Prevention of Health Risks Related to Occupational Solar Ultraviolet Radiation Exposure in Times of Climate Change and COVID-19 Pandemic
Abstract
:1. Introduction
2. Recent Research on Occupational SUVR Risk and Its Prevention
3. Future Changes in Occupational SUVR Exposure Risk and Outdoor Activities Definitions?
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gobba, F.; Modenese, A.; John, S. Skin cancer in outdoor workers exposed to solar radiation: A largely underreported occupational disease in Italy. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
- Kauppinen, T.; Toikkanen, J.; Pedersen, D.; Young, R.; Ahrens, W.; Boffetta, P.; Hansen, J.; Kromhout, H.; Blasco, J.M.; Mirabelli, D.; et al. Occupational exposure to carcinogens in the European Union. Occup. Environ. Med. 2000, 57, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Schmalwieser, A.W.; Casale, G.R.; Colosimo, A.; Schmalwieser, S.S.; Siani, A.M. Review on Occupational Personal Solar UV Exposure Measurements. Atmosphere 2021, 12, 142. [Google Scholar] [CrossRef]
- Zölzer, F.; Bauer, S. Solar Ultraviolet Radiation Risk Estimates—A Comparison of Different Action Spectra and Detector Responsivities. Int. J. Environ. Res. Public Health 2021, 18, 4887. [Google Scholar] [CrossRef]
- Wittlich, M. Criteria for Occupational Health Prevention for Solar UVR Exposed Outdoor Workers-Prevalence, Affected Parties, and Occupational Disease. Front. Public Health 2022, 9, 772290. [Google Scholar] [CrossRef]
- Wittlich, M.; John, S.; Tiplica, G.; Sălăvăstru, C.; Butacu, A.; Modenese, A.; Paolucci, V.; D’Hauw, G.; Gobba, F.; Sartorelli, P.; et al. Personal solar ultraviolet radiation dosimetry in an occupational setting across Europe. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1835–1841. [Google Scholar] [CrossRef]
- Solar Ultraviolet Radiation: Assessing the Environmental Burden of Disease at National and Local Levels; World Health Organization: Geneva, Switzerland, 2010; Available online: https://apps.who.int/iris/handle/10665/339523 (accessed on 13 July 2022).
- Neale, R.E.; Purdie, J.L.; Hirst, L.W.; Green, A.C. Sun exposure as a risk factor for nuclear cataract. Epidemiology 2003, 14, 707–712. [Google Scholar] [CrossRef]
- Chalada, M.; Ramlogan-Steel, C.A.; Dhungel, B.P.; Layton, C.J.; Steel, J.C. The Impact of Ultraviolet Radiation on the Aetiology and Development of Uveal Melanoma. Cancers 2021, 13, 1700. [Google Scholar] [CrossRef]
- Loney, T.; Paulo, M.S.; Modenese, A.; Gobba, F.; Tenkate, T.; Whiteman, D.; Green, A.; John, S.M. Global evidence on occupational sun exposure and keratinocyte cancers: A systematic review. Br. J. Dermatol. 2021, 184, 208–218. [Google Scholar] [CrossRef]
- The Effect of Occupational Exposure to Solar Ultraviolet Radiation on Malignant Skin Melanoma and Nonmelanoma Skin Cancer: A Systematic Review and Meta-Analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury; World Health Organization: Geneva, Switzerland, 2021; Available online: https://apps.who.int/iris/rest/bitstreams/1400672/retrieve (accessed on 13 July 2022).
- ICD-11 International Classification of Diseases 11th Revision. The Global Standard for Diagnostic Health Information. Available online: https://icd.who.int/en (accessed on 13 July 2022).
- Modenese, A.; Farnetani, F.; Andreoli, A.; Pellacani, G.; Gobba, F. Questionnaire-based evaluation of occupational and non-occupational solar radiation exposure in a sample of Italian patients treated for actinic keratosis and other non-melanoma skin cancers. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, B.K.; Cust, A.E. Sun exposure and skin cancer, and the puzzle of cutaneous melanoma: A perspective on Fears et al. Mathematical models of age and ultraviolet effects on the incidence of skin cancer among whites in the United States. American Journal of Epidemiology 1977; 105: 420–427. Cancer Epidemiol. 2017, 48, 147–156. [Google Scholar] [PubMed]
- Curchin, D.J.; Harris, V.R.; McCormack, C.J.; Smith, S.D. Changing trends in the incidence of invasive melanoma in Victoria, 1985–2015. Med. J. Aust. 2018, 208, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.; White, V.; Marks, R.; Borland, R. Changes in sun-related attitudes and behaviours, and reduced sunburn prevalence in a population at high risk of melanoma. Eur. J. Cancer Prev. 1993, 2, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Reinau, D.; Weiss, M.; Meier, C.R.; Diepgen, T.L.; Surber, C. Outdoor workers’ sun-related knowledge, attitudes and protective behaviours: A systematic review of cross-sectional and interventional studies. Br. J. Dermatol. 2013, 168, 928–940. [Google Scholar] [CrossRef] [PubMed]
- SunSmart Global UV App Helps Protect You from the Dangers of the Sun and Promotes Public Health. Available online: https://www.who.int/news/item/21-06-2022-sunsmart-global-uv-app-helps-protect-you-from-the-dangers-of-the-sun-and-promotes-public-health (accessed on 13 July 2022).
- Pérez-Gómez, B.; Aragonés, N.; Gustavsson, P.; Lope, V.; López-Abente, G.; Pollán, M. Socio-economic class, rurality and risk of cutaneous melanoma by site and gender in Sweden. BMC Public Health 2008, 8, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindelöf, B.; Lapins, J.; Dal, H. Shift in Occupational Risk for Basal Cell Carcinoma from Outdoor to Indoor Workers: A Large Population-based Case-control Register Study from Sweden. Acta Derm. Venereol. 2017, 97, 830–833. [Google Scholar] [CrossRef] [Green Version]
- Gil, V.; Gaertner, M.A.; Gutierrez, C.; Losada, T. Impact of Climate Change on Solar Irradiation and Variability over the Iberian Peninsula Using Regional Climate Models. Int. J. Climatol. 2019, 39, 1733–1747. [Google Scholar] [CrossRef] [Green Version]
- International Labour Organization. Teleworking during the COVID-19 Pandemic and Beyond. A Practical Guide. Available online: https://www.ilo.org/wcmsp5/groups/public/---ed_protect/---protrav/---travail/documents/instructionalmaterial/wcms_751232.pdf (accessed on 13 July 2022).
- Wong, C.W.; Tsai, A.; Jonas, J.B.; Ohno-Matsui, K.; Chen, J.; Ang, M.; Ting, D.S.W. Digital Screen Time During the COVID-19 Pandemic: Risk for a Further Myopia Boom? Am. J. Ophthalmol. 2021, 223, 333–337. [Google Scholar] [CrossRef]
- Baczynska, K.A.; Rendell, R.J.; Khazova, M. Impact of COVID-19 Lockdown on Sun Exposure of UK Office Workers. Int. J. Environ. Res. Public Health 2021, 18, 4362. [Google Scholar] [CrossRef]
- Megna, M.; Marasca, C.; Fabbrocini, G.; Monfrecola, G. Ultraviolet radiation, vitamin D, and COVID-19. Ital. J. Dermatol. Venerol. 2021, 156, 366–373. [Google Scholar] [CrossRef]
- Park, H.Y.; Lim, Y.H.; Park, J.B.; Rhie, J.; Lee, S.J. Environmental and Occupation Factors Associated with Vitamin D Deficiency in Korean Adults: The Korea National Health and Nutrition Examination Survey (KNHANES) 2010–2014. Int. J. Environ. Res. Public Health 2020, 17, 9166. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Weng, Z.; Saito, H.; Ogawa, Y.; Nakayama, K.; Hasegawa-Ohira, M.; Morimoto, K.; Maki, S.; Takahashi, M. Association between night-shift work and serum 25-hydroxyvitamin D levels in Japanese male indoor workers: A cross-sectional study. Ind. Health 2011, 49, 658–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodes, L.E.; Webb, A.R.; Berry, J.L.; Felton, S.J.; Marjanovic, E.; Wilkinson, J.; Vail, A.; Kift, R. Sunlight exposure behaviour and vitamin D status in photosensitive patients: Longitudinal comparative study with healthy individuals at UK latitude. Br. J. Dermatol. 2014, 171, 1478–1486. [Google Scholar] [CrossRef] [PubMed]
- Working Group of the Australian and New Zealand Bone and Mineral Society; Endocrine Society of Australia; Osteoporosis Australia. Vitamin D and Adult Bone Health in Australia and New Zealand: A Position Statement. Med. J. Aust. 2005, 182, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Modenese, A.; Loney, T.; Gobba, F. COVID-19-Related Mortality amongst Physicians in Italy: Trend Pre- and Post-SARS-CoV-2 Vaccination Campaign. Healthcare 2022, 10, 1187. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modenese, A. Prevention of Health Risks Related to Occupational Solar Ultraviolet Radiation Exposure in Times of Climate Change and COVID-19 Pandemic. Atmosphere 2022, 13, 1147. https://doi.org/10.3390/atmos13071147
Modenese A. Prevention of Health Risks Related to Occupational Solar Ultraviolet Radiation Exposure in Times of Climate Change and COVID-19 Pandemic. Atmosphere. 2022; 13(7):1147. https://doi.org/10.3390/atmos13071147
Chicago/Turabian StyleModenese, Alberto. 2022. "Prevention of Health Risks Related to Occupational Solar Ultraviolet Radiation Exposure in Times of Climate Change and COVID-19 Pandemic" Atmosphere 13, no. 7: 1147. https://doi.org/10.3390/atmos13071147
APA StyleModenese, A. (2022). Prevention of Health Risks Related to Occupational Solar Ultraviolet Radiation Exposure in Times of Climate Change and COVID-19 Pandemic. Atmosphere, 13(7), 1147. https://doi.org/10.3390/atmos13071147