Response of Natural Gas Consumption to Temperature and Projection under SSP Scenarios during Winter in Beijing
Abstract
:1. Introduction
2. Data and Methods
2.1. Temperature Data
2.2. Natural Gas Consumption and Socioeconomic Data
2.3. Regression Model
3. Results
3.1. Response of the Natural Gas Consumption to Temperature
3.2. Changes under Future Scenarios
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scharf, H.; Arnold, F.; Lencz, D. Future natural gas consumption in the context of decarbonization—A meta-analysis of scenarios modeling the German energy system. Energy Strateg. Rev. 2021, 33, 100591. [Google Scholar] [CrossRef]
- Jaramillo, P.; Griffin, W.M.; Matthews, H.S. Comparative life cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation. Environ. Sci. Technol. 2007, 41, 6290–6296. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, K.K.; Jain, S.; Jain, A.K.; Dahiya, S. Assessment of greenhouse gas emissions from coal and natural gas thermal power plants using life cycle approach. Int. J. Environ. Sci. Technol. 2014, 11, 1157–1164. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Su, H.; Chen, C.; Tao, W.; Streets, D.G.; Lu, Z.; Zheng, B.; Carmichael, G.R.; Lelieveld, J.; Pöschl, U.; et al. Natural gas shortages during the “coal-to-gas” transition in China have caused a large redistribution of air pollution in winter 2017. Proc. Natl. Acad. Sci. USA 2020, 117, 31018–31025. [Google Scholar] [CrossRef]
- State Council of the People’s Republic of China. The Air Pollution Prevention and Control National Action Plan. 2013. Available online: https://www.gov.cn/zwgk/2013-09/12/content_2486773.htm (accessed on 10 June 2022).
- Cai, S.; Wang, Y.; Zhao, B.; Wang, S.; Chang, X.; Hao, J. The impact of the “Air Pollution Prevention and Control Action Plan” on PM2.5 concentrations in Jing–Jin–Ji region during 2012–2020. Sci. Total Environ. 2017, 580, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Zheng, H.; Wang, S.; Smith, K.R.; Lu, X.; Aunan, K.; Gu, Y.; Wang, Y.; Ding, D.; Xing, J.; et al. Change in household fuels dominates the decrease in PM2.5 exposure and premature mortality in China in 2005–2015. Proc. Natl. Acad. Sci. USA 2018, 115, 12401–12406. [Google Scholar] [CrossRef] [Green Version]
- Eyre, N.; Baruah, P. Uncertainties in future energy demand in UK residential heating. Energy Policy 2015, 87, 641–653. [Google Scholar] [CrossRef]
- Etokakpan, M.U.; Akadiri, S.S.; Alola, A.A. Natural gas consumption-economic output and environmental sustainability target in China: An N-shaped hypothesis inference. Environ. Sci. Pollut. Res. 2021, 28, 37741–37753. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Liu, X.; Sweeney, J. The impacts of climate change on domestic natural gas consumption in the Greater Dublin Region. Int. J. Clim. Change Strateg. Manag. 2012, 4, 161–178. [Google Scholar] [CrossRef]
- Auffhammer, M.; Baylis, P.; Hausman, C.H. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 1886–1891. [Google Scholar] [CrossRef] [Green Version]
- Wenz, L.; Levermanna, A.; Auffhammere, M. North–south polarization of European electricity consumption under future warming. Proc. Natl. Acad. Sci. USA 2017, 114, E7910–E7918. [Google Scholar] [CrossRef] [Green Version]
- Berardi, U.; Jafarpur, P. Assessing the impact of climate change on building heating and cooling energy demand in Canada. Renew. Sustain. Energy Rev. 2020, 121, 109681. [Google Scholar] [CrossRef]
- Auffhammer, M. Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption. J. Environ. Econ. Manag. 2022, 114, 102669. [Google Scholar] [CrossRef]
- Min, J.; Wang, H.; Dong, Y. Forecast of natural gas consumption in heating season based on EMD and BP neural network methods in Beijing. J. Arid. Meteorol. 2021, 39, 864–870. (In Chinese) [Google Scholar] [CrossRef]
- Reyna, J.; Chester, M. Energy efficiency to reduce residential electricity and natural gas use under climate change. Nat. Commun. 2017, 8, 14916. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 2017, 42, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. A trend-preserving bias correction–the ISI-MIP approach. Earth Syst. Dyn. 2013, 4, 219–236. [Google Scholar] [CrossRef] [Green Version]
- Carleton, T.A.; Hsiang, S.M. Social and economic impacts of climate. Science 2016, 353, aad9837. [Google Scholar] [CrossRef] [Green Version]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [Green Version]
- Stoner, A.M.K.; Hayhoe, K.; Wuebbles, D.J. Assessing General Circulation Model Simulations of Atmospheric Teleconnection Patterns. J. Clim. 2009, 22, 4348–4372. [Google Scholar] [CrossRef]
- Wu, M.; Zhou, T.; Li, C.; Li, H.; Chen, X.; Wu, B.; Zhang, W.; Zhang, L. A very likely weakening of Pacific Walker Circulation in constrained near-future projections. Nat. Commun. 2021, 12, 6502. [Google Scholar] [CrossRef] [PubMed]
- Easterling, D.R.; Wehner, M.F. Is the climate warming or cooling? Geophys. Res. Lett. 2009, 36, L08706. [Google Scholar] [CrossRef] [Green Version]
- Foster, G.; Rahmstorf, S. Global temperature evolution 1979–2010. Environ. Res. Lett. 2011, 6, 044022. [Google Scholar] [CrossRef]
- Fyfe, J.; Gillett, N.; Zwiers, F. Overestimated global warming over the past 20 years. Nat. Clim. Change 2013, 3, 767–769. [Google Scholar] [CrossRef]
- Li, X.; Wu, Z.; Li, Y. A link of China warming hiatus with the winter sea ice loss in Barents–Kara Seas. Clim. Dyn. 2019, 53, 2625–2642. [Google Scholar] [CrossRef]
- Davis, R.E. Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr. 1976, 6, 249–266. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X. Present day bias and future change signal of temperature over China in a series of multi-GCM driven RCM simulations. Clim. Dyn. 2020, 54, 1113–1130. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.; Qiao, J.; Wang, X.; Jiang, X. Statistical analysis of main factors of natural gas consumption growth in Beijing city. Gas Heat 2017, 37, 26–30. [Google Scholar]
Model | Institute | Resolution (Lon × Lat) | R |
---|---|---|---|
ACCESS-CM2 | Commonwealth Scientific and Industrial Research Organisation (CSIRO) and Australian Research Council Centre of Excellence for Climate System Science, Australia | 192 × 144 | 0.16 |
ACCESS-ESM1-5 | CSIRO, Australia | 192 × 145 | 0.56 |
AWI-CM-1-1-MR | Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Germany | 384 × 192 | 0.24 |
BCC-CSM2-MR | Beijing Climate Center, China Meteorological Administration, China | 320 × 160 | 0.18 |
CAMS-CSM1-0 | Chinese Academy of Meteorological Sciences, China Meteorological Administration, China | 320 × 160 | 0.36 |
CanESM5 | Canadian Centre for Climate Modeling and Analysis, Canada | 128 × 64 | 0.19 |
CanESM5-CanOE | Canadian Centre for Climate Modeling and Analysis, Canada | 128 × 64 | 0.79 * |
CESM2 | National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, USA | 288 × 192 | 0.55 |
CESM2-WACCM | National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, USA | 288 × 192 | −0.20 |
CNRM-CM6-1-HR | CNRM and Centre Europeen de Recherches et de Formation Avancee en Calcul Scientifique (CERFACS), France | T359 | 0.91 * |
CNRM-CM6-1 | CNRM–CERFACS, France | T127 | 0.76 * |
CNRM-ESM2-1 | CNRM–CERFACS, France | T127 | 0.00 |
EC-Earth3 | EC—Earth consortium | 512 × 256 | 0.63 |
EC-Earth3-CC | EC—Earth consortium | 512 × 256 | 0.01 |
EC-Earth3-Veg | EC—Earth consortium | 512 × 256 | −0.28 |
EC-Earth3-Veg-LR | EC—Earth consortium | 320 × 160 | 0.55 |
FGOALS-g3 | Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, China | 180 × 80 | 0.02 |
FGOALS-f3-L | IAP, Chinese Academy of Sciences, China | 360 × 180 | 0.91 * |
GFDL-ESM4 | National Oceanic and Atmospheric Administration, USA | 360 × 180 | −0.77 |
GFDL-CM4 | National Oceanic and Atmospheric Administration, USA | 360 × 180 | −0.35 |
GISS-E2-2-G | Goddard Institute for Space Studies, USA | 144 × 90 | 0.22 |
GISS-E2-1-H | Goddard Institute for Space Studies, USA | 144 × 90 | 0.56 * |
GISS-E2-1-G | Goddard Institute for Space Studies, USA | 144 × 90 | −0.01 |
HadGEM3-GC31-LL | Met Office Hadley Centre, UK | 192 × 144 | 0.00 |
HadGEM3-GC31-MM | Met Office Hadley Centre, UK | 432 × 324 | −0.17 |
INM-CM4-8 | Institute of Numerical Mathematics, Russia | 180 × 120 | −0.58 |
INM-CM5-0 | Institute of Numerical Mathematics, Russia | 180 × 120 | −0.41 |
IPSL-CM6A-LR | Institut Pierre Simon Laplace, France | 144 × 143 | 0.27 |
KACE-1-0-G | National Institute of Meteorological Sciences, Korea | 192 × 144 | 0.38 |
MIROC6 | Atmosphere and Ocean Research Institute, University of Tokyo, Japan | 256 × 128 | 0.32 |
MIROC-ES2L | Atmosphere and Ocean Research Institute, University of Tokyo, Japan | 128 × 64 | 0.39 |
MPI-ESM1-2-HR | Max Planck Institute for Meteorology, Germany | 384 × 192 | −0.22 |
MPI-ESM1-2-LR | Max Planck Institute for Meteorology, Germany | 192 × 96 | 0.31 |
MRI-ESM2-0 | Meteorological Research Institute, Japan | 320 × 160 | 0.46 |
NorESM2-LM | Norwegian Climate Center, Norway | 144 × 96 | 0.53 * |
NorESM2-MM | Norwegian Climate Center, Norway | 288 × 192 | 0.77 * |
UKESM1-0-LL | Met Office Hadley Centre, UK | 192 × 144 | 0.09 |
Years | SSP245 | SSP585 | ||
---|---|---|---|---|
ΔTemp | ΔGas | ΔTemp | ΔGas | |
2021–2030 | 0.92 (0.27) | −2.83 (1.12) | 0.98 (0.59) | −2.16 (1.68) |
2031–2040 | 1.31 (0.45) | −3.26 (1.33) | 1.52 (1.04) | −4.33 (3.17) |
2041–2050 | 1.75 (0.80) | −4.68 (2.41) | 2.41 (0.80) | −7.02 (3.08) |
2051–2060 | 2.02 (1.16) | −5.80 (3.64) | 3.24 (1.06) | −8.78 (3.04) |
2061–2070 | 2.21 (0.93) | −6.69 (2.26) | 4.61 (1.26) | −12.75 (3.32) |
2071–2080 | 2.75 (0.96) | −7.00 (2.95) | 5.47 (2.02) | −15.79 (5.82) |
2081–2090 | 3.38 (1.41) | −9.68 (3.56) | 6.66 (2.20) | −18.31 (5.93) |
2091–2100 | 3.28 (1.54) | −9.15 (4.19) | 7.66 (2.32) | −21.55 (6.76) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, J.; Dong, Y.; Wang, H. Response of Natural Gas Consumption to Temperature and Projection under SSP Scenarios during Winter in Beijing. Atmosphere 2022, 13, 1178. https://doi.org/10.3390/atmos13081178
Min J, Dong Y, Wang H. Response of Natural Gas Consumption to Temperature and Projection under SSP Scenarios during Winter in Beijing. Atmosphere. 2022; 13(8):1178. https://doi.org/10.3390/atmos13081178
Chicago/Turabian StyleMin, Jingjing, Yan Dong, and Hua Wang. 2022. "Response of Natural Gas Consumption to Temperature and Projection under SSP Scenarios during Winter in Beijing" Atmosphere 13, no. 8: 1178. https://doi.org/10.3390/atmos13081178
APA StyleMin, J., Dong, Y., & Wang, H. (2022). Response of Natural Gas Consumption to Temperature and Projection under SSP Scenarios during Winter in Beijing. Atmosphere, 13(8), 1178. https://doi.org/10.3390/atmos13081178