Buschiazzo, D. A wind-tunnel study on saltation and PM10 emission from agricultural soils. Aeolian Res. 2016, 22, 73–83. [Google Scholar] [CrossRef]
- Panebianco, J.E.; Mendez, M.J.; Buschiazzo, D.E. PM10 Emission, sandblasting efficiency and vertical entrainment during successive wind erosion events: A wind-tunnel approach. Bound.-Layer Meteorol. 2016, 161, 335–353. [Google Scholar] [CrossRef]
- Funk, R.; Papke, N.; Hör, B. Wind tunnel tests to estimate PM10 and PM2.5-emissions from complex substrates of open-cast strip mines in Germany. Aeolian Res. 2019, 39, 23–32. [Google Scholar] [CrossRef]
- Siegmund, J.; Wiedermann, M.; Donges, J.; Donner, R. Impact of temperature and precipitation extremes on the flowering dates of four German wildlife shrub species. Biogeosciences 2016, 13, 5541–5555. [Google Scholar] [CrossRef] [Green Version]
- Siegmund, J.; Siegmund, N.; Donner, R. CoinCalc—A new R package for quantifying simultaneities of event series. Comput. Geosci. 2017, 98, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Donges, J.; Schleussner, C.F.; Siegmund, J.; Donner, R. Event coincidence analysis for quantifying statistical interrelationships between events time series. Eur. Phys. J. Spec. Top. 2016, 225, 471–487. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siegmund, N.; Panebianco, J.E.; Avecilla, F.; Iturri, L.A.; Sommer, M.; Buschiazzo, D.E.; Funk, R. From Gustiness to Dustiness—The Impact of Wind Gusts on Particulate Matter Emissions in Field Experiments in La Pampa, Argentina. Atmosphere 2022, 13, 1173. https://doi.org/10.3390/atmos13081173
Siegmund N, Panebianco JE, Avecilla F, Iturri LA, Sommer M, Buschiazzo DE, Funk R. From Gustiness to Dustiness—The Impact of Wind Gusts on Particulate Matter Emissions in Field Experiments in La Pampa, Argentina. Atmosphere. 2022; 13(8):1173. https://doi.org/10.3390/atmos13081173
Chicago/Turabian StyleSiegmund, Nicole, Juan E. Panebianco, Fernando Avecilla, Laura A. Iturri, Michael Sommer, Daniel E. Buschiazzo, and Roger Funk. 2022. "From Gustiness to Dustiness—The Impact of Wind Gusts on Particulate Matter Emissions in Field Experiments in La Pampa, Argentina" Atmosphere 13, no. 8: 1173. https://doi.org/10.3390/atmos13081173
APA StyleSiegmund, N., Panebianco, J. E., Avecilla, F., Iturri, L. A., Sommer, M., Buschiazzo, D. E., & Funk, R. (2022). From Gustiness to Dustiness—The Impact of Wind Gusts on Particulate Matter Emissions in Field Experiments in La Pampa, Argentina. Atmosphere, 13(8), 1173. https://doi.org/10.3390/atmos13081173